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Abstract: The standard approach to structural properties of Petri nets (such as 
boundedness, conservativeness, repetitiveness and consistency) is based on the 
compatibility of different systems of linear inequalities. Unfortunately the direct usage of 
this approach is unsuitable for implementation in the Petri Net Toolbox (recently 
developed as an analysis and design instrument integrated with MATLAB), because 
MATLAB offers no facilities for inequality resolution. The paper proposes a technique 
that allows converting the standard formulation referred to above into a MATLAB 
tractable problem. This technique exploits the systems of linear inequalities as constraints 
for an adequate objective function, minimised by a linear programming routine. Both 
theoretical background and the implementation in the Petri Net Toolbox are presented. 
Two examples illustrate the effectiveness of the proposed technique as well as its 
usefulness for computer-based training.  
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1. INTRODUCTION 
 
The successful study of Petri nets (PNs) by Control 
Engineering (CE) students is highly dependent on the 
organization of computer experiments for laboratory 
classes and, consequently, requires specific software 
tools to deal with the complexity of analysis and 
design problems. During the last decade, many 
academic or research groups developed PN simulators 
equipped with various supplementary facilities for 
efficient approaches to PN properties (see, for 
instance, (Feldbrugge, 1993) and the brief list given in 
(Păstrăvanu, 1997, pp. 195)). Unfortunately, such 
software platforms are not familiar for CE students, 
whose regular practical training focuses on the 
exploitation of the generous resources provided by 
MATLAB and its specialized toolboxes.  

Under these circumstances, a Petri Net Toolbox (PN 
Toolbox), embedded in the MATLAB environment, 
was designed and implemented at the Department of 
Automatic Control and Industrial Informatics of the 
Technical University “Gh. Asachi” of Iasi, whose 

skeleton and functionality were briefly presented in 
(Mahulea et al, 2001). The integration with the 
MATLAB philosophy presents the considerable 
advantage (with respect to other PN software) of 
creating powerful algebraic, statistical and graphical 
instruments, which exploit the high quality routines 
available in MATLAB.  

The MATLAB orientation of the PN Toolbox also 
ensures the necessary flexibility for further 
improvement, by upgrading the tools that already 
exist and by adding new ones. Along these lines, new 
facilities have been recently developed for the 
analysis of the structural properties and it is the 
purpose of the current paper to give an overview of 
their theoretical background and software 
implementation. The main idea consists in deriving 
appropriate formulations for the analysis of the 
structural properties so as to allow using the 
computational resources offered by MATLAB. 

The text is organised according to the following plan: 
Section 2 briefly presents the fundamental results that 
are used by the standard approach to structural 



properties, based on systems of linear inequalities. 
Section 3 exposes a technique for testing the 
compatibility of such systems of linear inequalities, 
which is suitable to MATLAB capabilities. The 
implementation of this technique in the PN Toolbox 
is discussed in Section 4. Section 5 considers two 
relevant examples to demonstrate the validity of the 
proposed methodology for analysing the structural 
properties, as well as to illustrate its exploitation as 
an instrument incorporated into the PN Toolbox. 
Some concluding remarks are formulated in the last 
section. 
 
 

2. STANDARD APPROACH TO STRUCTURAL 
PROPERTIES BASED ON LINEAR INEQUALITIES 
 
A Petri net consists of a particular type of directed 
weighted bipartite graph, denoted by N, and an initial 
state called initial marking, 0M . The underlying 
graph N of a PN contains two kinds of nodes, called 
places and transitions. Its weighted arcs connect a 
place to a transition or a transition to a place. It is 
assumed that all PNs considered in this paper are 
pure, that is they have no self-loops. The topological 
structure of a pure Petri net N with n transitions and 
m places is completely described by an n m×  matrix 
of integers A , called incidence matrix. A marking 
(state) M  assigns to each position p a nonnegative 
integer ( )pM  (p is marked with ( )pM  tokens). The 
firing of an enabled transition will change the token 
distribution in a net. A marking M is said to be 
reachable from 0M  if there exists a sequence of 
firings that transforms 0M  into M. 
 
Structural properties of PNs are those that depend 
only on their topological structure and are 
independent of the initial marking. Thus, these 
properties may be characterised in terms of the 
incidence matrix A  and its associated homogenous 
equations or inequalities. In (Murata, 1989) 
necessary and sufficient conditions for structural 
boundedness, conservativeness, repetitiveness and 
consistency of a PN are provided. A brief overview is 
presented in the sequel. 
 
Throughout this paper, mZ  ( mR ) and n m×Z , for 

,n m ∗∈N , denote the set of integer (real) vectors 
with m elements, respectively that of n m×  integer 
matrices. The null vector is denoted by 0 . For a 
given matrix n m×∈A ] , TA  stands for its transposed 
matrix. Let , m∈x y Z , be two m-vectors, 

[ ]1 2, , , T
mxx x=x … , [ ]1 2, , , T

myy y=y … . The 
following inequality type notations are used: 

, 1,i ix y i m< ⇔ < ∀ =x y ; 

, 1,i ix y i m≤ ⇔ ≤ ∀ =x y ; 

{ }and 1,2, , , i ii m x y<≠ ⇔ ≤ ∃ ∈ ≠x y x y … . 

Structural Boundedness. A Petri net N with an initial 
marking 0M  is said to be bounded if the number of 
tokens in each place does not exceed a finite number 
k ∈N  for any marking reachable from 0M . A PN 
that is bounded for any finite initial marking 0M  is 
said to be structurally bounded. 
 
Theorem 1. A Petri net N is structurally bounded iff 
there exists an m-vector of positive integers, 

,m∈ >y y 0Z , such that  
 ≤Ay 0 . (1) 
Proof. See (Murata, 1989). ■  
 
Conservativeness. A Petri net N is said to be 
conservative if there exists an m-vector of positive 
integers, ,m∈ >y y 0Z , such that for any initial 
marking 0M  and for every marking M  reachable 
from 0M  the following identity holds 

(2) 0
T T= =M y M y a constant. 

In case that equality (2) holds for an m-vector of 
nonnegative integers m∈y Z , >≠y 0 , then the net is 
said to be partially conservative. 
 
Theorem 2. A Petri net N is (partially) conservative 
iff there exists an m-vector of integers, 

,m∈ >y y 0Z  ( >≠y 0 ), such that  
 =Ay 0 . (2) 
Proof. See (Murata, 1989).  ■  
 
Repetitiveness. A Petri net N is said to be repetitive if 
there exists an initial marking 0M  and a firing 
sequence σ  such that every transition occurs 
infinitely often in σ . In case that there exists an 
initial marking 0M  and a firing sequence σ  such 
that some transitions (not all) occur infinitely often in 
σ , the net is said to be partially repetitive.  
 
Theorem 3. A Petri net N is (partially) repetitive iff 
there exists an n-vector of integers, n∈x Z , >x 0  
( >≠x 0 ), such that  
 T ≥A x 0 . (3) 
Proof. See (Murata, 1989). ■  
 
Consistency. A Petri net N is said to be consistent if 
there exists an initial marking 0M  and a firing 
sequence σ  from 0M  back to 0M  such that every 
transition occurs at least once in σ . In case that there 
exists an initial marking 0M  and a firing sequence 
σ  from 0M  back to 0M  such that some transitions 
(not all) occur at least once in σ , the net is said to be 
partially consistent. 
 
Theorem 4. A Petri net N is (partially) consistent iff 
there exists an n-vector of integers, n∈x Z , >x 0  
( >≠x 0 ), such that  



 T =A x 0 . (4) p <Ay 0
Proof. See (Murata, 1989). ■  
 
P- and T-Invariants. An m-vector >≠y 0  of integers 
is called a P-invariant if =Ay 0 . An n-vector 

>≠x 0  of integers is called a T-invariant if T =A x 0 . 
There is, obviously, a direct connection between the 
P-invariants and the conservativeness of a PN on the 
one side, and between the T-invariants and the 
consistency on the other side. 
 
The set of places (transitions) corresponding to 
nonzero entries in a P-invariant y (T-invariant x) is 
called the support of the invariant. A support is said 
to be minimal if no proper nonempty subset of the 
support is also a support of an invariant. An invariant 
z is said to be minimal if there is no other invariant 

1z  (of the same type) such that 1>≠z z . A minimal 
invariant with minimal support is called a basic 
invariant. Any invariant may be written as a linear 
combination of basic invariants. 
 
A Petri net N is said to be covered with P-invariants 
(T-invariants) if all its positions (transitions) belong 
to the support of a basic invariant. If a PN is covered 
with P-invariants, then it is conservative. If a PN is 
covered with T-invariants, then it is consistent. 
 
 

3. CONVERTING STANDARD APPROACH TO 
A MATLAB TRACTABLE PROBLEM 

 
As presented in the previous section, the study of the 
structural properties of PNs leads to the study on the 
compatibility of some systems of linear inequalities. 
Since MATLAB provides no function for the direct 
study of such systems, there is the need of another 
approach that exploits MATLAB capabilities. 
 
Let K  be the positive hiperoctant of mR , 

{ }m= ∈ ≥y y 0K R , whose interior and boundary 

are denoted by { }i = ∈ >y y 0K K , respectively by 

{ }{1, 2, , },b ii m y= ∈ ∃ ∈ =y 0…K K . 
The study of the structural properties of PNs may be 
reduced to deciding whether a homogenous system of 
linear equations or inequalities has any solution in 

iK  or all its solutions are included in bK , as stated 
by the following theorems. 
 
Theorem 5. Let A  be an n m×  integer matrix. If the 
system of linear inequalities 
 ≤Ay 0 , m∈y R , (5) 
has a solution py  in iK , then there is an m-vector of 

integers, m
z i∈y ∩KZ , that satisfies (5). 

Proof. Two distinct cases may be studied: solution 
py  strictly satisfies all the inequalities in (5), 

, or at least one of the m elements of vector 

pAy  is equal to zero. In both cases, due to the 
particular form of matrix A , in any neighbourhood 
of py  there can be found a vector q i∈y K , having as 
elements rational numbers, which satisfies (5). By 
writing all the elements of qy  in simplified fraction 
form and choosing α  as the least common multiple 
of their denominators, the vector z qα=y y  is a 
vector of integers and it is also a solution to (5) that 
belongs to iK . ■  

m A

b∈y

b∈ K z ≠y

q by

p q

m
z ∈y ∩KZ ≠ ■

∈Z

=Ay m∈
K

i∈ K

■

b
m

z bZ ≠ 0

■

n Tf

,
,
≤ 0

y 0

,
,
= 0

y 0

[ ]1, 1 T= − …

 
Theorem 6. If for a given n×  integer matrix  
the system of linear inequalities (5) has a nontrivial 
solution p K , then there is an m-vector of 

integers, m
zy ∩Z , 0 , that satisfies (5). 

Proof. The demonstration to this theorem is similar 
to the previous one. A solution to (5), ∈K , 
having as elements rational numbers, can be found in 
any neighbourhood of y . Based on y , there can 
be constructed an m-vector of integers, 

b , zy 0 , that also satisfies (5).  
 
The same way, for a homogenous system of linear 
equations the following results may be demonstrated. 
 
Theorem 7. If n m×A  and the system of linear 
equations 
 0 , y R , (6) 
has a solution py  in i , then there is an m-vector of 

integers, m
zy ∩Z , that satisfies (6). 

Proof. The proof to this theorem is the counterpart of 
the one to theorem 5.  
 
Theorem 8. If the system of linear equations (6) has 
a nontrivial solution in K , then there is an m-vector 

of integers, ∈y ∩K , zy , that satisfies 
system (6). 
Proof. This theorem may be proven likewise  
theorem 6.   
 
Further on, the decision on the solutions to a linear 
system of inequalities (or equations) may be settled 
on by considering the linear programming problem 
(LPP): 

 mi
y

y     such that (7) 

 
≥

Ay
 (8) 

respectively 

 
≥

Ay
 (9) 

where 1, ,− −f . The minimisation 
problem (7) under constraint (8) (or (9)) has always a 



solution. The position of this solution in iK  or in bK  
specifies in fact whether the linear system (8) 
(respectively (9)) has any solution in iK  or all its 
solutions are included in bK . 

x

≤
=

≤ ≤

A x
l x

inA

 
The MATLAB implementation of this approach 
utilises the function linprog that solves the LPP 
 min T

x
f     such that (10) 

 
,
,

,

in in

eq eq

A x b
b
u

 (11) 

where , , , , ,in eqx f b b l u  are vectors and , eqA  are 
matrices of appropriate dimensions.  
 
The systems of linear equations or inequalities 
involved in the characterisation theorems of the 
structural properties of PNs may be regarded as 
constraints of such an LPP. The third relation in (11) 
is used to define the positive hiperoctant. The lower 
bound, l, is set to 0. The existence of the built-in 
MATLAB function Inf, which returns the IEEE 
arithmetic representation for positive infinity, allows 
the elements of vector x to be superiorly unbounded 
by choosing all the elements of the upper bound 
vector, u, equal to Inf. This way, the numerical 
optimisation algorithm will evenly try to move off 
zero all the elements of x, according to the maximum 
number of iterations allowed by the call to linprog 
function. 
 
The conclusion on the position of the solutions to the 
systems of linear equations or inequalities is finally 
achieved by comparing to 1 all the elements of the 
solution vector provided by the linprog function call. 
In case that the structural boundedness of a PN is 
under study, the elements of the solution vector that 
are smaller then 1 correspond to the unbounded 
positions in the net. The same way, in case of 
conservativeness (consistency) the elements smaller 
then 1 of the solution vector correspond to the 
positions (transitions) that do not belong to any  
P-invariant (T-invariant). Four new MATLAB 
functions implement this approach to the study of the 
structural properties of PNs and have been 
successfully integrated into PN Toolbox.  
 
 

4. IMPLEMENTATION AS AN INSTRUMENT 
AVAILABLE IN PN TOOLBOX 

 
The PN Toolbox (Mahulea et al, 2001) was designed 
to offer specific instruments for the simulation, 
analysis and synthesis of discrete event systems 
modelled by PNs. Its embedding in the MATLAB 
environment presents considerable advantages with 
respect to other PN software by exploiting the high 
quality routines available in MATLAB.  
 
In the present version of PN Toolbox untimed, 
transition-timed and place-timed PN models are 

accepted. The timed nets can be deterministic or 
stochastic. Priorities or probabilities can be assigned 
to conflicting transitions. Since MATLAB includes 
the built-in function Inf, our toolbox is able to 
operate with nets having infinite capacity places, 
unlike other PN software where places are meant as 
having finite capacity. User interaction with PN 
graphs is allowed by an easy to exploit Graphical 
User Interface (GUI) (MathWorks Inc., 1997a, b) 
presented in figure 1. 
 

 
 
Figure 1. Screen capture of the main window of  

PN Toolbox 
 
The Menu bar displays a set of eight drop-down 
menus that offer facilities for file handling, provides 
tools for graphical editing of PNs in the Drawing 
area and gives the user the possibility to control the 
simulation progress. In addition, the Analysis menu 
makes available some computational tools for 
investigating both behavioral and structural 
properties, generating P- or T-invariants, calculating 
global performance indices for timed nets, 
constructing max-plus state-space descriptions for 
marked-graph topologies etc.  
 
In particular, the Structural properties submenu 
contains four pop-up menus (Boundedness, 
Conservativeness, Repetitiveness and Consistency) 
corresponding to the structural properties under 
discussion in this paper, based on the incidence 
matrix of a given graphical model. The results of the 
analysis are displayed in related dialogue windows. 
In case that the studied PN is not structurally 
bounded, the unbounded places are displayed. Also, 
for partially conservative (consistent) PNs in the 
related window there are displayed the places 
(transitions) that do not belong to any P-invariant 
(respectively, T-invariant) support (see figure 5). 
 
 

5. ILLUSTRATIVE EXAMPLES 
 
A large number of FMSs modeled by PNs has been 
investigated in order to assess the facilities developed 
in this toolbox. For these tests to be conclusive, the 
chosen examples had different levels of complexity. 



The current paper presents two examples illustrating 
different situations that may occur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sketch of the FMS used in Example 1 
 
Example 1 refers to the flexible manufacturing 
system (FMS) sketched in figure 2. It consists of two 
robots (R1 and R2) used to place two types of parts, 
(E1 and E2), on two types of plates (F1 and F2). The 
assembling of part (Ei) on plate (Fi) is carried out on 
machine (Mi) ( 1,2i ). First, the right side robot is 
uses to place the part on the corresponding machine; 
then, the left side robot is used to transport the plate 
on the same machine. Next, the robots are released 
and the assembling is started. After this operation is 
completed, the machine is also released. 

=

 
The synthesis of the corresponding PN model, 
presented in figure 1, has been made according to the 
hybrid synthesis proposed in (Zhou and DiCesare, 
1993) in order to avoid the apparition of dead-lock.  
The net has 8n =  transitions and 10m =  places. Its 
incidence matrix, computed directly from the 
graphical model, is 

1 0 0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 1 0 0

0 1 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 0 1
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1

− − 
 − − 
 −
 

− =  − − −
 

− 
 − 

−  

A .(12) 

 
The procedure for generating P- or T-invariants starts 
by calling the MATLAB function null, to determine 
a basis of integer vectors for the null space of the 
incidence matrix (case of P-invariants), or that of the 
transposed incidence matrix (case of T-invariants). 
Linear combinations constructed with these vectors 
provide invariants (not necessarily minimal or with 
minimal support).  
 
The net has four basic P-invariants (figure 3) denoted 
below by , 1, 4k k =y , as well as two basic  

T-invariants, , 1, 2i i =x , 
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[ ]
[ ]
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=

x

x
 (14) 

 

 
 
Figure 3. Screen capture of the P-Invariants window 
 
It can be noticed that the net is covered by  
P-invariants, therefore it is structurally bounded and 
conservative. Since it is also covered by T-invariants, 
the net is repetitive and consistent as well. The same 
results are obtained by calling the four newly 
implemented functions dedicated to the study of 
structural properties of PNs. 
 

 
 
Figure 4. The PN model used in Example 2 
 
Example 2 is obtained by adding to the previous 
model two transitions (denoted by t9 and t10) and 
two places (denoted by p11 and p12), circled in 
figure 4. Their physical meaning is that of storage 
spaces for the pieces to be worked on the machines. 
The incidence matrix of the PN model has 10 rows 
and 12 columns. The P-invariants are given by 

1 2 

1 2 

E1 F2 

R1 

M2 M1 

F1 E2 
R2 
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1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 ,

0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0 ,

T

T

T

T
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=

=

=
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y
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 (15) 

and the T-invariants are 

 
[ ]
[ ]

1
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1, 1, 1, 1, 0, 0, 0, 0, 1, 0 ,

0, 0, 0, 0, 1, 1, 1, 1, 0, 1 .

T

T

=

=

x

x
 (16) 

This net is not structurally bounded; also, it is 
partially conservative. The newly added positions are 
unbounded and do not belong to any  
P-invariant support (figure 5). The net is repetitive 
and consistent. That results also from its being 
covered by T-invariants. 
 

 
a. 

 
b. 

 
Figure 5. Screen capture of the Structural 

Boundedness (a) and Structural 
Conservativeness (b) windows associated with 
the PN model in figure 4 

 
 

6. CONCLUSIONS 
 
The standard approach to boundedness, 
conservativeness, repetitiveness and consistency of 
Petri nets, which relies on the compatibility of 
systems of linear inequalities, has been converted 

into a MATLAB tractable problem. This allowed 
the MATLAB implementation of novel software 
modules devoted to the analysis of structural 
properties, which have been successfully 
incorporated into the PN Toolbox. The newly 
created instruments are able to test the compatibility 
of systems of linear inequalities, although the 
MATLAB environment does not offer proper 
functions for computing the solutions to such 
systems. 
 
Two PN models have been considered as illustrative 
examples to demonstrate the validity of the proposed 
methodology for analysing the structural properties, 
as well as to show how PN Toolbox can be exploited 
for such complex tasks. 
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8. ABREVIATIONS 
 
CE –  Control Engineering 
FMS –  Flexible Manufacturing System 
GUI –  Graphical User Interface 
LPP –  Linear Programming Problem 
PN –  Petri Net 
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