
1

Petri net approach for deadlock and collision

avoidance in robot planning

Marius Kloetzer, Cristian Mahulea and J.M. Colom

Abstract

This paper considers the problem of supervising the motion of some mobile robots that evolve

in the same environment. The solution consists of a strategy of moving and stopping the robots such

that no collisions or deadlocks appear. The problem is formulated on a finite-state representation, some

regions of the environment have a limited capacity in terms of number of robots that can simultaneously

occupy them, and a set of possible trajectories is available for each robot. The solution comprises the

construction of a specific Petri net model for the available trajectories, and the use of resource-allocation

techniques based on restricted-capacity regions and on deadlock-free execution.

I. INTRODUCTION

The problem of planning the motion of a mobile robot continues to receive a fair amount of

attention. The robotic tasks can vary from classical navigation missions, where the robot should

reach a target position while avoiding collisions with existing obstacles [1], [2], to specifications

given in a high-level, human-like language [3], [4]. The assumed robot’s dynamics range from

fully-actuated point robots to non-holonomic mobile agents [5]–[7].

Many studies aim to extend the available algorithms towards planning a whole team of robots

such that a global specification is satisfied. A lot of these results are based on abstracting the

environment and the robot’s control capabilities into a finite-state representation, and on using

available computational techniques for such representations [8]–[10]. When planning the motion

M. Kloetzer is with Department of Automatic Control and Applied Informatics, Technical University “Gh. Asachi” of

Iasi, Romania {kmarius@ac.tuiasi.ro}. C. Mahulea and J.M. Colom are with Department of Computer Science and Systems

Engineering, Univ. of Zaragoza, Spain {cmahulea,jm@unizar.es}

At University of Zaragoza, this work has been partially supported by CICYT - FEDER projects DPI2010-20413 and TIN2011-

27479-C04-01.

July 5, 2013 DRAFT

of a team of robots, the focus usually falls on ensuring a specific task, and in this endeavor

various assumptions might appear. Among such assumptions, collision avoidance may be either

ignored (e.g., by assuming point robots or local avoidance rules), or is may be avoided by

omitting all dangerous solutions. Some researches analyze possible robot behaviors, but without

modifying the current execution [11].

This paper proposes a method for avoiding inter-robot collisions for a given set of possible

trajectories for each robot. These trajectories may appear either from the solution of planning a

team of robots while ignoring collisions among agents, or simply from having multiple indepen-

dent robots that act (based on single-robot algorithms) in a common environment, without any

collaboration. The collision avoidance is guaranteed by waiting modes (pausing the movement

of some robots in specific locations). However, such simple waitings can lead to deadlock, and

therefore we design a supervising controller that guarantees a live evolution.

The first part of the paper describes, in an intuitive way, the procedure of abstracting the

trajectories of the robots to a Petri net. Petri nets have been used for modeling and control

of mobile robots in the recent literature [12]–[14]. The methodology we use is similar to the

abstraction of manufacturing systems into Resource Allocation Systems (RAS) and is using PNs

instead of finite automata as in [15]. The methodology consists in two steps: (1) the sequence

of the regions that should be traveled by a robot along each trajectory is modeled as a state

machine Petri nets (PN) where each place represents the presence of the robot in a given region

(these places are called trajectory places), and (2) the capacities of the regions are modeled by

using some resource places, such that a resource is allocated when the robot enters in a specific

region and it is released when the robot leaves that region. Notice that each trajectory place

requires only one resource (the one modeling the capacity of that region), because we assume

that a robot can occupy only one region at any moment. The PN model will have a behavior

equivalent to a linear S3PR (L − S3PR) because trajectories are chosen before the beginning

of any movement.

In the last part of the paper, we review the structural liveness enforcement techniques of RAS

modeled by PN and we interpret them in robot planning terms. In literature, the most studied

methods for liveness enforcement consist in two steps: (1) the computation of the minimal

bad siphons, and (2) for each minimal bad siphon, add a monitor place ensuring that the siphon

cannot be emptied. However, the monitor places can introduce new bad siphons in the model and

the procedure should be iteratively executed. Unfortunately, after the introduction of a monitor

place, the PN will not be anymore a subclass of S3PR (will be a S4PR) and the computation

of the minimal bad siphons requires more elaborated algorithms than those used for S3PR.

Petri nets have been used for modeling and control of mobile robots in the recent literature

[12]–[14]. In [13], simulation is used to study some qualitative and quantitative properties of

the model. In [12], [14], Stochastic Petri net models are considered for modular modeling and

analyzing of robot tasks. Different models are proposed for environment layer and action executor

layer.

In this paper the approach is rather different. First, we consider mobile robots evolving in an

environment split in regions (for example using a cell decomposition algorithm). Second, we

try to use the structural properties of the obtained model to study the properties of the robot

trajectories.

II. PRELIMINARIES

A. Environment Abstraction

Let us consider a set of |R| identical robots evolving in a given environment, with the purpose

of accomplishing a given mission. For simplicity of exposition, we assume that the motion of a

robot in the environment is abstracted into a finite graph given in definition 1.

Definition 1. A graph abstracting the environment is a tuple G = (Q,E, cap), where:

• Q is a finite set of nodes representing locations (or regions) in the environment where robots

can travel;

• E ⊆ Q× Q is the set of edges, where (q, q′) ∈ E means a robot starting from location q

reach q′ without going through other regions from Q \ {q, q′};

• cap : Q → N+ is a map illustrating the capacity of each location, with cap(q) showing the

maximum number of robots that can be at any given time in region q, ∀q ∈ Q 1.

We mention that such finite abstractions are used for solving various planning problems for

mobile robots. For example, in [9], [16], [17] finite state representations are constructed by cell

decomposition techniques, where the free state space in the bounded environment (the space not

1We will say that location (or region) q ∈ Q is restricted if cap(q) < |R| and unrestricted otherwise.

covered by obstacles) is partitioned into a number of cells having the same geometrical shape.

Based on control design techniques for classes of systems in particular partitions [18], [19], the

adjacency relations among cells and the robot dynamics yield the possible set of edges linking

adjacent cells (or transitions in a so called transition system model). In [6], [20] the environment

in which a car-like robot evolves is partitioned into a set of curved-surface regions, based on the

constrained steering capabilities. In other situations, the environment can directly yield a finite

state representation, as in [8] (where a city-like environment is abstracted by considering each

intersection as a node and each road linking two intersections as an arc), or in [4], where a

house-like environment can be easily abstracted based on its rooms and on the existing doors.

In the case of a single robot evolving in the environment, many automated techniques use the

abstraction for finding a solution to a given task, the possible tasks ranging from reaching a target

while avoiding obstacles to complex missions expressed in human-like language with the help

of regular expressions or temporal logics. Some studies extend these classes of specifications to

a team of collaborating robots, of course with the price of an increased computation complexity

and of more restrictive specifications.

The goal of this paper is not to design robotic paths (sequences of nodes from Q to be visited),

but it is to ensure that some given trajectories are followed such that the environment restrictions

are satisfied (e.g. capacities of regions) and deadlocks do not occur. Therefore, the assumed robots

can either be independent, each of them solving a given task in the same environment, or they

can collaborate for a mission requiring more than one robot. In either case, the inputs of our

problem are the environment representation in the form G and one or more possible trajectories

for each robot. Such inputs are enabled by a wide range of approaches, some of them being

referred above.

B. Petri Net Models

In this subsection we introduce the basic definition of Petri nets (for a more detailed intro-

duction we refer the reader to [21]).

Definition 2. A Petri net (PN) is a tuple N = 〈P, T, F 〉, where P and T are two non-empty

disjoint sets of places and transitions, and the set F ⊆ (P × T)∪ (T × P) is the incidence flow

relation.

For a node h ∈ P ∪ T, the sets of its input and output nodes are denoted as •h and h•,

respectively. Formally, •h = {v ∈ P ∪ T |(v, h) ∈ F} and h• = {v ∈ P ∪ T |(h, v) ∈ F}. This

notion can be naturally extended to a set of nodes as follows: given H ⊆ P ∪T , •H =
⋃

h∈H
•h

and H• =
⋃

h∈H h•.

A self-loop free (∀h ∈ P ∪ T , ••h ∩ h = ∅) Petri net N = 〈P, T, F 〉 can alternatively

be represented as N = 〈P, T,C〉, where C is the net token flow matrix, C = C
+ − C

−,

with: C+[p, t] = 1 if (t, p) ∈ F and C
+[p, t] = 0 otherwise; C

−[p, t] = 1 if (p, t) ∈ F and

C
+[p, t] = 0 otherwise.

Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the places and transitions. Each place can

contain a non-negative integer number of tokens, this number representing the marking of the

place. The distribution of tokens in places is denoted by vector m, where m[pi] (or simply mi)

is the marking of place pi. The initial token distribution, denoted by m0 ∈ N
|P |, is called the

initial marking of the net. A PN with an initial marking is a PN system 〈N ,m0〉. The enabling

degree of a transition tj at a marking m is given by enab(tj ,m) = minpi∈•tj

{⌊

m[pi]
C−[pi,tj]

⌋}

,

which represents the maximum amount in which tj can fire.

A transition tj ∈ T is enabled at m if enab(tj ,m) > 0. An enabled transition tj can fire in

any integer amount α, with 0 < α ≤ enab(tj ,m), leading to a new state m
′ = m+α ·C[·, tj],

where and C[·, j] is the jth column of matrix C. It will be said that m′ is a reachable marking

that has been reached from m by firing tj and this firing is denoted by m [tj〉m′ . The set of

all reachable markings from m0 is denoted by R (N ,m0).

A PN is strongly connected if from each node h ∈ P ∪ T there exists a direct path to any

other node v ∈ P ∪T . N is a state machine if all transitions have at most one input and at most

one output place, i.e., ∀t ∈ T , |•t| ≤ 1 and |t•| ≤ 1.

A set of places S ⊆ P is a siphon if •S ⊆ S• (the set of input transitions is included in the

set of output transitions) and it is a trap if S• ⊆ •S (the set of output transitions is included in

the set of input transitions).

The Resource Allocation System (RAS) analysis requires models retaining only those aspects

relevant to the representation of the resource allocation. Different applications of RAS in terms

of PNs have been considered in literature in many domains [22]–[25], leading to several Petri

net subclasses. A broad perspective of Petri nets classes used for RAS abstraction of discrete

event systems is given in [26]. The subclass of S3PR is one of the most widely studied and

the liveness characterization has been studied in terms of some siphons of the net [22], [24]. In

this paper we abstract the trajectories of a set of robots to a RAS whose model belongs to the

class of linear S3PR (L−S3PR) class. This class has been defined in [27] and many structural

properties are studied. In the following the definition of this class is given.

Definition 3. A linear S3PR is a PN N = 〈P, T, F 〉 such that:

1) P = PA ∪ PR ∪ P0 is a partition such that:

a) P0 =
{

p10, . . . , p
k
0

}

, k > 0 (p ∈ P0 is called an idle place)

b) PA =
⋃k

i=1 P
i
A, where P i

A ∩ P
j
A = ∅, for all i 6= j (p ∈ PA is called an operation or

activity place);

c) PR = {r̄1, . . . , r̄n}, n > 0 (r̄ ∈ PR is called a resource place).

2) T =
⋃k

i=1 T
i, where T i ∩ T j = ∅, for all i 6= j.

3) ∀i ∈ {1, . . . , k} the subnet N i generated by {pi0} ∪ P i
A ∪ T i is a strongly connected state

machine such that every cycle contains {pi0} and ∀p ∈ P i
A, |p•| = 1.

4) N is strongly connected.

5) ∀i ∈ {1, . . . , k}, ∀p ∈ P i
A, ••p ∩ PR = p•• ∩ PR and |••p ∩ PR| = 1.

Definition 4. Let N = 〈PA ∪ PR ∪ P0, T, F 〉 be a L− S3PR. An initial marking m0 is called

admissible if:

• m0[p] ≥ 1, ∀p ∈ P0 ∪ PR;

• m0[p] = 0, ∀p ∈ PA.

III. ROBOT TRAJECTORIES AND RESOURCES

After formulating the problem we’re interested in, this section shows how a set of mobile robot

trajectories given on the graph defined in Sec. II-A can be modeled as a Resource Allocation

System (RAS) in terms of Petri nets.

A. Problem Statement

We consider an environment represented by a graph G = (Q,E, cap) as in definition 1.

There are |R| robots (the set of robots is denoted by R = {r1, r2, . . . , r|R|}) deployed in this

environment, and the initial position of robot ri is denoted by q0i ∈ Q, i = 1, . . . , |R|. Based

Fig. 1. A planar environment with the free space composed by 20 simplices.

on some mission requirements, we assume that for each robot ri, i = 1, . . . , |R|, we have

a set Ti of possible finite-length trajectories, all of them starting from q0i. Due to the finite

state representation, each trajectory consists of a finite string of elements from Q. For example,

if nodes from Q correspond to a cell decomposition of the environment, a trajectory is the

sequence of cells that should be followed by a robot. The set of all trajectories for all robots

in the environment is denoted as T =
⋃

Ti, with the obvious inclusion T ⊂ Q∗, where Q∗

denotes the Kleene closure of set Q (the set of finite-length strings that can be generated by

concatenating elements from Q).

The problem solved in this paper can be formulated as follows:

Problem 1. Given the environment modeled by G = (Q,E, cap), with restricted capacity of some

nodes, a set of robots R = {r1, r2, . . . , r|R|} and the sets Ti of possible finite-length trajectories

for each robot ri ∈ R, find a deadlock prevention policy ensuring that each robot terminates its

chosen trajectory.

In problem 1, if there are more possible trajectories for a robot, it is assumed that one of

them is chosen before the movement. Furthermore, the strategy will consist in finding waiting

modes for each robot (pauses in its motion), and the adjective “correctly” means that no robots

collide between them and no deadlock appears due to simultaneous waitings.

Remark 1. We assume that, in the case of a collaborative team of robots, there are no syn-

chronization moments imposed along the robotic trajectories, i.e., there are no intermediate

nodes that should be reached by the robots at the same time. If trajectories with intermediate

synchronizations are necessary, they should be split in more unsynchronized trajectories, and

the procedure we propose can be iterated for the resulting unsynchronized sequences.

Remark 2. The solution provided in this paper does not account for choosing a specific trajectory

for each robot from the set of its possible trajectories such that a criterion as the number of

necessary waiting moments is minimized. Such a computationally tractable extension (other than

the brute force approach that tests all possible permutations of individual trajectories) is left for

future research.

For the sake of correctness in formulating problem 1, it is assumed that the initial deployment

of robots in nodes q0i, i = 1, . . . , |R|, satisfies the maximum capacity of these nodes (given

by map cap). Also, the fulfillment of a desired mission is guaranteed as long as each robot ri

correctly follows any trajectory from set Ti. Thus, the sets Ti can represent a priori computed

solution of an imposed robotic mission (e.g., by using some research results mentioned in Sec.

II-A), and the procedure we propose here can be regarded as a strategy ensuring the correctness

of following such a solution, under restricted capacity of environment regions.

Our approach begins with the construction of a PN model based on the robotic trajectories

(Sec. III-B and III-C), such that the maximum capacities of visited nodes are satisfied during

motion. Then, a deadlock prevention strategy is embedded into this PN model (Sec. IV).

B. Intuitive PN model definition

This subsection informally presents the ideas behind the PN model construction. In order to

facilitate the understanding, the following example will be considered throughout this subsection.

Consider the planar environment from Fig.1, cluttered with obstacles (the black regions) and

whose free space is composed by 20 regions (Q = {q1, . . . , q20}). Assume there are 2 robots,

initially placed in regions q1 and q2, respectively. The mission requires that the silver from q20 is

moved to q7, and the gold from q14 is deposited to q15. As mentioned, the construction of robotic

.

21 t20 t19 t18 t17 t16
t15 t14

t13 t12

t8 t7 t5
t4 t2

t1
t3t6t9

t10t11

5c8cc3

2c

c20

c19

c14

t22t23t24 R2.q15 R2.q3’ R2.q19’ R2.q14R2.q10.q7 R2.q7.q10 R2.q19 R2.q3 R2.q8 R2.q5 R2.q2

R
2.

q1
8.

q1
6.

q9

R2.I.

..

R1.q3 R1.q8 R1.q5

.

R1.q7 R1.q19 R1.q3’ R1.q20R1.q13.q15 R1.q15.q13

.

R1.I

.

R
1.

q1
.q

6.
q1

1.
q1

7.

ct

. .

t

Fig. 2. The RMPN model of two robots, each following one trajectory in the environment from Fig. 1.

trajectories is not within the scope of this work, and we just mention that for this mission they

can be obtained by task allocation and graph searches.

For simplicity of exposition, we consider only one trajectory for each robot, as follows:

• Robot r1 goes through regions: q1, q6, q11, q17, q5, q8, q3, q15, q13, q20, q13, q15, q3, q19, q7;

• Robot r2 goes through regions: q2, q18, q16, q9, q5, q8, q3, q19, q7, q10, q14, q10, q7, q19, q3,

q15.

The environment regions are restricted such that in the blue (gray) regions at most one robot

can be at any time moment, i.e. cap(qi) = 1, ∀i ∈ {2, 3, 5, 8, 12, 14, 19, 20}, and cap(qi) = 2

otherwise (for having the map cap well-defined over set Q, we can set its value larger or equal

to the number of robots for the unrestricted regions).

Obviously, if the robots individually follow their trajectories, they could collide (in q3, q5, q8,

or q19). Even if a collision avoidance is locally used by each robot, a deadlock may occur (e.g.

if r1 is in q3 trying to go to q19, while r2 is in q19 trying to go to q3).

The PN model constructed in this section accounts only for region capacity (i.e. guaranteed

collision avoidance), and the deadlock-prevention will be added in Sec. IV. The PN corresponding

to the above example is sketched in Fig. 2 (excepting for the blue place ct, which is not added

in this section), and its structure is explained in the following.

We begin by collapsing each sequence of successive unrestricted regions (having capacity

larger or equal to |R|) followed by a robot into a single place of the PN model. For the given

example, the place R1.q1.q6.q11.q17 corresponds to the first part of r1’s trajectory (regions

q1, q6, q11, q17), and the same idea applies for places R1.q15.q13, R1.q13.q15, R2.q18.q16.q9,

R2.q7.q10 and R2.q10.q7. Note that restricted regions that are not visited by more robots (as are

q2 or q14) are not included in the above collapsing, because they could raise issues if additional

trajectories are added to sets Ti.

There are more places added for each restricted region (having capacity smaller than |R|) that

appears along robotic paths: one place models the limited capacity, and the others model the

region occurrence along trajectories. For example, place c5 corresponds to the capacity of region

q5, and it initially has marking given by cap(q5) = 1. Places R1.q5 and R2.q5 correspond to

robots visiting region q5, and they are connected via transitions to c5 such that only one robot

can be at a time instant in the corresponding region. Assume that when both robots are traveling

towards q5, robot r1 arrives first and enters this restricted region. Then, one token is removed

from the place corresponding to its capacity (c5). Thus, even if r2 arrives to q5 while r1 is still

there, it cannot enter the region because transition t2 cannot be fired without one token in c5.

The token to c5 is returned (released) when r1 exits q5, and then r2 can enter q5. In other words,

c5 can be viewed as a shared resource for robots r1 and r2, and the marking of c5 with its input

and output transitions model the correct access to this resource. The same idea applies for more

robots and restricted capacity larger than one, by simply placing the corresponding number of

tokens in the place modeling the capacity.

All places that correspond to regions that appear along a trajectory are connected by transitions

in their appearing order, e.g., R1.q1.q6.q11.q17 is connected to R1.q5 via t2 (meaning that r1

crosses from q17 to q5) and so on. Note that if a region is visited more than once along the

same trajectory, more places are added in the PN model. For example, there are five places

corresponding to q3: one models its limited capacity, two model its occurrence along trajectory

of r1 and two model its occurrence along trajectory of r2.

A number of |R| places model the Idle state of the robots: R1.I and R2.I . One token in R1.I

(or R2.I) means that the robot 1 (or 2) is either waiting to begin its motion, or it stopped after

finishing the trajectory. If there are more possible trajectories for a robot i (|Ti| > 1), its idle

place will have |Ti| output transitions, one for each trajectory. Choosing one of those trajectories

means firing the corresponding transition and moving the token from the idle state to a state

corresponding to actual movement.

Remark 3. Note that when a robot finishes its chosen trajectory, the token is returned to robot’s

idle place. However, the PN model could be used again for supervising the motion only after the

robot is placed back in its initial region from the environment. Thus, when tokens are returned

to all idle places, the mission is accomplished. We don’t model the mission accomplishment with

different places than the idle ones, because such places would be blocking, and the PN would

belong to a different class (for which deadlock avoidance strategies might not be characterized).

As a summary of the PN model constructed so far, some places correspond to the regions

visited by robots along their trajectories, other places correspond to limited capacity of some

regions (graph nodes), and |R| idle places correspond to beginning or ending the assignment.

The transitions of the PN correspond to robots entering new regions from their trajectories, and

the connections between places and transitions ensure that the capacity of each visited region is

satisfied.

C. Formal Definition

In this subsection we give the formal definition and construction procedure for the PN model

corresponding to robot motions, and we prove that this model has a behavior equivalent to

L− S3PR.

Definition 5. A robot motion PN (RMPN) is a PN N = 〈P, T, F 〉 such that:

1) P = PT ∪ PC ∪ PI is a partition such that:

a) PI =
{

p1I , . . . , p
|R|
I

}

, |R| > 0 (piI ∈ PI is called the idle place of robot ri);

b) PT =
⋃|R|

i=1 P
i
T , where P i

T ∩ P
j
T = ∅, for all i 6= j (p ∈ P i

T is modeling the presence of

the robot ri in a region from one of its possible trajectories);

c) PC = {ci corresponding to qi|qi ∈ Q and cap(qi) < |R|}.

2) T =
⋃|R|

i=1 T
i, where T i ∩ T j = ∅, for all i 6= j.

3) ∀i ∈ {1, . . . , |R|} the subnet N i generated by {piI}∪P i
T ∪ T i is a strongly connected state

machine such that every cycle contains {piI} and ∀p ∈ P i
T , |p•| = 1.

4) N is strongly connected.

5) ∀i ∈ {1, . . . , k}, ∀p ∈ P i
T , ••p ∩ PC = p•• ∩ PC and |••p ∩ PC | ≤ 1.

The initial marking should be admissible.

Definition 6. Let N = 〈PT ∪ PC ∪ PI , T, F 〉 be a RMPN. An initial marking m0 is called

admissible if:

• m0[p
i
I] = 1, ∀piI ∈ PI;

• m0[pc] = cap(qi) ≥ 1, ∀pc ∈ PC where pc is modeling the capacity of region qi;

• m0[p] = 0, ∀p ∈ PT .

In the RMPN in Fig. 2, PI = {R1.I, R2.I}, P 1
T = {R1.q1.q6.q11.q17, R1.q5, R1.q8, R1.q3,

R1.q15.q13, R1.q20, R1.q13.q15, R1.q3′, R1.q19, R1.q7}, P 2
T = {R2.q2, R2.q18.q16.q9, R2.q5,

R2.q8, R2.q3, R2.q19, R2.q7.q10, R2.q14, R2.q10.q7, R2.q19′, R2.q3′, R2.q15}; PC = {c2, c3,

c5, c8, c14, c19, c20}.

Notice that some places belonging to set PT are not holder of resource places. But this is

only a simplification of the model because we can add a resource place as those from PC but

with an initial marking equal to the number of robots. Observe that in terms of Petri nets, this

is an implicit place [28] that can be removed. In effect, any resource place in L − S3PR is

structurally implicit, i.e., its row in the incidence matrix is a linear combination of other places

C[ci, ·] =
∑

p∈(PI∪PT)\{pi|pi is a cell with capacity ci}
C[p, ·] and the place becomes implicit with an

initial marking greater than or equal to the sum of the initial markings of the idle places, i.e.,

the number of robots |R|.

Proposition 1. Let N = 〈P, T, F 〉 be a RMPN with an admissible initial marking. Its behavior

is equivalent to a L− S3PR net system.

Proof: (Sketch) Given N , we can add a place ci for each unrestricted cell. For any p ∈ PT

that represents the visit of cell i by the robot j, add the following arcs:

1) From ci to each transition in •p;

2) From each transition in p• to ci.

Add |R| tokens to ci. The place ci is implicit as previously commented. But the resulted net is

a L − S3PR with the same set of firing sequences than the original net. Therefore, they are

equivalent (implicit places preserve the language of firing sequences [28]).

Given the environment graph G, the set of robots R and for each robot ri the set of possible

trajectories Ti, i = 1, . . . , |R|, Algorithm 1 can be used for obtaining the RMPN model. The

steps of Algorithm 1 follow the ideas from Sec. III-B: each trajectory of each robot is modeled

by a state machine (lines 7-13), the successive places corresponding to unrestricted regions from

trajectory are collapsed into one (lines 15-18), and the state machine is connected to robot’s

idle place (line 14). Then, the capacity of each encountered restricted region is modeled by a

place which is connected to all transitions corresponding entering and exiting that region (lines

19-25). The initial marking of RMPN model contains one token in each idle place (line 4) and

a corresponding number of tokens in each place modeling the capacity of restricted regions

(line 24). In Algorithm 1, for a place p that models the presence of a robot into a region, the

corresponding location from Q is denoted by qp.

IV. DEADLOCK PREVENTION BASED ON PN MODEL

In general, liveness of a Petri net model is a difficult property to check. Siphons are structural

elements that are related to this property. According to their definition, if the places of a siphon

become empty during the evolution, it is not possible to mark them again, since the set of their

input transitions is included into the set of their output transitions.

If we want to ensure the liveness of a L− S3PR it is sufficient to compute all minimal bad

siphons and then add a controller (a monitor place) to ensure that these siphons are not emptied.

The problem lies in the computational complexity of determining the siphons, which is very

high for arbitrary PNs. However, in the case of the subclass of L − S3PR, these siphons are

strongly related to the concept of circular wait of resources [29].

Definition 7. Let N = 〈PT ∪PC ∪PI , T, F 〉 be a RMPN. A circuit of resources is a non-empty

path t1, c1, t2, c2, . . ., tm, cm with ti ∈ T , ci ∈ PC , ∀i ∈ {1, 2, . . . , m}, such that:

• ci ∈ ti
•, ∀i ∈ {1, 2, . . . , m};

• ci ∈ •ti+1, ∀i ∈ {1, 2, . . . , m− 1};

• cm ∈ •t1.

For example, t9, c3, t22, c19 is a circuit of resources of the Robot Motion PN (RMPN) in

Fig. 2. Let SC denote the set of places belonging to the circuit of resources (in this particular

case, SC = {c3, c19}) and let ST =
⋃

t∈•SC
{p ∈ PT |p ∈ •t, •t ∩ SC = ∅} (in the mentioned

Algorithm 1: Obtain the RMPN model

Input: G, R, T1, . . . , T|R| ; /* environment abstraction, robots and all

possible trajectories */

Output: 〈N ,m0〉 ; /* the RMPN system */

1 Set PC = ∅

2 for ri ∈ R do

3 Add a place P i
I = {piI} modeling the Idle state of ri

4 Set initial marking of piI equal to 1

5 Set P i
T = T i = ∅

6 for ⊔j ∈ Ti do

7 Assume ⊔j = q
j
1, q

j
2, . . ., q

j

|⊔j |

8 P̄ = {pj1, p
j
2, . . . p

j

|⊔j |
}

9 T̄ = {tj1, t
j
2, . . . , t

j

|⊔j |
}

10 t
j
k

•
= {pjk}, ∀k = 1, 2, . . . , |⊔j |

11
•p

j
k = t

j
k, ∀k = 1, 2, . . . , |⊔j|

12 p
j
k

•
= {tjk+1}, ∀k = 1, 2, . . . , |⊔j| − 1

13
•t

j
k+1 = p

j
k, ∀k = 1, 2, . . . , |⊔j| − 1

14 Add one arc from piI to t
j
1, and one arc from t

j

|⊔j |
to piI

15 while ∃pjh1, p
j
h2 ∈ P̄ s.t. ••p

j
h2 = {pjh1} ∧ cap(q

p
j
h1
) ≥ |R| ∧ cap(q

p
j
h2
) ≥ |R| do

16 P̄ = P̄ \ {pjh2}

17 T̄ = T̄ \ {•pjh2}

18 p
j
h1

•
= p

j
h2

•

19 for p ∈ P̄ s.t. cap(qp) < |R| do

20 if capacity of region qp is modeled by pc ∈ PC then

21 Add one arc from pc to •p, and one arc from p• to pc

22 else

23 Add place pc to PC for modeling capacity of qp

24 Set initial marking of pc equal to cap(qp)

25 Add one arc from pc to •p, and one arc from p• to pc

26 P i
T = P i

T ∪ P̄

27 T i = T i ∪ T̄

28 Set initial markings of places P i
T as zero

29 construct N using the set of places
(

⋃|R|
i=1 P

i
I

)

∪
(

⋃|R|
i=1 P

i
T

)

∪ PC and the set of transitions
⋃|R| i

example, ST = {R1.q3, R1.q19, R2.q19, R2.q3′}). The set of places S = SC ∪ ST is composing

a siphon (•S = {t4, t5, t7, t8, t14, t15, t17, t18} ⊆ {t4, t5, t6, t7, t8, t13, t14, t15, t16, t17, t18} = S•)

which can be emptied.

For L − S3PR, the liveness characterization we have says that the net is not live iff there

exists a minimal siphon and a reachable marking under which the siphon is empty.

Let us define the set of places CS = SC
•• \ S which is the set of places corresponding to

regions restricted by places in SC that do not belong to the siphon S. Places from CS are the

ones that could take all the resources, thus emptying the siphon S. In the case of the RMPN

in Fig. 2, CS = {R1.q3′, R2.q3, R2.q19′}. By adding a place ensuring that the marking of all

places in CS is at most |SC | − 1 (i.e., the number of resources minus one), it will be impossible

to empty the siphon. In our example, by limiting the markings of places R1.q3′, R2.q3, R2.q19′

to 1, the deadlock will not be possible anymore. The solution consists in adding the place ct in

the net in Fig. 2, with initial marking equal to 1, and connect it to places in CS in the following

way: for each place p ∈ CS, add an arc (ct, •p) and one arc (p•, ct).

Approaches based on siphon computation. For the S3PR, any deadlock state is associated

with at least one minimal empty siphon. Therefore, is important to have algorithms to compute

the set of all minimal siphons. Two kinds of approaches exist: the first one is based on Integer

Linear Programming (ILP) [30] while the second one is based on the pruning graph [23].

Moreover, in [30] the deadlock prevention is solved by an iterative algorithm. However, in the

case of L − S3PR we cannot use the relation between the circuits of resources and minimal

siphons to provide faster algorithms, because after the first iteration, when at least one monitor

place is introduced, the net can go out from the subclass, becoming S4PR. This means that for

analysis purposes we will use the simplest liveness characterization due to the class L−S3PR,

but for synthesis purposes we must use the techniques of S4PR because the iterative nature of

the method is closed in the class S4PR.

In the example from Sec.III-B, the monitor place ct (drawn in blue/grey) acts like a semaphore

that prohibits the deadlock situation of having r1 in q3 and heading to q19, and r2 in q19 and head-

ing to q3. This place is computed from the siphon S = {c3, c19, R1.q3, R1.q19, R2.q19, R2.q3′}

and with an initial marking containing one token less than the initial tokens in the siphon. The

supervising strategy based on the RMPN model allows robots to enter new regions if and only

if the corresponding transitions are possible from the current PN marking, and otherwise pauses

the motion of corresponding robots. The inclusion in the PN model of capacity restrictions and

monitor places guarantees that each robot eventually finishes its trajectory, without colliding and

without entering indefinite waitings.

Approaches based on the addition of resources. These approaches consist in adding copies

of resources of the siphon to prevent that the number of these copies goes under a dangerous

value [31]. In the case of RMPN, this implies an increase in the capacity of some regions. For

example, in the original RMPN of Fig. 2 (without the place ct) by simply putting cap(q3) = 2 the

L−S3PR becomes live. At the level of implementation, this may be done for example by making

q3 a two-level region. The main advantage of this solution with respect to the previous one is

that here is not necessary anymore a centralized implementation of the controller. Moreover, if

one wants a complete decentralized solution, the region q3 can be divided into two subregions,

one part to be used only by r1 and the other one only by r2. A survey describing all these

techniques can be consulted in [31].

V. CONCLUSIONS

This work proposes an approach for allowing correct execution of some robotic trajectories in

a shared environment. The method’s outcome consists in moving or pausing robots’ movements

along chosen trajectories, and the correctness of execution means that there are no collisions

between robots or deadlocks because of simultaneous waitings. The algorithmic solution is based

on the construction of a L − S3PR PN model that embeds the possible robot trajectories and

the limitations on capacity of some environment regions. Two deadlock prevention techniques

on this PN system are discussed, and the result yields a strategy for correctly following the

trajectories.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, Principles of Robot Motion:

Theory, Algorithms, and Implementations. Boston: MIT Press, 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge, 2006, http://planning.cs.uiuc.edu.

[3] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas, “Symbolic planning and control of robot motion

[grand challenges of robotics],” Robotics Automation Magazine, IEEE, vol. 14, no. 1, pp. 61–70, 2007.

[4] B. Johnson and H. Kress-Gazit, “Probabilistic analysis of correctness of high-level robot behavior with sensor error,” in

Robotics: Science and Systems, 2011, pp. 137–144.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion planning for dynamic robots,”

Automatica, vol. 45, no. 2, pp. 343–352, 2009.

[6] D. Conner, A. Rizzi, and H. Choset, “Integrating planning and control forsingle-bodied wheeled mobile robots,” Autonomous

Robots, vol. 30, no. 3, pp. 243–264, 2011.

[7] R. Cowlagi and P. Tsiotras, “Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic

vehicles,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 379–395, 2012.

[8] Y. Chen, X. Ding, A. Stefanescu, and C. Belta, “A formal approach to the deployment of distributed robotic teams,” IEEE

Transactions on Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[9] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic deployment of robotic teams,” IEEE Robotics and Automation

Magazine, vol. 18, no. 3, pp. 75–86, 2011.

[10] M. Kloetzer and C. Mahulea, “A Petri net based approach for multi-robot path planning,” Discrete Event Dynamic Systems,

2013, in press.

[11] S. Konur, C. Dixon, and M. Fisher, “Analysing robot swarm behaviour via probabilistic model checking,” Robotics and

Autonomous Systems, vol. 60, no. 2, pp. 199–213, 2012.

[12] H. Costelha and P. Lima, “Robot task plan representation by Petri nets: modelling, identification, analysis and execution,”

Journal of Autonomous Robots, pp. 1–24, 2012.

[13] J. King, R. Pretty, and R. Gosine, “Coordinated execution of tasks in a multiagent environment,” IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 33, no. 5, pp. 615–619, 2003.

[14] G. Kim and W. Chung, “Navigation behavior selection using generalized stochastic Petri nets for a service robot,” IEEE

Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews, vol. 37, no. 4, pp. 494–503, 2007.

[15] S. Reveliotis and E. Roszkowska, “Conflict Resolution in Free-Ranging Multivehicle Systems: A Resource Allocation

Paradigm,” IEEE Transactions on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[16] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for path planning: A temporal logic approach,” in

Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 4885 – 4890.

[17] M. Kloetzer, C. Mahulea, and O. Pastravanu, “A probabilistic abstraction approach for planning and controlling mobile

robots,” in ETFA11: 16th IEEE Conference on Emerging Technologies and Factory Automation, Toulouse, France, 2011,

pp. 1 – 8.

[18] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and control synthesis for piecewise-affine

hybrid systems on simplices,” IEEE Transactions on Automatic Control, vol. 51, pp. 938–948, 2006.

[19] C. Belta and L. Habets, “Constructing decidable hybrid systems with velocity bounds,” in 43rd IEEE Conference on

Decision and Control, Paradise Island, Bahamas, 2004.

[20] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas, “Valet parking without a valet,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2007, pp. 572–577.

[21] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[22] J. Ezpeleta, J. Colom, and J. Martinez, “A petri net based deadlock prevention policy for flexible manufacturing systems,”

IEEE Transactions on Robotics and Automation, vol. 11, no. 2, pp. 173–184, Apr. 1995.

[23] E. Cano, C. Rovetto, and J. Colom, “An algorithm to compute the minimal siphons in S4PR nets,” Discrete Event Dynamic

Systems, vol. 22, no. 4, pp. 403–428, Dec. 2012.

[24] S. Reveliotis, Real-Time Management of Resource Allocation Systems: A Discrete Event Systems Approach, ser.

International Series in Operations Research & Management Science. Springer Science+Business Media, Incorporated,

2005. [Online]. Available: http://books.google.es/books?id=BuYmkvo4RlkC

[25] Z. Li and M. Zhou, Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach, ser.

Advances in Industrial Control. Springer, 2009. [Online]. Available: http://books.google.es/books?id=Phz99CpZHvsC

[26] J. López-Grao and J. Colom, Structural methods for the control of Discrete Event Dynamic Systems – The case of the

Resource Allocation Problem, ser. Lecture Notes in Control and Information Sciences. Springer, 2013, vol. 433, ch. 13,

pp. 257–278.

[27] J. Desel and M. Silva, Eds., Application and Theory of Petri Nets 1998, 19th International Conference, ICATPN ’98,

Lisbon, Portugal, June 22-26, 1998, Proceedings, ser. Lecture Notes in Computer Science, vol. 1420. Springer, 1998.

[28] F. Garcia-Valles and J.-M. Colom, “Implicit places in net systems,” in Petri Nets and Performance Models, 1999.

Proceedings. The 8th International Workshop on, 1999, pp. 104–113.

[29] J. Ezpeleta, F. Garcı́a-Vallés, and J.-M. Colom, “A class of well structured petri nets for flexible manufacturing systems,”

in ICATPN, ser. Lecture Notes in Computer Science, J. Desel and M. Silva, Eds., vol. 1420. Springer, 1998, pp. 64–83.

[30] F. Tricas, F. Garcia-Valles, J.-M. Colom, and J. Ezpeleta, “A Petri Net Structure-Based Deadlock Prevention Solution for

Sequential Resource Allocation Systems,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2005, pp. 271–277.

[31] J.-P. López-Grao, J.-M. Colom, and F. Tricas, “Structural deadlock prevention policies for flexible manufacturing systems:

A petri net outlook,” in Formal Methods in Manufacturing, ser. Series on Industrial Information Technology, J. Campos,

C. Seatzu, and X. Xie, Eds. CRC Press/Taylor and Francis, 2014, ch. 7, to appear.

http://books.google.es/books?id=BuYmkvo4RlkC
http://books.google.es/books?id=Phz99CpZHvsC

	INTRODUCTION
	PRELIMINARIES
	Environment Abstraction
	Petri Net Models

	Robot Trajectories and Resources
	Problem Statement
	Intuitive PN model definition
	Formal Definition

	Deadlock Prevention Based on PN Model
	CONCLUSIONS
	References

