
Planning Mobile Robots with Boolean-based Specifications

Cristian Mahulea and Marius Kloetzer

Abstract— This research proposes an automated method for
planning a team of mobile robots such that a Boolean-based
mission is accomplished. The specification consists of logical
requirements over some regions of interest for the agents’
trajectories and for their final states. A Petri net with outputs
models the movement capabilities of the team and the active
regions of interest. The imposed specification is translated to a
set of linear restrictions for some binary variables, the robot
movement capabilities are formulated as linear constraints on
Petri net markings, and the evaluations of the binary variables
are linked with Petri net markings via linear inequalities.
This allows us to solve a Mixed Integer Linear Programming
problem whose solution yields robotic trajectories satisfying the
task. The method is implemented as a software package and
simulation results are included.

I. INTRODUCTION

A fair amount of researches propose planning algorithms
for mobile robots. The motion tasks range from classical
single-robot target reachability and obstacle avoidance [1] to
high-level missions for a whole team [2]. Many approaches
reduce the robot interaction with the environment into finite
representations, and then reason on the obtained discrete
event systems [3], [4], [2], [5].

In this paper we propose the problem of planning a team
of cooperating robots such that a Boolean-based specification
over some regions of interest is accomplished. To this goal,
we model the team movement and the satisfaction of regions
with a discrete event system in form of a Petri net (PN)
with outputs. Then, we convert the mission into a set of
linear inequalities, we link the binary variables from these
inequalities with PN markings and we obtain a Mixed Integer
Linear Programming (MILP) formulation for the initial prob-
lem. The solution yields individual robot trajectories optimal
from the point of view of the number of discrete transitions.
The computational complexity can be lowered by reducing
the PN system, at the price of obtaining suboptimal solutions.
The main contributions of this work consist in the defined
PN system that easily handles a whole team of agents and in
the MILP formulation that includes the targeted specification
together with the constructed model.

Related problems to the one we consider are reported
in works as [2], [4], [6]. Although the specifications we
consider here are less expressive than Linear Temporal Logic
(LTL) or regular expression (as in [2]), our solution is com-
pletely different and has several advantages. Thus, instead

C. Mahulea is with the Aragón Institute of Engineering Research
(I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
{cmahulea@unizar.es}.

M. Kloetzer is with the Dept. of Automatic Control and Applied
Informatics, Technical University “Gheorghe Asachi” of Iasi, Romania
{kmarius@ac.tuiasi.ro}.

of combining individual robot abstractions and specification
automaton into a complex model, the PN model we construct
has fixed topology and only the number of tokens varies
with the number of robots (similar to models from [7]).
Due to the assumed specification, the robots can individually
follow their trajectories, without having to synchronize as it
was necessary in the case of more complex tasks [2], [5].
The discrete path planning problem from [4] considers a
single mobile robot instead of a team, and a task combining
Boolean variables on the graph nodes. The solution translates
the specification to a Traveling Salesman Problem and uses
the corresponding algorithms. Work [6] presents a receding
horizon framework for a single system, with specification
given as LTL formulae expressed on some regions of interest.
The proposed control structure uses a state space discretiza-
tion of the system and a MILP problem, but the number
of discrete steps to ensure the satisfaction of the formula
can be large and no upper bound is available. Our method
deals with a team of robots, the PN model allows the usage
of some structural properties, and the number of transitions
is upper-bounded. PN models have been used for modeling
and controlling mobile robots in the recent literature [8],
[9]. However, the modeling methodology is different, in
our case the environment being partitioned depending on
the regions of interest. Recently, abstractions characteristic
to Resource Allocation Systems are used based on finite
automata [10] or PNs [11] and the methods available for
deadlock avoidance have been adapted. This work aims to
obtaining a trajectory that satisfies a formula, rather than
checking a given trajectory against specific properties.

The paper is structured as follows. Sec. II includes pre-
liminaries and team model construction. An optimal solu-
tion minimizing the total number of discrete transitions is
described in Sec. III, and a suboptimal but less complex
adaptation is presented in Sec. IV. Sec. V includes simulation
examples and Sec. VI concludes the presentation.

II. PRELIMINARIES AND TEAM MODEL

Sec. II-A defines the discrete event model that we will
use for a team of identical robots. Sec. II-B introduces the
formalism for expressing mission requirements for a team of
cooperating robots.

A. Petri nets

This subsection introduces the basic notions of PN (see
[12] for a gentle introduction).

Definition 2.1: A Petri net (PN) is a tuple N = 〈P, T, F 〉
with P and T two finite, non-empty and disjoint sets of

places and transitions; F ⊆ (P × T)∪ (T ×P) is the set of
direct arcs from places to transitions or transitions to places.

The PN structure can be represented by two matri-
ces: Pre,Post ∈ {0, 1}|P |×|T |, with Pre[pi, tj] =
1 if ∃(pi, tj) ∈ F , and Pre[pi, tj] = 0 otherwise;
Post[pi, tj] = 1 if ∃(tj , pi) ∈ F , otherwise Post[pi, tj] =
0. 1

For x ∈ P ∪ T , the sets of its input and output nodes
(places or transitions) are denoted as •x and x•, respectively.
Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the
places and transitions. Each place can contain a non-negative
integer number of tokens, and this number represents the
marking of the place. The distribution of tokens in places is
denoted by m, where m[pi] is the marking of place pi. The
initial token distribution, denoted by m0 ∈ N|P |≥0 , is called
the initial marking of the net system. A PN with an initial
marking is a PN system 〈N ,m0〉.

A transition tj ∈ T is enabled at m if all its input places
contain at least one token, i.e., ∀pi ∈ •tj ,m[pi] ≥ 1. An
enabled transition tj can fire leading to a new state m̃ =
m + C[·, tj], where C = Post − Pre is the token flow
matrix and C[·, tj] is the column corresponding to tj . It will
be said that m̃ is a reachable marking that has been reached
from m by firing tj and it is writen as m[tj〉m̃.

If m̃ is reachable from m through a finite sequence
of transitions σ = ti1ti2 . . . tik , the following state (or
fundamental) equation is satisfied:

m̃ = m+C · σ, (1)

where σ ∈ N|T |≥0 is the firing count vector, i.e., its jth element
is the cumulative amount of firings of tj in the sequence σ.
Notice that Eq. (1) is only a necessary condition for the
reachability of a marking. The marking solutions of (1) that
are not reachable are called spurious markings. In general,
checking if a marking m is reachable or not is not an easy
problem due to these spurious markings.

A PN with each transition having at most one input and
at most one output place is called state machine. Formally, a
PN is state machine if |•t| ≤ 1 and |t•| ≤ 1, ∀t ∈ T . A PN is
called live if from any reachable marking any transition can
eventually fire (possibly after first firing other transitions).
It is well known that for state machine PNs, liveness is
equivalent to strongly connectedness and non-emptiness of
(initial) marking. Moreover, in a live state machine, there
exist no spurious markings [13], i.e., the solutions of the
fundamental Eq. (1) give the set of reachable markings.

We will use the PN to model a a team of identical robots
evolving in an environment where some convex polygonal
regions of interest exist. The regions of interest are labeled
with elements from set Π = {Π1,Π2, . . . ,Π|Π|}. For this
reason, we define a class of Petri nets with outputs, which
is a restrictive class of Interpreted Petri nets [14], without
inputs associated to transitions.

1Throughout this paper, instead of using integers to refer elements of
matrices or vectors, we use symbolic variables which refer the element
corresponding to the used symbol.

3

1

t
2

t
3

t
4

p
4

t
5

t
6

p
1

Π
1

Π
1

. .
, Π

2

p p
2

t

Fig. 1. A PN with outputs considered in Ex. 2.3.

Definition 2.2: A Petri net Q with outputs is a 4-tuple
Q = 〈N ,m0,Π, h), where:
• 〈N ,m0〉 is a Petri net system;
• Π ∪ {∅} is the output alphabet (set containing the pos-

sible output symbols (observations)), where ∅ denotes
the empty observation;

• h : P → 2Π is an observation map, where h(pi) yields
the output of place pi ∈ P . If pi has at least one token,
then observations from h(pi) are active.

Let vΠi ∈ {0, 1}1×|P | be the characteristic row vector of
the observation Πi ∈ Π such that vΠi [pk] = 1 if Πi ∈ h(pk)
and vΠi

[pk] = 0 otherwise. It is easy to observe that, for
a reachable marking m, if the product vΠi

·m ≥ 0 then
the observation Πi is active at m. Let V ∈ {0, 1}|Π|×|P | be
the matrix formed by the characteristic vectors of all obser-
vations, i.e, the first row is the characteristic vector of Π1,
etc. The product V ·m is a column vector of dimension |Π|
where the ith element is non-zero if observation Πi is active.
We denote by ||V ·m|| the set of outputs corresponding to
non-zero elements of V ·m, i.e. ||V ·m|| is the set of active
observations (element of 2Π) at marking m.

Example 2.3: Let us consider the PN model from
Fig. 1, which consists of P = {p1, p2, p3, p4}, T =
{t1, t2, t3, t4, t5, t6} and F = {(p1, t1), (t1, p2), (p2, t2),
(t2, p1), (p2, t3), (t3, p3), (p3, t4), (t4, p2), (p3, t5), (t5, p4),
(p4, t6), (t6, p3)}. The initial marking of the net system is
m0 = [1, 1, 0, 0]T , the output alphabet is Π = {Π1,Π2} and
the observation map: h(p1) = h(p2) = ∅, h(p3) = Π1 and
h(p4) = {Π1,Π2}.

The characteristic vector of Π1 is vΠ1
= [0, 0, 1, 1] since

Π1 can be observed in p3 and p4, while vΠ2
= [0, 0, 0, 1]

since Π2 can be observed only in p4. Therefore, V =[
0 0 1 1
0 0 0 1

]
.

Because V · m0 = [0, 0]T , no observation is active at
m0. For m = [0, 0, 2, 0]T , ||V ·m|| = ||[2, 0]T || = {Π1},
meaning that only Π1 is active (observed) at marking m. �

A run (or trajectory) of Q is a finite sequence r =
m0[tj1〉m1[tj2〉m2[tj3 . . . tj|r|〉m|r| that induces an output
word denoted by h(r), which is the observed sequence of
elements from 2Π, i.e., h(r) = ||V ·m0||, ||V ·m1||, . . . , ||V ·
m|r|||, h(r) ∈

(
2Π
)∗

, where
(
2Π
)∗

is the Kleene closure of
set 2Π.

The above PN with outputs can model the movement
capabilities of a team of identical mobile robots in a par-
titioned environment cluttered with overlapping and static
regions of interest denoted by elements of set Π. Such
finite abstractions can be constructed based on partitions
yielded by cell decompositions [15] and control laws for

specific robot dynamics [16], [17]. The main idea is that the
environment is partitioned based on regions of interest, every
place of N corresponds to a partition cell, while transitions
of PN correspond to robot’s movement capabilities between
adjacent cells. The satisfaction map h shows the regions
from Π that are satisfied (visited) when the robots are inside
particular cells, with empty observation corresponding to
partition cells that are not included in any region from Π.
The number of tokens of the PN model is equal with the
number of robots, and the initial marking is given by the
cells initially occupied by the team. Thus, adding a robot in
the team implies adding a token to a place, without changing
the PN structure.

We further assume that the model Q for robots evolving in
an environment is already available. The informal steps that
lead to its construction are captured in Alg. 1. For polygonal
regions of interest, multiple cell decomposition techniques
can be used in line 1 [15], our approach not being tailored
for a specific one. The transitions added on lines 4-7 assume
fully-actuated point robots, which can move from the current
cell to any adjacent cell. For different robot dynamics, the
condition from line 5 can be replaced with the existence of
control laws steering the robot from cell pi to adjacent cell
pj in finite time, e.g., works as [16], [17] describe the case
of affine or multi-affine dynamics in polytopal or rectangular
environments. Line 9 adds the tokens, based on robots’ initial
positions. The observation map from line 10 is well-defined,
since the referred cell decomposition techniques preserve
boundaries and intersections of regions from Π, and therefore
all points inside a cell satisfy the same set of regions.

Algorithm 1: Construct the PN system Q
1 Construct a cell decomposition of the environment

based on the polygonal regions of interest from Π;
2 Associate each cell from decomposition to a place from
P ; let P = {p1, p2, . . . , p|P |};

3 Let T = ∅, F = ∅;
4 for pi, pj ∈ P , pi 6= pj do
5 if cells pi and pj are adjacent then
6 Add transitions ti,j and tj,i to T ;
7 F := F ∪{(pi, ti,j), (ti,j , pj), (pj , tj,i), (tj,i, pi)}

8 for pi ∈ P do
9 m0[pi] = number of robots initially deployed in

cell pi;
10 h(pi) = {Πj ∈ Π|cell pi is included in region Πj};

Property 2.4: The construction from Alg. 1 ensures that
the obtained PN is a state machine.

B. Boolean-based specifications

Assume the finite set of atomic propositions Π =
{Π1,Π2, . . . ,Π|Π|}, where in a robot-inspired scenario Πi

labels a specific region of interest from the environment.
Syntactically, we assume requirements expressed as

Boolean logic formulae defined over the set of variables

P = Pt ∪ Pf , where Pt = Π and Pf = {π1, π2, . . . , π|Π|},
by using the standard logical connectors ¬ (negation), ∧
(conjunction), ∨ (disjunction). The sets Pt and Pf refer to
the same regions of interest, but the elements of Pt suggest
regions that should be visited along a trajectory, while Pf
suggests regions that should be visited in the last state of a
run, as explained in the below semantics.

The specifications are interpreted over finite words over
the set 2Π, as are those generated by the PN system with
outputs Q from Def. 2.2. Semantically, the lower- and upper-
case notations from the above set P have the following
meaning when interpreted over the word generated by run
r = m0[tj1〉m1[tj2〉m2[tj3 . . . tj|r|〉m|r|:
• Πi ∈ Pt evaluates to True over word h(r) if and only

if ∃j ∈ {0, 1, . . . , |r|} such that Πi ∈ ||V ·mj ||;
• πi ∈ Pf evaluates to True over word h(r) if and only

if Πi ∈ ||V ·m|r|||.
In other words, an upper-case variable refers to a proposi-

tion that is evaluated along the whole run, while a lower-case
one refers only to the final (terminal) marking. Under this
explanations, the formal definitions of syntax and semantics
of used specifications is not included, and it can be found
in any study including Boolean formulae [18]. From now
on, we will assume that any Boolean-based requirement ϕ
is expressed into a Conjunctive Normal Form (CNF), the
conversion into such a form being possible for any logical
expression [18].

For example, a specification for mobile robots as ϕ =
(Π1 ∨Π2)∧¬π1 ∧¬Π3 requires that either region Π1 or Π2

is visited along the run, Π3 is always avoided, and region
Π1 is not true (no robot occupies it) in the final state, i.e.,
when all robots stop.

This paper is concerned with developing supervisory con-
trol algorithms for discrete event systems (PNs) such that a
Boolean-based specification is satisfied, with applications in
planning a team of mobile robots. Future research will handle
the expressivity of the assumed specifications when com-
pared with other formal specifications as regular expressions
or tasks capturing nonterminating behaviors. For now, we can
mention that the proposed formulae are more expressive than
classical reachability (navigation) tasks for mobile robots and
less expressive (but easier to formally write) than regular
expressions.

III. PROBLEM DEFINITION AND SOLUTION

The problem we solve is formulated as follows:
Problem: Consider a team of N identical mobile robots

evolving in an environment where regions of interest labeled
with elements from set Π are defined. Given a Boolean-based
specification ϕ as in Sec. II-B, plan the motion of the robotic
team such that the resulting trajectories satisfy ϕ.

We emphasize that specification ϕ imposes the require-
ment for the whole team of robots, instead of explicitly
assigning a logical formula for each agent.

Assumptions: As stated in Sec. II-A, the team is abstracted
into a PN system with outputs Q having the form from
Def. 2.2. Under the natural assumption of a connected

environment, the PN model Q is strongly connected (i.e.
∀xi, xj ∈ P ∪T there exists a path starting in xi and ending
in xj). Thus, the PN has no spurious markings and the set of
reachable markings of the net system can be characterized
by the state equation (1).

Let us assume that the requirement ϕ (expressed in CNF)
consists of a conjunction of n terms, denoted by: ϕ = ϕ1 ∧
ϕ2∧. . .∧ϕn. Each term ϕi, i = 1, . . . , n is a disjunction of ni
variables (negated or not) from set P from Sec. II-B, having
the form ϕi = [Πj1 | ¬Πj1] ∨ [πj1 | ¬πj1] ∨ [Πj2 | ¬Πj2] ∨
[πj2 | ¬πj2] ∨ . . . ∨ [Πjni

| ¬Πjni
] ∨ [πjni

| ¬πjni
]. In the

expression of ϕi, the square brackets “[. . .]” contain op-
tional appearing terms, while “|” denotes a choice between
two variables. For example, if ϕ = (Π1 ∨Π2)∧¬π1 ∧¬Π3,
then ϕ1 = Π1 ∨Π2, ϕ2 = ¬π1 and ϕ3 = ¬Π3.

Solution main steps: Our solution begins by converting
specification ϕ into linear restrictions over a set of 2 · |Π|
binary variables (Sec. III-A). Then, the values of these binary
variables are linked with the PN model Q and a solution
optimal from the point of view of the number of fired
transitions is found by solving a MILP problem (Sec. III-B).
The individual robot trajectories are easily obtained from the
MILP solution.

A. Linear restrictions for ϕ

Definition 3.1: Define a binary vector x
with 2 · |Π| variables, denoted by x =
[xΠ1

, xΠ2
, . . . , xΠ|Π| , xπ1

, xπ2
, . . . , xπ|Π|]

T ∈ {0, 1}2·|Π|, as
follows:
• xΠi

= 1 (or x[Πi] = 1) if proposition Πi evaluates
to True (i.e., region labeled with Πi is visited along the
team trajectory), and xΠi

= 0 (or x[Πi] = 0) otherwise;
• xπi

= 1 (or x[πi] = 1) if proposition πi evaluates
to True (i.e., a robot stops inside the region labeled
with Πi), and xπi = 0 (or x[πi] = 0) otherwise,
∀i = 1, . . . , |Π|.

Under these evaluations, the satisfaction of the imposed
specification ϕ is equivalent with a set of n linear inequali-
ties, each such restriction corresponding to a disjunctive term
ϕi, i = 1, . . . , n. To formally construct these inequalities,
for each ϕi, i = 1, . . . , n, we define a function αi :
P → {−1, 0, 1} showing what variables from P appear in
disjunction ϕi and which of them are negated:

αi(γ) =

 −1, if ¬γ appears in ϕi
0, if γ does not appear in ϕi
1, if γ appears in ϕi

,∀γ ∈ P

(2)
The linear inequality corresponding to disjunction ϕi is

given by:∑
γ∈P

(αi(γ) · xγ) ≥ 1 +
∑
γ∈P

min (αi(γ), 0) , (3)

where min (αi(γ), 0) is the minimum value between αi(γ)
and 0.

Informally, (2) and (3) come from the following ideas: if
the region corresponding to symbol γ ∈ P is not captured in
ϕi, then its corresponding binary variable is unconstrained

(it has coefficient αi(γ) equal to zero). From all regions that
appear non-negated in disjunction ϕi, at least one should be
visited and thus the sum of all their corresponding binary
variables should be greater or equal than 1. In (3), the non-
negated symbols have coefficient 1 and they do not alter the
right-hand term, since (2) evaluates to 1 for these symbols.
A negated symbol γ means the avoidance of a region (either
along trajectory or in final state), which implies that its
corresponding binary variable xγ should be 0. Equivalently,
1−xγ = 1 and because xγ is binary we can write 1−xγ ≥ 1.
The first term “1” from here is placed in the right-hand term
of (3) via function min (αi(γ), 0).

For a better understanding we include here several ex-
amples of applying expression (3) to some disjunctions:
• the inequality corresponding to π is xπ ≥ 1, which
can be satisfied if and only if the binary xπ has value 1,
• the inequality corresponding to ¬π is −xπ ≥ 0, which
can be satisfied if and only if the binary xπ has value
0, • the inequality corresponding to Π1 ∨ π1 ∨ ¬Π2 is
xΠ1

+ xπ1
− xΠ2

≥ 0, which holds only for those binary
values of xΠ1 , xπ1 , xΠ2 for which the disjunction is True.

We conclude this subsection by saying that the CNF
specification ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn is algorithmically
converted (by using (3)) into a system of n linear inequalities,
one for each disjunctive term. For example, the specification
mentioned in Sec. II-B, ϕ = (Π1∨Π2)∧¬π1∧¬Π3, translates
to the following system: xΠ1

+ xΠ2
≥ 1

xπ1
≤ 0

xΠ3 ≤ 0
(4)

The obtained inequalities simultaneously hold only for
binary values of x for which ϕ evaluates to True, under the
links given in Def. 3.1. In the remainder of this section we
enforce these links between binary variables and proposition
satisfactions by using markings of the PN model Q.

B. Optimal solution
Sec. III-A shows how the specification ϕ is transformed to

linear inequalities using Boolean variables x. In this section
we show that these Boolean variables can be defined by using
linear inequalities based on the PN markings. For simplicity,
we first handle final state requirements (formulae over Pf),
and then we present the case of trajectory requirements.

Constraints on the final state. For each observation Πi, in
Sec. III-A a binary variable xπi is introduced such that xπi =
1 if πi evaluates to True at the final state. The following set
of linear inequalities can be used to define the value of the
variable xπi

at a final reachable marking m:{
N · xπi

≥ vΠi
·m

xπi
≤ vΠi

·m (5)

where N is the number of robots and vΠi is the characteristic
row vector of observation Πi defined in Sec. II-A. Notice
that, if Πi is True at final marking m, then vΠi

·m ≥ 1 and
the first equation of (5) is satisfied only if xπi

= 1. On the
other hand, if Πi is False, then vΠi

·m = 0 and the second
equation of (5) is satisfied only if xπi = 0.

Example 3.2: For the model of Ex. 2.3 we impose the
specification ϕ = π2, i.e., the final marking should have at
least one token in p4 because only h(p4) includes Π2. A
binary variable xπ2

is introduced and the formula is satisfied
if the following constraint is true: xπ2

≥ 1.
The final marking m at which ϕ should be satisfied, is

(a) solution of the state equation (1), i.e., m = m0 +C ·σ
and (b) solution of (5). Therefore, in order to obtain a final
marking at which the formula is satisfied, a feasible solution
of the following constraints should be obtained:

m = m0 +C · σ
2 · xπ2

≥ vΠ2
·m

xπ2
≤ vΠ2

·m
xπ2

≥ 1

(6)

where vΠ2
= [0, 0, 0, 1]T . Notice that any reachable marking

m having at least one token in p4 is a solution of the previous
system of inequalities. �

When finding a solution for the proposed problem, we aim
to minimize the number of transitions (robot movements)
along the team trajectory. Therefore, we choose the cost
function 1T · σ and we formulate the following MILP for
obtaining a final marking at which the formula is satisfied:

min 1T · σ
s.t. m = m0 +C · σ∑

γ∈P (αi(γ) · xγ) ≥ 1 +
∑
γ∈P min (αi(γ), 0) ,∀ϕi

N · xγ ≥ vγ ·m,∀γ ∈ P
xγ ≤ vγ ·m,∀γ ∈ P
m ∈ N|P |≥0 ,σ ∈ N|T |≥0,x ∈ {0, 1}|P|

(7)
where vγ is the characteristic vector of γ ∈ P . Based on the
optimal solution σ of (7), the robot (token) trajectories are
obtained by firing the enabled transitions and by storing the
sequence of places visited by each token (for more details,
see [7]).

Constraints on the trajectory. In order to include con-
straints on the trajectory we will consider a sequence of k
markings m1,m2, . . . ,mk such that: m1 = m0 +C · σ1,
m0−Pre·σ1 ≥ 0; m2 = m1+C ·σ2, m1−Pre·σ2 ≥ 0;
. . . Informally, these constraints enforce that between PN
states mi−1 and mi each token moves at most through one
transition (i.e., each robot advances maximum one cell). This
avoids the firing of empty cycles.

In Sec. III-A, for each proposition Πi belonging to the
specification of the trajectory, a binary variable xΠi

is
introduced such that xΠi = 1 if Πi evaluates to True along
trajectory. Because the trajectory is given by the sequence
of the k intermediate markings, the set of linear inequalities
used to defined the value of xΠi

should consider all these
intermediate markings and not only the final one as in
previous case. Therefore, restrictions regarding xΠi are: N · (k + 1) · xΠi ≥ vΠi ·

(∑k
j=0mj

)
xΠi ≤ vΠi ·

(∑k
j=0mj

) (8)

Solution. Putting together the number of firing transitions
that has to be minimized and the constraints given by

the state equation and by the specification, the following
optimization problem is obtained:

min
∑k
i=1 1T · σi

s.t. mi = mi−1 +C · σi, i = 1, . . . , k
mi−1 − Pre · σi ≥ 0, i = 1, . . . , k∑
γ∈P (αi(γ) · xγ) ≥ 1 +

∑
γ∈P min (αi(γ), 0) ,∀ϕi

N · xγ ≥ vγ ·mk,∀γ ∈ Pf
xγ ≤ vγ ·mk,∀γ ∈ Pf
N · (k + 1) · xγ ≥ vγ ·

(∑k
i=0mi

)
,∀γ ∈ Pt

xγ ≤ vγ ·
(∑k

i=0mi

)
,∀γ ∈ Pt

mi ∈ N|P |≥0 ,σi ∈ N|T |≥0, i = 1, . . . , k

x ∈ {0, 1}|P|
(9)

The convex optimization problem (9) is a standard MILP
problem [19], for which there exist complete algorithms
for obtaining the optimal solution, e.g., [20]. Therefore, its
solution (σ1,σ2, . . . ,σk) constitutes a sequence of firing
count vectors for PN model Q and thus a solution for
the problem formulated at the beginning of this section.
Summing up the above details, the cost function minimizes
the total number of robot transitions between cells from the
partitioned environment. The constraints ensure the follow-
ing: • the correct functioning of model Q (first two lines
with constraints), • the satisfaction of formula ϕ through its
disjunctive terms and binary variables (third constraint), • the
link between binary variables corresponding to the formula
and PN markings for the final requirements (constraints 4
and 5) and for the trajectory requirements (constraints 6 and
7), • feasible restrictions for unknown variables (last two
constraints).

Remark 3.3: The constant k in MILP (9) is a design pa-
rameter giving the maximum number of intermediate discrete
states (places) of each robot. The theoretical upper-bound of
k is |T |, because in the worst case scenario, a robot has to
once follow each transition from PN (e.g., imagine a string-
like PN where the “first” and “last” places have different
outputs, a robot starts from the “first” place, and the formula
requires to satisfy along trajectory the output of the “last”
place and to satisfy in the final state the output of the “first”
one). However, in practice, much lower values of k suffice.
Whenever problem (9) returns a solution, that solution is
optimal (no matter the value of k), and when k is chosen
too small, the problem (9) becomes unfeasible. If k is larger
than needed, some intermediate firing vectors σi will result
zero in solution of (9).

Remark 3.4: The sequence of firing count vectors for
model Q obtained by solving MILP (9) can be easily
projected to transition firing sequences since the PN is a live
state machine. Thus, one obtains a finite trajectory (sequence
of places or partition cells) for each team member. The
trajectory of each robot basically satisfies a part of formula
ϕ, such that the whole team accomplishes task ϕ. Because ϕ
is a Boolean-based formula as in Sec. II-B, it cannot impose
any specific order for visiting regions. Therefore, each robot
can individually follow its trajectory, without synchronizing

with other team members. In a real scenario, local avoidance
routines can be implemented on each agent such that inter-
robot collisions do not occur.

IV. SUBOPTIMAL SOLUTION

The optimal solution from Sec. III-B may exhibit a high
computational complexity, especially when one chooses a
large number k of intermediate steps for the trajectory. In
this section we lower this complexity by reducing the size
of the PN model and by solving the MILP on this reduced
model.

The idea of reducing the PN Q (Def. 2.2) is to iteratively
combine any places pi and pj from P that satisfy {pj} ∈
(pi
•)
• and h(pi) = h(pj) (i.e., any places that have the same

output and are connected through a single transition). This
reduction technique is synthesized in Alg. 2, and the reduced
PN model Q̃ has the property that its output changes when
moving a token from a place to another. If one thinks at the
environment partition, the reduction means that any adjacent
cells that satisfy the same region(s) of interest are collapsed
into a single place. In different formalisms, such a reduced
system is called a quotient of the initial system, constructed
with respect to equivalence classes yielded by observation
map [21].

Algorithm 2: Reduce the PN model by joining places
with the same output

Input: Q = 〈〈P, T, F 〉,m0,Π, h〉
Output: Q̃ = 〈〈P̃ , T̃ , F̃ 〉, m̃0,Π, h〉

1 P̃ = P ; T̃ = T ; F̃ = F ; m̃0 = m0

2 while ∃pi, pj ∈ P̃ such that {pj} ∈ (pi
•)
• and

h(pi) = h(pj) do
3 Let tk = pi

• ∩ •pj and tl = •pi ∩ pj•
4 T̃ = T̃ \ {tk, tl}
5 F̃ = F̃ \ {(pi, tk), (tk, pj), (pj , tl), (tl, pi)}
6 m̃0[pi] = m̃0[pi] + m̃0[pj]

7 P̃ = P̃ \ {pj}

On the reduced PN system Q̃ we can apply the same
procedure as in section III. Notice that, for a fixed value of k,
the reduced size of the model induces less variables and con-
strains in the MILP (9). Moreover, the upper-bound of k from
Rem. 3.3 is in general significantly reduced. The solution of
(9) yields a sequence of transitions/markings on the reduced
PN Q̃. In this sequence only non-empty firing vectors σi
from (9) are considered (see Rem. 3.3), and we denote this
sequence by r̃ = m̃0[t̃j1〉m̃1[t̃j2〉m̃2[t̃j3 . . . t̃jk〉m̃k̃, where
k̃ ≤ k and m̃i 6= m̃i+1, i = 0, 1, . . . , k̃ − 1.

The solution r̃ basically shows how the observations from
2Π should be changed such that ϕ is True, but it does not
give agent trajectories as in the case of full system Q. The
firing of a single transition in Q̃ corresponds to the firing of
a sequence of transitions in the original Q. Therefore, we
need to project r̃ to a sequence on the original PN model to
obtain the robot motions. This projection is always possible,

because the construction from Alg. 2 guarantees that the team
can produce the sequence of outputs from r̃, although some
outputs are repeated in Q. This repetitions do not affect the
satisfiability of Boolean-based ϕ [18].

The procedure to project the solution is iterative. We
show how the first sequence corresponding to m̃0[t̃j1〉m̃1 is
obtained. An linear programming problem (LPP) is solved
in order to obtain a firing sequence in Q corresponding to
t̃j1 from Q̃:
• Remove from Q all places (together with input and out-

put transitions and corresponding arcs) having outputs
different than the ones in m̃0 and m̃1. Formally, a place
p ∈ P is removed if h(p) 6= ||Ṽ · m̃0|| or h(p) 6= ||Ṽ ·
m̃1||, where Ṽ is the matrix of characteristic vectors of
Q̃ (Sec. II-A). Let 〈N̄ , m̄0〉 be the resulted PN system.
The removal of places and transitions ensures that no
other output (that could violate the formula) is observed
during the trajectory;

• Remove from 〈N̄ , m̄0〉 all the strongly connected com-
ponents that do not have any token in m̃0 (no transitions
can be fired in such components). Thus, N̄ now contains
only live strongly connected components;

• The first LPP constraint is the state equation of
〈N̄ , m̄0〉: m̄f = m̄0 + C̄ · σ;

• The second constraint ensures that the output at m̄f is
the same as the one at m̃1, i.e.: V̄ · m̄f = Ṽ · m̃1,
where V̄ is the matrix formed by characteristic vectors
of N̄ ;

• Solve the LPP minimizing the cost function 1T ·σ. Since
N̄ is a state machine composed by live strongly con-
nected components, a LPP solved with Simplex method
is guaranteed to return a feasible integer solution [13].
The solution gives the firing sequence on the original
system Q (hence the runs for robots) and the marking
m̄f of Q corresponding to m̃1 of Q̃.

The previous procedure is repeated for the second step of
r̃ by taking m̄f as initial marking. Thus, the projection of
r̃ to a solution of Q is done by solving at most k LPPs.

Overall, the procedure from this section requires the
reduction from Alg. 2, a MILP problem with fewer variables
and constraints than the one from (9), and a number of
k̃ ≤ k LPP problems on reduced systems of type N̄ . In all
the simulations we performed, this procedure required less
computation time than the one from Sec. III-B. However, the
reduced MILP and the local minimization from the k̃ LPPs
do not guarantee the optimality of the solution in Q, as was
the case in Sec. III-B. This is because Q̃ looses the number
of transitions of Q that should fire such that a desired output
is obtained. Examples illustrating these aspects are included
in the next section.

V. SIMULATION EXAMPLES

This section illustrates the usage of our method for plan-
ning a team of mobile robots. The described approach was
implemented in Matlab as a user-friendly package available
at [22]. Our implementation includes the external MILP
solver from [20].

Fig. 2. A rectangular environment with five regions of interest labeled with
elements of set Π = {Π1,Π2, . . . ,Π5}. Each region has differently colored
borders, for easier understanding their overlapping. The team consists of
three robots, with initial positions marked by the red, blue and green circles.

Fig. 3. Triangular partition of the environment from Fig. 2. There are
48 non-overlapping cells with the properties that every two adjacent cells
exactly share one facet, and all points inside a cell belong to the same
region(s) from set Π.

We consider the environment depicted in Fig. 2, where five
polygonal regions are defined. For simplicity of constructing
the team model, we consider N = 3 point and fully-
actuated agents, whose initial positions are marked with
circles in Fig. 2. Alg. 1 from Sec. II-A yields the PN
system Q as follows. The environment is partitioned by
using a constrained triangular decomposition [23], based on
polygonal regions Π. The resulting partition has 48 cells
(labeled with elements of set P = {p1, p2, . . . , p48}) and
it is shown in Fig. 3. There result 140 transitions in T , given
by adjacency between cells (two triangles are adjacent if
they share an entire facet). The observation map h is easily
created based on the inclusion of each cell in some regions of
interest, e.g., h(p3) = ∅, h(p10) = Π4, h(p48) = {Π1,Π2}.
System Q has three tokens and the initial marking is given
by initial team deployment: m0[p14] = 1, m0[p35] = 1,
m0[pi] = 0, ∀i ∈ {1, . . . , 48}, i 6= 14, 35.

Considering the syntax and semantics explained in Sec.

Fig. 4. Optimal solution (with respect to the overall number of transitions)
comprises a total number of 10 movements between cells. Each robot
follows its trajectory and stops in the point marked with “x”, and thus
the team fulfills mission ϕ.

II-B, the team mission is given by the specification:

ϕ = ¬Π2 ∧Π1 ∧ ¬π1 ∧ π3 ∧ π4 ∧ π5. (10)

In words, the second region should be avoided, the first
region should be visited along run, but no robot should finally
remain inside it, and the last three regions should be occupied
when the robots stop.

Formula ϕ is converted into a system of 6 linear inequal-
ities with 6 binary variables (Sec. III-A). By adopting the
optimal solution described in Sec. III-B with a maximum
number of steps k = 10, the firing sequences translate to the
following runs for the robots:

red robot: p14, p37, p14, p8, p12, p10

blue robot: p35, p36, p34

green robot: p35, p33, p22, p24

(11)

The MILP problem from Sec. III-B was constructed in 0.5
seconds, and it includes 1890 variables (from which 1400
are integer and 10 binary), 480 equality constraints and 506
inequality constraints. The solution was obtained in around
1 second on a medium performance laptop. Under the same
conditions, if k were set to 20, the running time increases to
12 minutes, from which the MILP construction took only 3
seconds.

The actual robotic trajectories are presented in Fig. 4, and
they were constructed by connecting the middle points of the
common edges shared by successive cells from each robot’s
path, this being a fast method for constructing continuous
trajectories for fully-actuated robots evolving in partitioned
environment with convex cells [1]. Finally, each robot con-
verges to the centroid of the last visited cell.

If one applies the suboptimal solution from Sec. IV, the
reduced PN model Q̃ has 10 places and 26 transitions.
The MILP problem construction and solving took only 0.6
seconds if k is set equal to its maximum possible value, i.e.,
k = 26, while the projection to individual robot trajectories
was done in approximately 1 second. For k = 10, the
suboptimal solution was obtained in 1.2 seconds, which

Fig. 5. Sub-optimal solution imposes 13 transitions between cells. Each
robot follows its trajectory and stops in the point marked with “x”, and the
formula from (10) is satisfied.

shows a computationally tractable algorithm even for large
problems, when compared to the optimal method. The sub-
optimal solution yielded the robot paths from (12), which
include a total number of 13 transitions among cells. The
corresponding trajectories are shown in Fig. 5.

red robot: p14, p37, p7, p29, p28, p34

blue robot: p35, p36, p32, p30, p2, p10

green robot: p35, p33, p22, p24

(12)

VI. CONCLUSIONS

We presented an approach that automatically plans a team
of cooperating mobile robots based on a Boolean-based
task given over a set of regions in the environment. The
solution relies on solving a MILP optimization problem
that is formulated over a discrete event system. Based on a
partition of the environment, the robotic team is abstracted to
a PN with outputs, which has the advantage that the topology
remains fixed and only the number of tokens varies with the
team size. The Boolean formula is represented through a set
of linear inequalities in some binary variables, the evaluations
of these variables are linked with a finite sequence of PN
markings and the PN’s fundamental equation is used for
making sure that any obtained marking is reachable through
a firing sequence. Thus, we obtain a MILP formulation for
the proposed problem, and its solution provides a set of
firing PN transitions which are easily converted to individual
robotic trajectories. The solution is optimal with respect
to the number of discrete transitions followed by team
members. The computational burden can be reduced by using
a suboptimal adaptation that solves the problem on a reduced
PN system. Due to the considered specifications, the robots
can follow their trajectories without synchronizing with other
team members. We implemented our procedure as a freely-
downloadable Matlab software package whose usefulness
is illustrated through included simulation results. Future
work will be conducted towards relating and extending the
assumed tasks to other specification formalisms that may be
of interest.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Boston: MIT Press, 2005.

[2] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic deploy-
ment of robotic teams,” IEEE Robotics and Automation Magazine,
vol. 18, no. 3, pp. 75–86, 2011.

[3] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Transactions
on Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[4] F. Imeson and S. L. Smith, “A language for robot path planning in
discrete environments: The tsp with boolean satisfiability constraints,”
in Proceedings of the IEEE Conf. on Robotics and Automation, May
2014, to appear.

[5] M. Kloetzer, X. C. Ding, and C. Belta, “Multi-robot deployment from
LTL specifications with reduced communication,” in IEEE Conference
on Decision and Control and European Control Conference (CDC-
ECC), 2011, pp. 4867–4872.

[6] T. Wongpiromsarn, U. Topcu, and R.-M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automatic Control, vol. 57,
no. 11, pp. 2817–2830, 2012.

[7] M. Kloetzer and C. Mahulea, “A Petri net based approach for multi-
robot path planning,” Discrete Event Dynamic Systems, 2013, in press.

[8] H. Costelha and P. Lima, “Robot task plan representation by Petri
nets: modelling, identification, analysis and execution,” Journal of
Autonomous Robots, pp. 1–24, 2012.

[9] J. King, R. Pretty, and R. Gosine, “Coordinated execution of tasks
in a multiagent environment,” IEEE Trans. on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 33, no. 5, pp. 615–619,
2003.

[10] S. Reveliotis and E. Roszkowska, “Conflict Resolution in Free-
Ranging Multivehicle Systems: A Resource Allocation Paradigm,”
IEEE Transactions on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[11] M. Kloetzer, C. Mahulea, and J.-M. Colom, “Petri net approach for
deadlock prevention in robot planning,” in Proc. of ETFA 2013: IEEE
18th Conf. on Emerging Technologies Factory Automation, Sept 2013.

[12] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[13] M. Silva, E. Teruel, and J.-M. Colom, “Linear algebraic and linear
programming techniques for the analysis of place/transition net sys-
tems.” Lecture on Petri Nets I: Basic Models, vol. 1491, pp. 309–373,
1998.

[14] A. Ramirez-Trevino, I. Rivera-Rangel, and E. Lpez-Mellado, “Observ-
ability of discrete event systems modeled by interpreted Petri nets,”
IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp.
557–565, August 2003.

[15] M. D. Berg, O. Cheong, and M. van Kreveld, Computational Geom-
etry: Algorithms and Applications, 3rd ed. Springer, 2008.

[16] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen, “Reach-
ability and control synthesis for piecewise-affine hybrid systems on
simplices,” IEEE Transactions on Automatic Control, vol. 51, pp. 938–
948, 2006.

[17] C. Belta and L. Habets, “Controlling a class of nonlinear systems on
rectangles,” IEEE Transactions on Automatic Control, vol. 51, no. 11,
pp. 1749–1759, 2006.

[18] F. Brown, Boolean Reasoning: The Logic of Boolean Equations,
2nd ed. Dover Publications, 2012.

[19] J. Chinneck, Practical Optimization: A Gentle Introduction.
http://www.sce.carleton.ca/faculty/chinneck/po.html, 2004.

[20] A. Makhorin, “GNU linear programming kit,”
http://www.gnu.org/software/glpk/, 2012.

[21] R. Milner, Communication and concurrency. Prentice-Hall, 1989.
[22] C. Mahulea and M. Kloetzer, “Software tool for motion planning based

on Boolean specifications and PN abstractions,”
http://webdiis.unizar.es/∼cmahulea/research/PN Boole plan.zip, 2014.

[23] J. R. Shewchuk, “General-dimensional constrained delaunay and con-
strained regular triangulations, i: Combinatorial properties,” Discrete
& Computational Geometry, vol. 39, pp. 580–637, 2008.

http://webdiis.unizar.es/~cmahulea/research/PN_Boole_plan.zip

	Introduction
	Preliminaries and team model
	Petri nets
	Boolean-based specifications

	Problem definition and solution
	Linear restrictions for
	Optimal solution

	Suboptimal solution
	Simulation examples
	Conclusions
	References

