
D I S C R E T E E V E N T S Y S T E M T O O L S F O R FA U LT D I A G N O S I S
A N D C O L L I S I O N P R E V E N T I O N

xu wang

Ph.D
Informítica e Ingeniería de Sistemas
Escuela de Ingenierá y Arquitectura

Universidad de Zaragoza

November 2016

[September 6, 2016 at 9:07 – classicthesis version 4]

Xu Wang: Discrete event system tools for fault diagnosis and collision pre-
vention, c© November 2016

supervisors:
Mahulea, Cristian Florentín
Silva Suárez, Manuel
location:
Zaragoza, Spain

[September 6, 2016 at 9:07 – classicthesis version 4]

R E S U M E N

Los Sistemas de Eventos Discretos (DES por sus siglas en inglés),
son herramientas utilizadas ampliamente en sistemas prácticos, in-
cluyendo sistemas de manufactura, movimientos de robots, sistemas
de logísticas, etc. Se proponen las redes de Petri para modelar y
analizar DES de una manera compacta y eficiente. Esta tesis se centra
en dos cuestiones importantes para los sistemas de eventos discretos.

El primero de ellos es el diagnóstico de fallos. Se propone un en-
foque en línea para sistemas temporizados, modelado con redes de
Petri con tiempo (TPN, por sus siglas en inglés). El conjunto de tran-
siciones se parte en dos subconjuntos que contienen transiciones ob-
servables e inobservables, respectivamente. Los fallos corresponden
a un subconjunto de las transiciones inobservables. De acuerdo con
la mayor parte de la literatura sobre sistemas de eventos discretos, se
definen tres estados en el diagnóstico: normal, defectuoso e incierto,
respectivamente. El enfoque propuesto usa grafos de diagnóstico de
fallos, que se calculan de manera incremental mediante grafos de
clase de estado de la parte no observable de la TPN. Después de cada
observación, si la parte del grafo de diagnóstico de fallos necesaria
para calcular los estados de diagnóstico no está disponible, el grafo
de clase de estado de la TPN no observable se calcula empezando
desde los estados coherentes disponibles. Después, este grafo se opti-
miza y se añade al grafo de diagnóstico de fallos parcial, conservando
solamente la información necesaria para el cálculo del diagnóstico de
los estados. Se proporcionan algoritmos para calcular el grafo de di-
agnóstico de fallos y los estados de diagnóstico. El método ha sido
implementado como un paquete de software, incluyéndose resulta-
dos de simulación.

El segundo problema concierne la evitación de colisiones en la plan-
ificación de movimientos de robots, abordándose dos sub-problemas:
la prevención de bloqueos mutuos con control en tiempo real, y sin
él. En el caso de la prevención de bloqueos mutuos en sistemas tem-
porizados, se considera el diseño de una política de control de pre-
vención de bloqueos mutuos para un equipo de robots móviles que
ha de seguir unas trayectorias para completar una tarea determi-
nada. Se acepta que algunas regiones tienen capacidad limitada (el
número de robots que puede haber simultáneamente en esas regiones
es limitado), lo que puede verse como una limitación de los recursos
disponibles en un sistema de adjudicación de recursos (RAS por sus
siglas en inglés). Se propone un método basado en arcos inhibidores
que puede aplicarse de forma descentralizada. Se trata de una al-
ternativa a la estrategia de prevención de bloqueos mutuos basada
en monitorear ubicaciones que podrían usarse en varias aplicaciones,
ya que el coste de implementación puede ser menor. En el segundo
caso, se trata el problema de la prevención de colisiones en un sis-
tema con múltiples robots, en el que no se aplica control en tiempo

iii

[September 6, 2016 at 9:07 – classicthesis version 4]

real. Cada robot tiene un conjunto de trayectorias posibles y cada
una de ellas cumple una tarea individual. Las trayectorias consisten
en secuencias de regiones que han de seguirse y se conoce el tiempo
para desplazarse por cada región. El problema consiste en evitar col-
isiones entre los robots al imponer retrasos en el tiempo inicial para
cada trayectoria del conjunto de caminos disponibles para cada robot.
La solución se aborda como optimización mediante programación lin-
eal mixta (entera y real) que devuelve los retrasos de tiempo iniciales
y, cuando es necesario, la trayectoria elegida para cada robot. Final-
mente, se realiza un estudio estadístico de las soluciones propuestas
y se concluye que una formulación es preferible a las otras.

iv

[September 6, 2016 at 9:07 – classicthesis version 4]

A B S T R A C T

Discrete Event Systems (DES) are widely used tools in practical sys-
tems including manufacturing systems, robot motion, logistics sys-
tems and so on. Petri Nets (PN) are proposed to model and analyze
DES in a compact and efficient way. In this thesis, we focus on two
topics in DES and deal with them using PN.

One problem is fault diagnosis. We propose an on-line approach for
fault diagnosis of timed discrete event systems modeled by Time Petri
Net (TPN). The set of transitions is partitioned into two subsets con-
taining observable and unobservable transitions, respectively. Faults cor-
respond to a subset of unobservable transitions. In accordance with
most of the literature on discrete event systems, we define three di-
agnosis states, namely normal, faulty and uncertain states, respectively.
The proposed approach uses fault diagnosis graph, which is incremen-
tally computed using the state class graph of the unobservable TPN.
After each observation, if the part of FDG necessary to compute the
diagnosis states is not available, the state class graph of the unob-
servable TPN is computed starting from the consistent states. This
graph is then optimized and added to the partial FDG keeping only
the necessary information for computation of the diagnosis states. We
provide algorithms to compute the FDG and the diagnosis states. The
method is implemented as a software package and simulation results
are included.

The other problem is collision avoidance in robot planning and we
deal with two problems: deadlock prevention with and without real
time control. In the case of deadlock prevention with real time control,
we consider the problem of design a deadlock prevention control policy
for a team of mobile robots that should follow some trajectories in
order to accomplish a given task. We assume that some regions have
limited capacity (i.e., the numbers of robots that can be simultane-
ously in that regions are limited) that can be seen as limited available
resources in a resource allocation system (RAS). We propose a method,
based on inhibitor arcs that can be applied in a decentralized way.
This is an alternative to the deadlock prevention strategy based on
monitor places that could be used in several applications since the im-
plementation cost could be smaller. In the second case, we address a
collision avoidance problem in a multi-robot system, where real time
control is not applicable. Each robot has a set of possible trajectories,
each trajectory fulfilling its individual task. The trajectories consist of
sequences of regions to be followed, and the time for moving inside
each region is known. The problem is to avoid inter-robot collisions
by imposing initial time delays for each trajectory. Two solutions are
developed, depending on the possibility of imposing a certain trajec-
tory from the available set of paths for each robot. The solutions have
the form of mixed integer linear programming optimizations that re-
turn the initial time delays and, when necessary, the chosen trajectory

v

[September 6, 2016 at 9:07 – classicthesis version 4]

for each robot. Finally, we perform a statistical study on the proposed
solutions and we conclude that one formulation is preferable to the
others.

vi

[September 6, 2016 at 9:07 – classicthesis version 4]

C O N T E N T S

I introduction and petri nets 1

1 brief introduction 3

2 time petri net and state class graph 5

2.1 Introduction 6

2.2 (Untimed) Petri net 7

2.2.1 Basic concepts 7

2.2.2 Structural concepts 8

2.2.3 Subclasses of PN 9

2.2.4 Reachability and behavioral concepts 10

2.3 Petri net with time 11

2.3.1 Motivation 11

2.3.2 Time Petri net 11

2.3.3 TPN with unobservable transitions 12

2.4 State estimation of timed Petri nets 12

2.4.1 Basis marking in timed Petri nets 12

2.4.2 Time Duration of Firing Sequence 14

2.4.3 State estimation of choice-free nets 15

2.4.4 Algorithm for estimating the state 19

2.4.5 Discussion 21

2.5 State class graph 21

2.5.1 State class graph and its construction 21

2.5.2 Reduction rules of TPN 25

2.6 PN in resource allocation systems 26

2.6.1 Alternative notations of PN 27

2.6.2 The Class of S3PR 27

II fault diagnosis on time petri nets 31

3 introduction to fault diagnosis on petri net 33

3.1 Introduction 33

3.2 Literature review 35

3.3 Problem statement 38

3.3.1 Fault classes 38

3.3.2 Diagnoser 38

4 fault diagnosis graph and algorithms 41

4.1 Introduction 42

4.2 Firing domain of a given firing sequence 42

4.3 Fault Diagnosis Graph 48

4.3.1 Motivation 48

4.3.2 Construction of an FDG 50

4.3.3 Reduction of an FDG 52

5 centralized diagnosis algorithms 55

5.1 Introduction 56

5.2 General algorithm 56

5.3 Centralized diagnosis on FDG 57

5.4 Example 58

vii

[September 6, 2016 at 9:07 – classicthesis version 4]

viii contents

5.5 Boundedness 61

5.6 Time Complexity 61

5.7 Upper Bound on the Number of Consistent States 62

6 decentralized diagnosis algorithms 67

6.1 Introduction 68

6.1.1 Decentralized diagnosis architecture 68

6.1.2 Adaptation of FDG to decentralized diagnosis 69

6.2 General algorithm 73

6.3 Update the FDG in the subsystems 74

6.4 The coordinator 75

6.4.1 Coordinator design 75

6.4.2 Algorithms 77

6.5 Example 79

7 case study 85

7.1 Introduction 86

7.2 Centralized diagnosis 86

7.2.1 A flexible manufacturing system 86

7.2.2 An IC Wafer Fabrication System 91

7.3 Decentralized diagnosis 93

8 conclusions and future works on fault diagno-
sis 101

III petri net in robot planning 103

9 introduction to petri net in robot planning 105

9.1 Introduction 105

9.2 Literature review 107

10 decentralized deadlock prevention 109

10.1 Introduction 110

10.2 Motivating example 110

10.3 Deadlock Prevention in S3PR 114

10.3.1 Liveness of S3PR 114

10.3.2 Decentralized Control of Siphons 118

10.4 Deadlock Prevention in S3PR2 120

10.4.1 The Class of S3PR2 120

10.4.2 Virtual Siphon 121

10.4.3 Liveness of S3PR2 122

10.4.4 Control of Virtual Siphons 126

10.4.5 Comparison 127

11 robot plan verification 129

11.1 Introduction 130

11.2 Problem Description 130

11.2.1 Preliminaries 130

11.2.2 Problem statement 132

11.3 Solution 133

11.3.1 A solution for Problem 11.2 134

11.3.2 A solution for Problem 11.3 135

11.4 Example and statistical study 137

12 conclusions and future works on robot plan-
ning 141

[September 6, 2016 at 9:07 – classicthesis version 4]

contents ix

bibliography 143

[September 6, 2016 at 9:07 – classicthesis version 4]

L I S T O F F I G U R E S

Figure 2.1 PN with a p- and t-semiflow 9

Figure 2.2 Subclasses of PN 10

Figure 2.3 Example of the set of basis markings 13

Figure 2.4 Example of ι(σ) = ι(σ1) +ι(σ2) + · · ·+ ι(σn) 15

Figure 2.5 PN system used in Ex. 2.22 16

Figure 2.6 Example of the algorithm 19

Figure 2.7 The reduced net of the PN in Fig. 2.6 20

Figure 2.8 Example of PN’s with choice 21

Figure 2.9 A TPN system and a part of its SCG 24

Figure 2.10 Reduction rules on TPN 26

Figure 2.11 Inhibitor arcs and complementary places 27

Figure 2.12 An S3PR 29

Figure 2.13 An S4PR 30

Figure 4.1 (a) A TPN where ε4 is a fault transition [23].
(b) A part of the SCG starting from the initial
class α0, whose marking is m0 = p1 + 2p2. (c)
The corresponding FDG. Details of nodes are
shown in Table 4.1. 45

Figure 4.2 A system for computing FDG 47

Figure 4.3 A partial SCG and FDG of the TPN in Fig-
ure 4.2 48

Figure 4.4 A part of FDG of the TPN in Figure 4.2 49

Figure 4.5 FDG reduction rule 1 52

Figure 4.6 FDG reduction rule 2 53

Figure 4.7 FDG reduction rule 3 54

Figure 5.1 The FDG corresponding to w = t1 of TPN in
Figure 4.1(a) 59

Figure 5.2 Examples that the numbers of consistent states
in TPN and untimed PN are not comparable in
general. 62

Figure 6.1 A coordinated decentralized architecture 68

Figure 6.2 A TPN and its SCG for the computation of fir-
ing domain 70

Figure 6.3 Local FDG of local systems 71

Figure 6.4 A TPN containing two subsystems 79

Figure 6.5 Local FDGs 81

Figure 7.1 An automated manufacturing system 87

Figure 7.2 PN system of the manufacturing system in Fig-
ure 7.1 87

Figure 7.3 A part of the FDG of TPN in Figure 7.2 91

Figure 7.4 PN model of a semiconductor production sys-
tem [72] 92

Figure 7.5 A manufacturing system. 93

Figure 7.6 The local FDG G1 of Σ1 corresponds to the ob-
servation of t1. 94

x

[September 6, 2016 at 9:07 – classicthesis version 4]

List of Figures xi

Figure 7.7 The local FDG G2 of Σ2 corresponds to the ob-
servation of t2. 95

Figure 7.8 The local FDG G3 of Σ3 corresponds to the ob-
servation of t11. 96

Figure 10.1 A map with multiple robots and the correspond-
ing PN 111

Figure 10.2 Using inhibitor arcs to control a siphon 116

Figure 10.3 Using inhibitor arcs to ensure liveness 119

Figure 10.4 Arbitrarily added inhibitor arcs 120

Figure 10.5 A siphon containing places in both PR and PC 124

Figure 11.1 A 3× 3 map with two robots 132

Figure 11.2 A 10× 10 map with five robots. 137

[September 6, 2016 at 9:07 – classicthesis version 4]

L I S T O F TA B L E S

Table 2.1 State classes in Figure 2.9(b) 24

Table 4.1 State classes in Figure 4.1(b) 44

Table 4.2 Edges in the FDG in Figure 4.4 49

Table 5.1 State classes of the FDG in Figure 5.1 60

Table 5.2 Edges of the FDG in Figure 5.1 60

Table 5.3 Consistent states and markings in TPN and
untimed PN of examples in Figure 5.2 63

Table 6.1 State classes in the SCG in Figure 6.2(b) 70

Table 6.2 States in local FDGs in Figure 6.5 79

Table 6.3 Edges in local FDGs Figure 6.5 80

Table 7.1 Numerical results on centralized diagnosis 89

Table 7.2 Meanings of places and events associated with
transitions in the photo area model 99

Table 7.3 Results of some numerical simulations carried
on the system in Figure 7.4 (time unit: s=second) 100

Table 10.1 Bad siphons in the S3PR in Figure 10.1. 112

Table 10.2 Control arcs of the S3PR in Figure 10.1 115

Table 10.3 Set of bad siphons of the S3PR in Figure 10.2(a) 117

Table 10.4 Virtual siphons in the controlled S3PR in Fig-
ure 10.1 127

Table 10.5 Comparison with related works 128

Table 11.1 Summary of experiment results 139

Table 11.2 T-tests results with 95% significant level 139

xii

[September 6, 2016 at 9:07 – classicthesis version 4]

L I S T O F A L G O R I T H M S

2.1 Verification of a transition can be fired or not 22

2.2 A successor of a state class 22

2.3 Construction of full state class graph 23

4.1 Firing domain of a given firing sequence 43

4.2 Construction of FDG from an SCG 51

5.1 General centralized diagnosis algorithm 57

5.2 Centralized diagnosis on FDG 58

6.1 General decentralized diagnosis algorithm 74

6.2 Construction of local FDG using an SCG 76

6.3 Diagnosis algorithm for a coordinator 78

10.1 Transform an S3PR2 to a S4PR 123

xiii

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

Part I

I N T R O D U C T I O N A N D P E T R I N E T S

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

1
B R I E F I N T R O D U C T I O N

In this thesis, we discuss two critical problems in Discrete Event Sys-
tems (DES): fault diagnosis in Part II and collision avoidance in multiple
robots planning in Part III. They are important in many real world
systems, e.g., manufacturing systems and multiple robots systems. In
this chapter, we give a brief introduction of the two parts. More de-
tailed introductions and reviews of related works are in each part.

Let us first discuss the fault diagnosis problem given in Part II.
We consider fault behaviors as faults, where fault behaviors in DES
equals to fault events. In manufacturing systems, a fault behavior is
a potential risk. It may let the system produce mis-assembled prod-
ucts or in the worst case, crash the whole system. Therefore, a fault
diagnosis approach is important. In order to analyze a system, Time
Petri Net (TPN) is proposed, which is a widely used modeling tool in
real time system analysis. A detailed discussion on Petri net is given
in Chapter 2. We partition the set of transitions into observable and
unobservable ones. Some unobservable transitions are fault transitions
corresponding to fault behaviors. Hence, the task in Part II is to esti-
mate the firing of fault transitions by using the firings of observable
transitions.

In Part II, we investigate the problem on detection and isolation of
faults. In Part III, we focus on faults avoidance, and we consider two
types of faults: deadlock and collision. The faults are discussed in
multiple robots planning, which means multiple robots move from
source places to their destinations in a shared environment and each
robot has one or more path to follow. The shared environment is a
map partitioned into regions. In this system, deadlock means some
robot cannot reach their destinations, while we define collision as
two robots appear in a region in which only one robot is allowed.
In the solution of deadlock prevention, we propose a decentralized
control policy with real time control. The decentralized control policy
does not need any additional monitor to be implemented. In collision
avoidance, we assume no real time control is applied, while the de-
centralized deadlock control policy is in real time. The control policy
of collision avoidance consists of initial delays to each robot. The ini-
tial delay of a robot let the robot wait for a given time delay before it
moves, and when it is moving, no additional control is applied.

3

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

2
T I M E P E T R I N E T A N D S TAT E C L A S S G R A P H

This chapter introduces basic definitions, concepts and techniques
about Petri net with and without time. Petri net is a bipartite graph
containing places and transitions connected by arcs. It is a fundamen-
tal tool in many domains, e.g., transportation and manufacturing. In
Petri net without time, structural analysis is very important, in order
to avoid the state explosion problem. Structural concepts are given
with examples, and then subclasses of Petri net are defined based on
structural properties. In general cases, some properties of Petri net
system can only be verified using the reachability set, for example,
liveness. Therefore, reachability set and liveness are discussed. In or-
der to analyze timed systems, Petri nets are extended. Time Peri net,
a kind of Petri net with time, is defined such that time interval delays
are associated with transitions. We propose a state estimation algo-
rithm on timed Petri net. In the last part of this chapter, state class
graph, an abstracted reachability graph of time Petri net, is defined.
Algorithms to computing state class graph are given with an illustra-
tive example.

5

[September 6, 2016 at 9:07 – classicthesis version 4]

6 time petri net and state class graph

2.1 introduction

A model can come in many shapes, sizes and styles. It is important
to emphasize that a model is not the real world but merely a human
construct to help in better understanding of real world systems [1].
Many man made systems can naturally be modeled as Discrete Event
Systems (DES), e.g., manufacturing systems [57, 52], transportation
systems [36] and business processes [62]. A DES is an event driven
system with discrete states, where the state evolution depends on
the occurrence of discrete events [17]. DES has been applied to ap-
plications in various domains. Meanwhile, research on several dis-
ciplines, including system theory, computer science and operational
research, improves the expressibility of DES. The events can repre-
sent both regular (or normal) and faulty (or abnormal) behaviors. For
example, in a transportation system, a fault may be a car entering
into a wrong lane or a malfunction of a traffic light. It is obviously
important to ensure the safe and correct functioning of large-scale
systems. The (fault) diagnosis is the process to detect and isolate the
occurrence of faulty events. In the last decades, fault diagnosis of
DES attracts a significant attention. An introduction to the subject
and an overview can be found in [71], while more detailed results of
fault diagnosis and state estimation in both untimed and timed DES
are [47, 59, 65, 66, 67, 22, 54, 68].

Petri nets (PN) are used in this thesis to model complex systems. PN
is a DES paradigm introduced by Carl Adam Petri in his Ph.D. disser-
tation [50] in early 1960’s. Comparing with other modeling tools, PN
has some advantages [55]:

1. Its formalism let both human and computer can analyze PN
modeled systems conveniently. The mathematical formalism con-
sists of matrices, which can be integrated into classical math-
ematical analysis methods, such as Linear Programming Prob-
lems (LPP). Using the graphical representation, the systems’ fea-
tures described by PN models, including concurrency, conflict,
and synchronization, can easily be interpreted and understood
by human.

2. PN models are compact representations of DES, due to its bi-
partite structure including places as local states and transitions
meaning events. Even the state space of a system is enormous
(sometimes infinite), a compact PN system can be obtained.

3. Formalisms like automata and Markov chains use symbolic un-
structured global state, while in PN, states are distributed in
places and they are numerical. Particularly, they are vectors of
non-negative numbers.

4. Modeling in PN can be top-down or bottom-up based on the lo-
cality of places and transitions. In a bottom-up way, PN models
can be built by constructing first the models of each subsystem
and then, by composition, the global model is obtained. In order
to build a PN model using top-down method, a high level PN

[September 6, 2016 at 9:07 – classicthesis version 4]

2.2 (untimed) petri net 7

can be constructed first, and then expand places and transitions
in it to represent the details in the target system.

In this chapter, we define PN and some extensions. First, Place/-
Transition nets are defined and they are the basis of other classes
of PN. Some structure related properties and subclasses of PN are
introduced, which are widely used in the analysis of PN described
systems. After that, we define Time Petri Nets (TPN), which have the
ability to interpret timing information. TPN will be used in Part II.
Because our works in Part II uses reachability analysis of TPN, an
efficient and compact representation of the reachability space is im-
portant and is introduced in Section 2.5. Last, in Part III, we use a
subclass of PN called S3PR, which is a class of Place/Transition net.
The common notation system used in S3PR is slightly different from
the one defined in Section 2.2. Therefore, we introduction the pop-
ular notations followed by a formal definition of S3PR using these
notations.

2.2 (untimed) petri net

2.2.1 Basic concepts

Petri net [48, 58] is one of the most widely used modeling paradigm
in the field of Discrete Event Systems (DES). This section focuses on
Place/Transition (P/T) nets and its structural and behavior proper-
ties.

Definition 2.1. A Petri net (PN) is a 4-tuple N = 〈P, T ,Pre,Post〉,
where:

• P is the finite set of places,

• T is the finite set of transitions such that P ∪ T 6= ∅, P ∩ T = ∅,

• Pre,Post ∈N
|P|×|T |
>0 are the pre and post incidence matrices, where

N>0 is the set of non-negative integers.

Let p ∈ P and t ∈ T be a place and a transition, respectively. The
input places of t are indexed by Pre[·, t] (the column of Pre corre-
spondinf to t) and Post[·, t] (the column in Post corresponding to t)
denotes the indices of the output places of t.

Definition 2.2. Let N be a PN. The support set of a place vector−→u ∈N
|P|
>0
∗

is ||−→u || = {p|p ∈ P,−→u [p] > 0}, and the support set of a transition vector
−→v ∈N

|T |
>0 is ||−→v || = {t|t ∈ T ,−→v [t] > 0}.

The input nodes of t (p) are •t = ||Pre[·, t]|| (•p = ||Post[p, ·]||) and
the output nodes of t (p) are t• = ||Post[·, t]|| (p• = ||Pre[p, ·]||). Let
X ⊆ P ∪ T , •X =

⋃
n∈x

•n and X• =
⋃
n∈X n

•.

Definition 2.3. A Petri net system (PNs) is a pair 〈N,m0〉, where:

∗ The vector −→u is also written as
∑
p∈P,−→u [p]>0

−→u [p]p

[September 6, 2016 at 9:07 – classicthesis version 4]

8 time petri net and state class graph

• N is a PN,

• m0 ∈N
|P|
>0 is the initial marking.

The state of a PNs is a marking representing the number of tokens
in each place. The initial marking is the initial state of the system. The
firings of transitions denotes the evolution of a PNs. A transition can
be fired if it is enabled at a marking.

Definition 2.4. Let N be a PN andm is a marking of N. A transition t ∈ T
is enabled at the marking m if m > Pre[·, t] and denoted as m[t〉.

The marking m enables t when ∀p ∈ •t, m[p] > Pre[p, t]. Firing
t at m generates a new marking m ′ and denoted as m[t〉m ′. The
state equation computes m ′ from m such that m ′ = m − Pre[·, t] +
Post[·, t].

A marking m ′ is reachable from m by firing a sequence of tran-
sitions σ = ti1ti2 · · · tin ∈ T∗, where tij ∈ T , j = 1, 2, . . . ,n and
T∗ is the Kleene closure of T , is written as m[σ〉m ′ and σ is a fir-
ing sequence. When m[σ〉m ′, the fundamental state equation becomes
m ′ =m−Pre · −→σ +Post · −→σ , where firing count vector −→σ counts how
many times each transition in σ is fired.

An inhibitor arc connects a place to a transition. It disables the tran-
sition when the place has at least one token, while it enables the
transition when the place has no token and the normal input places
satisfy the classical enabling rule. We use •X and X•, X ⊆ P ∪ T to
denote the presets and postsets of X according to the normal arcs, re-
spectively. For example, •t = {p|(p, t) ∈ F} and p• = {t|(p, t) ∈ F}. An
inhibitor arc starting from a bounded place can be transformed into
a self-loop on its complementary place, which represents its capacity.

2.2.2 Structural concepts

PN has some structural objects and properties benefiting both model-
ing and analysis. The first one is semiflow. Right ((Post−Pre) ·x) and
left (yT · (Post−Pre)) natural annullers of the token flow matrix are
t- and p-semiflows, respectively. A semifloww is minimal if not exists
w ′ is a semiflow such that ||w ′|| ⊂ ||w||. A PN is conservative if ∃y > 0
such that yT · (Post−Pre) = 0. If ∃x > 0, (Post−Pre) · x = 0, then
the net is consistent.

Given p-semiflow y, two related but different notions are:

• conservation laws: the equation yT ·m0 = yT ·m hold for any
arbitrary initial marking m0 and every reachable marking m
from m0.

• conservative component: ||y||, a set of places in the net conserving
its weighted token content (the part of the net is noted as Ny.

T-semiflows identify potential cyclic behaviors. For example, let
x 0, (Post− Pre) · x = 0. If x is fireable from a marking m, then
m

σ−→m, where the firing count vector of σ is x.

[September 6, 2016 at 9:07 – classicthesis version 4]

2.2 (untimed) petri net 9

p1

p2

t1

p3

t2

t3

2

Figure 2.1: A PN has a p-semiflow and a t-semiflow.

Example 2.5. Consider the PN in Figure 2.1 in which the initial marking is
m0 = 2p1, the weight of the arc from t3 to p1 is 2 and weights of other arcs
are 1. The PN has a p-semiflow y = [1 1 1]T and ||y|| = {p1,p2,p3}. For
any reachable marking fromm0, there ism[p1] +m[p2] +m[p3] =m0[p1]

+m0[p2] +m0[p3]. The PN has also a t-semiflow x = [1 1 1]T meaning
that if every transition is fired once at a marking, then the system returns to
that marking.

Second, siphons and traps are interesting structural concepts. A set
of place S ⊆ P is a siphon if •S ⊆ S•. While a trap Θ ⊆ P satisfies
Θ• ⊆ •Θ. A net system 〈N,m0〉 is deadlock-free if ∀m ∈ R(N,m0), ∃t ∈
T such that m[t〉. A transition t is live if ∀m ∈ R(N,m0), ∃m ′ ∈
R(N,m) so that m ′[t〉. A net system is live if every transition is live.
We say that a transition t is dead for a reachable marking m if @m ′ ∈
R(N,m), so that m ′[t〉. Notice that a transition is live if it is not dead
for every reachable marking. A P-semiflow y is a P-indexed vector so
that ∀p ∈ P, y[p] ∈ N>0. The support of a P-indexed vector y is the
set ||y|| = {p ∈ P|y[p] 6= 0}. A P-semiflow y is minimal if there does
not exist another P-semiflow y ′ such that y ′ � y. The support of a
marking m is ||m|| = {p ∈ P|m[p] > 0}. A place whose removal does
not affect the behavior (here the set of fireable sequences) of the net
system is called an implicit place.

2.2.3 Subclasses of PN

Structural constrains classify subclasses in PN. Some subclasses are
defined below:

• Ordinary PN are PN whose arc weights are 1, i.e., Pre,Post
∈ {0, 1}|P|×|T |.

• State machines (SM) are ordinary PN in which each transition
has only one input and one output transitions, i.e., ∀t ∈ T , |•t| =
|t•| = 1.

• Marked graphs (MG) are ordinary PN in which each place has
only one input place and one output place, i.e., ∀p ∈ P, |•p| =
|p•| = 1.

[September 6, 2016 at 9:07 – classicthesis version 4]

10 time petri net and state class graph

general

ordinary free choice

state

machine

marked
graph

pure

Figure 2.2: Subclasses of PN

• Join free (JF) nets are PN in which each transition has at most
one input place, i.e., ∀t ∈ T , |•t| 6 1.

• Choice free (CF) nets are PNs in which each place has at most
one output transition, i.e., ∀p ∈ P, |p•| 6 1.

• Free choice (FC) nets are ordinary PNs in which conflicts are
always equal, i.e., ∀t, t ′ ∈ T , if •t∩ •t ′ 6= ∅, then •t = •t ′.

• Pure nets have no self-loop. The incidence matrix of a pure net is
C = Post−Pre.

The graph in Figure 2.2 summaries these subclasses.

2.2.4 Reachability and behavioral concepts

The reachability space or (reachability set) of a PN system 〈N,m0〉 con-
tains markings reachable from m0.

Definition 2.6. Let N be a PN and m be a marking of PN. The set of
reachable markings of m is R(N,m) such that ∀m ′ ∈ R(N,m), ∃σ ∈
T+, m[σ〉m ′.

Definition 2.7. Let 〈N,m0〉 be a PN system. Its reachability set is R(N,m0).

Using the notation of reachable markings, some concepts related to
the reachability set is defined.

Definition 2.8. Let 〈N,m0〉 be a PN system.

• A place p ∈ P is bounded if ∃b ∈N, ∀m ∈ R(N,m0), m[p] 6 b.

• The PN system is bounded if ∀p ∈ P, p is bounded.

Definition 2.9. Let 〈N,m0〉 be a PN system. It is live if ∀t ∈ T and
∀m ∈ R(N,m0), ∃m ′ ∈ R(N,m) such that m ′[t〉.

[September 6, 2016 at 9:07 – classicthesis version 4]

2.3 petri net with time 11

If a siphon is emptied, no token can enter in it and transitions that
have input places in the siphon are dead. Chapter 10 discusses how
to avoid deadlocks by controlling siphons in some classes of PN.

Definition 2.10. Let 〈N,m0〉 be a PN system. A marking mh is a home
state if ∀m ∈ R(N,m0), mh ∈ R(N,m).

A PN system 〈N,m0〉 is reversible if m0 is a home state.

2.3 petri net with time

2.3.1 Motivation

Place/Transition net has been introduced in the previous section for
analyzing logical properties of DES. However, its usage is limited
due to lacking the ability to describe time durations of the occurrence
of events (activities) in a system. P/T net has constrained use in the
fields of bottleneck identification, resource optimization, computation
of the execution time of a given process, and so on. In this section, a
kind of Petri net with time is introduced with the computation of its
abstracted state space.

2.3.2 Time Petri net

An extension of a P/T net via associating time interval delays is pre-
sented in [46]. This approach uses transitions with time interval de-
lays to address the idea of modeling the duration of activities of a
system. This type of PN with time is called Time Petri Net (TPN).

Definition 2.11. A Time Petri Net is a pair Nt = 〈N, I〉, where:

• N = 〈P, T ,Pre,Post〉 is a P/T net defined in Definition 2.1,

• I : T → Q>0 × (Q>0{∞}) is the time function associating a time in-
terval with each transition and Q>0 is the set of non-negative rational
numbers.

Definition 2.12. A TPN system is a triple 〈N, I,m0〉, where:

• N and I is a TPN in Definition 2.11,

• m0 ∈N|P| is the initial marking.

The enabling rule of transitions is the same in the TPN Nt = 〈N, I〉
as in the corresponding PN N. Let the time interval associated with
t be I(t) = [l,u]. The interval means that the duration of the activity
represented by t is from l to u. When the activity can occur, it needs
at least l time units to finish, and it will (must) finish within u time
units. In the TPN, the corresponding firing rules are that when t is
enabled in the P/T net:

• it cannot fire earlier than l time units;

• it can fire between l and u time units;

[September 6, 2016 at 9:07 – classicthesis version 4]

12 time petri net and state class graph

• it must fire if u time units have been reached.

This and all following chapters use single server semantics mean-
ing that a transition cannot be enabled simultaneously more than
once.

Definition 2.13. A timed PN is a triple 〈N,θ,m0〉, where N is a PN and
θ ∈ R

|T |
>0 is the time vector that associates to each transition tj a consistent

time delay, θj = θ[tj].

2.3.3 TPN with unobservable transitions

The set of transitions T is partitioned into two: T = To ∪ Tu, To ∩ Tu =

∅, where To is the set of observable transitions, whose firing can be
detected by an external observer, and Tu is the set of unobservable
transitions. The firing sequence σo is an observable one, if for all t ∈
σo, then t ∈ To; σu is an unobservable firing sequence, if for all t ∈ σu,
then t ∈ Tu. An observation function λ : σ → T∗o extracts a sequence
of observable transitions λ(σ) from σ. Let σ = σu1σo1σu2σo2 · · ·σun,
then λ(σ) = σo1σo2 · · ·σon−1. In figures, observable transitions are
represented by white rectangles, while unobservable ones are black
rectangles. The length of σ is |σ| meaning the number of transitions
in σ.

Definition 2.14. The unobservable subnet of a TPN 〈N = 〈P, T , Pre,Post
〉, I〉 is 〈Nu = 〈P, Tu, Preu, Postu〉, Iu〉, where:

1. P is the set of places;

2. Tu is the set of unobservable transitions of N;

3. Preu and Postu are pre and post incidence matrices restricted to Tu;

4. Iu : Tu → Q0 ×Q0 ∪ {∞}.

�

2.4 state estimation of timed petri nets

2.4.1 Basis marking in timed Petri nets

We present an on-line algorithm for state estimation of timed choice-
free Petri nets. We assume that the net structure and initial marking
are known, and that the transitions is composed by observable and
unobservable transitions. The proposed algorithm works on-line as
three steps. First, it waits for an observation, which is the firing of an
observable transition, and computes possible markings, which con-
struct the set of basis markings. Second, the set of time equations is
updated from the set of basis markings and reduced by removing
inconsistent equations. Third, the set of basis markings is reduced
according to the reducing process of the set of time equations. The
extension of the algorithm to general nets is discussed.

We make the following assumptions:

[September 6, 2016 at 9:07 – classicthesis version 4]

2.4 state estimation of timed petri nets 13

(A1) The initial marking and net structure are known.

(A2) The Tu-induced subnet is acyclic.

(A3) The time durations of observable transitions are known, while
the time durations of unobservable transitions are unknown.

Even if the initial marking is known, because of the partial obser-
vation, the state of timed PN’s cannot be determined by observation.
To characterize the possible set of markings we use a subset of it,
which is called the set of basis markings. Knowing this set of basis
markings, the consistent markings, which are the possible markings
in which the net system can be obtained by simply firing the unob-
servable transitions from the basis markings.

Definition 2.15. ([28]) Given a marking m and an observable transition
t ∈ To, we define the set of explanations of t at m as

Σ(m, t) = {σ ∈ T∗u|m[σ〉m ′,m ′ > Pre[·, t]}.

The set of minimal explanations of t at m as

Σmin(m, t) = { σ ∈ Σ(m, t)|@σ ′ ∈ Σ(m, t) : σ ′ � σ},

where σ ′ � σ means that for each transition t, there is σ ′[t] < σ[t].

In the following, the set of basis markings without time is intro-
duced. The set of basis markings of observation w is Mb(w) and
denotes the possible markings according to w.

Definition 2.16. The set of basis markings of observation w = vt is defined
as:

Mb(w) = {m ∈N
|P|
>0|∀m

′ ∈Mb(v) : ∀σ ∈ Σmin(m ′, t),
m ′[σt〉m},

while Mb(ε) = {m0} for empty word ε.

p2 p3 p4p1 ε3ε2 t1

Figure 2.3: Example of the set of basis markings

Example 2.17. Let us consider the PN’s in Fig. 2.3 withm0 = [1, 1, 0, 0]T .
The unobservable transitions are ε2 and ε3, while the observable transition
is t1. Assume t1 has been observed.

The set of basis markings with no observation is Mb(ε) = {m0}. When
t1 is observed, the set of explanations is Σ(m0,w) = {σ1 = ε3,σ2 = ε2ε3}
and the set of minimal explanations is Σmin(m0,w) = {σ1}. By firing σ1t1,
the marking m1 = [1, 0, 0, 1]T is obtained and the new set of basis marking
is Mb(t1) = {m1}.

[September 6, 2016 at 9:07 – classicthesis version 4]

14 time petri net and state class graph

For a marking m in the set of basis markings, there is σ such that
m0[σ〉m. The sequence σ is composed by the observable transitions
and unobservable firing sequences, which are minimal explanations.
In order to represent the firing sequences that drive the marking from
m0 to m, based on the set of minimal explanation, we present the set
of minimal firing sequences.

Definition 2.18. Given a markingm and an observation word w = ti1 ti2
· · · ti,n−1 tin, we define the set of firing sequences to reach m, consistent
with w as:

Γ(m,w) = {σ ∈ T∗|σ = σu1 ti1σ
u
2 ti2 · · · ti,n−1σun,

m0[σtin〉m}.

Based on Γ(m,w), we define the set of minimal firing sequences Γmin
(m, w) as

Γmin(m,w) = {σ ∈ Γ(m,w)|∀σu ∈ σ,σu is a

minimal explanation.}

Definition 2.19. The set of basis markings at time τ of a timed Petri net
can be easily defined as

Mb(w, τ) = {m ∈Mb(w)|∃σ ∈ Γmin(m,w),σ = σ ′t,

λ(σt) = w, t is observed at τ.}

2.4.2 Time Duration of Firing Sequence

In order to estimate the state of a timed PN, it is important to know
the time duration of a firing sequence. In this section, we define and
analyze such time duration.

Let us consider a firing sequence σ = t1t2 · · · tn. The time duration
of σ is denoted by ι(σ) and it is defined as the time duration from the
enabling of t1 to the firing of tn:

ι(σ) = τn − (τ1 − θ1). (2.1)

Proposition 2.20. Let σ = t1t2 · · · tn. The following two conditions are
satisfied:

•

max{θ1, . . . , θn} 6 ι(σ) 6
n∑
i=1

θi. (2.2)

• If one and only one transition from σ is enabled at each time instant,
then

ι(σ) =

n∑
i=1

θi (2.3)

[September 6, 2016 at 9:07 – classicthesis version 4]

2.4 state estimation of timed petri nets 15

Proof. If there exists overlapping of time durations, the time duration of the
firing sequence is less than the sum of the time durations of all transitions
(2.2). If there is no overlapping, then (2.3) holds. �

The previous proposition can be generalized to sequences that can
be partitioned into subsequences. For example, if σ = σ1σ2 · · ·σn and
at each time moment, the enabled transitions belong to one and only
one subsequence σi, then:

ι(σ) = ι(σ1) + ι(σ2) + · · ·+ ι(σn). (2.4)

p8

p6

t6p7

p5 t5

p1

p3

t2p2

t1

p4t3

t4
t7

p9

Figure 2.4: Example of ι(σ) = ι(σ1) +ι(σ2) + · · ·+ ι(σn)

Example 2.21. Let us consider the PN in Fig. 2.4 with m0 = p1 and
θ = [1, 2, 3, 1, 2, 3, 1]T . Since it is a deterministic PN, the following ob-
served word is obtained w = t1t2t3t4t5t6t7 at the following time instants
1, 3, 4, 5, 7, 8, 9.

Let us writew asw = σ = σ1σ2σ3σ4σ5, with σ1 = t1,σ2 = t2t3,σ3 =
t4,σ4 = t5t6,σ5 = t7. According to (2.1), the time durations are ι(σ) =

9, ι(σ1) = 1, ι(σ2) = 3, ι(σ3) = 1, ι(σ4) = 3, ι(σ5) = 1. Since the condi-
tion in(2.4) is satisfied,

ι(σ) = ι(σ1) + ι(σ2) + ι(σ3) + ι(σ4) + ι(σ5)

= 1+ 3+ 1+ 3+ 1 = 9.

2.4.3 State estimation of choice-free nets

The state estimation mainly includes three steps: 1. the set of basis
markings is computed without considering time; 2. the set of time
equations is obtained; 3. the set of basis markings is reduced based
on the time information. Comparing with the basis marking, our state
estimation algorithm takes time information into account. Moreover,
it is appliable to choice-free nets, while the basis marking approach
on untimed PN can be used on a wider range of PN.

2.4.3.1 Compute Mb(wtj, τj)

The set of basis markings at time τ = 0 is Mb(ε, 0) = {m0}. Let us
assume that the current set of basis markings at time τ is Mb(w, τ),
where w is the actual observation. When the firing of a new tran-
sition tj is observed at time τj, the following operations should be
performed in order to compute Mb(wtj, τj).

[September 6, 2016 at 9:07 – classicthesis version 4]

16 time petri net and state class graph

1. Let Mb(wtj, τj) = ∅,

2. For each m ∈Mb(w, τ),

a) compute Σmin(m, tj),

b) let M ′ = {m ′|m[σtj〉m ′,σ ∈ Σmin(m, tj)},

c) let Mb(wtj, τj) = Mb(wtj, τj)∪M ′.

For each basis marking m of the previous set, the set of minimal
explanations is computed in Σmin(m, tj). Then, when tj is observed
after the firing of the minimal explanations of Σmin(m, tj) from m,
the new set of basic markings is obtained.

p3

p4 p5

p2

p1 ε3

ε4

ε2

t1

Figure 2.5: PN system used in Ex. 2.22

Example 2.22. Let us consider the PN’s in Fig. 2.5 with θ1 = 1 andm0 =
[1, 1, 1, 0, 0]T . The set of minimal firing sequences for the empty word is
Γmin(m0, ε) = ∅, and the set of basis marking at time 0 is Mb(ε, 0) =

{m0}.
If w = t1 is observed at time 4, Mb(t1, 4) is computed as follows.

• Mb(t1, 4) = ∅.

• Σmin(m0, t1) = {ε3, ε4}.

• M ′ = {m1 = [1, 0, 1, 0, 1]T ,m2 = [1, 1, 0, 0, 1]T }, wherem0[ε4t1〉m1,
m0[ε3t1〉m2.

• Mb(t1, 4) = {m1,m2}.

The sets of minimal firing sequences are Γmin (m1, w) = {ε4 t1}, Γmin
(m2,w) = {ε3 t1}. Observe that the set of basis markings is simply obtained
from m0 firing w = t1 and all those unobservable transitions that are
strictly necessary to enable it.

2.4.3.2 Obtain the set of time equations

The set of basis markings in the previous section is computed without
considering any time notion. Assuming that the time durations asso-
ciated to the unobservable transitions are not known, in this section
we provide a procedure to obtain a set of equations to characterize all
possible time durations associated to these unobservable transitions.
It will be shown also how this set of time equations can be used to

[September 6, 2016 at 9:07 – classicthesis version 4]

2.4 state estimation of timed petri nets 17

remove those time-inconsistent markings from the set of basis mark-
ings.

Let us assume that the time instant at which tj was observed is τj,
while the current set of basis markings is Mb(wtj, τj). To each set of
basis markings we associate a set of time equations. These equations are
obtained as the union of different equations. Let Γ = ∪m∈Mb(wtj,τj)
Γmin (m,wtj) be the set of all minimal firing sequences of all basis
markings. The following time equation is obtained:

min{ι(Γ)} = τj

where, ι(Γ) is the set of time durations of each sequence in Γ .

Example 2.23. In Example 2.22, the set of basis markings at time 4 has
been computed. The set of minimal firing sequences is Γmin (m1, t1) = {ε4
t1} and Γmin (m2, t1) = {ε3 t1}. Therefore, Γ = {ε3t1, ε4t1} and the time
equation is:

o4 = min{ι(ε3t1), ι(ε4t1)} = 4

This has the following interpretation: because t1 has been fired at 4 and
since for its firing, ε3 or ε4 should fire the firing delay of at least one of the
following sequences ε3t1 and ε4t1 should be 4.

If t1 is observed again at time 6, the sets of minimal explanations are

Σmin(m1, t1) = {ε3}, Σmin(m2, t1) = {ε4, ε2ε3}.

implying
Γmin(m1, t1) = {ε4t1ε3t1}

and
Γmin(m2, t1) = {ε3t1ε4t1, ε3t1ε2ε3t1}

corresponding to the set of basis markings:

Mb(t1t1, 6) = {m3 = [1, 0, 0, 0, 2]T ,m4 = [0, 1, 0, 0, 2]T }.

while the corresponding time equation is

o6 = min {ι(ε4t1ε3t1), ι(ε3t1ε4t1), ι(ε3t1ε2ε3t1)} = 6.

Let us analyze the time durations of the sequences in o6. First of all,
according to the definition of the time duration of a sequence, ι(ε4t1ε3t1)
and ι(ε3t1ε4t1) provides the same information. Because both of ε3t1 and
ε4t1 are enabled at time 0 (the initial time), the one with the shorter time
duration is fired first, and then the another one is fired. The time durations
of the two firing sequence are same, which is

max{min{θ3, θ4}+ θ1,max{θ3, θ4}}+ θ1

Hence one of this sequence can be removed from o6. Removing for example
the second one, we obtain:

o6 = min {ι(ε4t1ε3t1), ι(ε3t1ε2ε3t1)} = 6.

[September 6, 2016 at 9:07 – classicthesis version 4]

18 time petri net and state class graph

According to o4, θ3 > 4− θ1 = 3. We will show that in o6, ι(ε3t1 ε2
ε3 t1) > 6, meaning that it is never the one that gives the minimum and
can be removed:

ι(ε3t1ε2ε3t1) > θ3 + θ3 + θ1 = 2θ3 + θ1 > 7

Therefore, ε3t1ε2ε3t1 is inconsistent with the time information. It can be
deleted from o6, so,

o6 = ι(ε4t1ε3t1) = 6.

and the corresponding basis marking should be removed, i.e.,

Mb(t1t1, 6) = {m3 = [1, 0, 0, 0, 2]T }.

As it was illustrated by the previous example, some basis markings
are time-inconsistent with the observation. On the other hand, some
time equations that are obtained can be redundant.

The idea to reduce the time duration ι(σj) from oj according to
O is in three steps: First, divide σj into subsequences according to
the condition of (2.4), that is, let σ ′j is a subsequence, there is ι(σj) =∑
ι(σ ′j); Second, find σo,j from O that σo,j is a subsequence of σ ′j.

Based on (2.4), there is ι(σ ′j) > ι(σo,j). Last, we can get that the time
duration of σj is greater or equal than the sum of time durations of
all σo,j. If the latter one is greater than τj, which is the time instant
when oj is computed, ι(σj) should be removed from oj.

Proposition 2.24. Let O be the current set of time equations that

O =

min{ι(σ1,1), ι(σ1,2), . . . , ι(σ1,k1)} = τ1,

min{ι(σ2,1), ι(σ2,2), . . . , ι(σ2,k2)} = τ2,
...

min{ι(σq,1), ι(σq,2), . . . , ι(σq,kq)} = τq,

while oj is the one obtained at time τj that

oj : min{ι(σj,1), ι(σj,2), . . . , ι(σj,kj)} = τj.

and q,kq, j ∈N>0.
Let ι(σj) ∈ {ι(σj,1), ι(σj,2), . . . , ι(σj,kj)}. If ι(σj) can be represented as

ι(σj) >
q∑
i=1

ki∑
r=1

ai,rι(σi,r),

where ai,r > 0, i = 1, 2, . . . ,q, r = 1, . . . ,ki, that
∑q
i=1

∑ki
r=1 ai,rι(σi,r) >

τj − θj, then ι(σj) should be removed from oj.

If the condition of Prop. 2.24 is satisfied, ι(σj)is greater than τj− θj
and it is not consistent with the observation, i.e., if the observation is
derived from σj, then the time of the observation should be greater
than τj.

Proposition 2.25. When the set of time equations keeps the same infinitely,
it holds that

[September 6, 2016 at 9:07 – classicthesis version 4]

2.4 state estimation of timed petri nets 19

p3

p7

p2

p6p5 p1t5

ε3

t1

ε7

ε6

ε2

ε4p4

Figure 2.6: Example of the algorithm

1. all observable transitions have been observed,

2. all firing sequences in the set of time equations are periodical.

The proposition above gives two necessary conditions of the time
that the set of time equations stops updating. The set of time equa-
tions stops updating means that there is no new information to up-
date the set. For the first condition, if these exists observable transi-
tions that have not been observed, then there exists new observation
to update the set of time equations; For the second condition, if there
exists transitions that are not periodical, then there may exists new
firing sequences for updating the set of time equations.

2.4.4 Algorithm for estimating the state

In this section, we present an algorithm to estimate the state of timed
PN’s with unobservable transitions. After observing the firing of an
observable transition, there are four steps to estimate the state:

1 Compute the set of basis markings Mb(wtj, τj) based on current
observation tj at τj.

2 Compute the time equation oτj according to the set of basis mark-
ings Mb(wtj, τj).

3 Reduce the time equation oτj based on Prop. 2.24 according to O.

4 Reduce the set of basis markings Mb(wtj, τj) according to the re-
duced set of time equations O.

Example 2.26. For the PN in Fig. 2.6 with observable transitions t1 and
t5, θ1 = θ5 = 1, and the initial marking m0 = [1, 0, 0, 0, 0, 0, 0]T .

The PN model in Fig. 2.6 can be reduced to the net in Fig. 2.7. The
initial marking of the reduced net is m0 = [p12,p3,p4,p5,p6,p7]T =

[1, 0, 0, 0, 0, 0]T .
We observe t1 at 5, 9 and t5 at 10.
At time 0, the set of basis markings Mb(ε, 0) = {m0} and the set of time

equations O = ∅.
At time 6, t1 is observed, i.e., w6 = t1. The set of minimal explana-

tions Σmin = (m0, t1) = {σ1 = ε23ε6,σ2 = ε23ε4}. By firing σ1t1

[September 6, 2016 at 9:07 – classicthesis version 4]

20 time petri net and state class graph

p3

p6 p12

ε23

t1

ε4

ε6

p7

p5t5

ε7 p4

Figure 2.7: The reduced net of the PN in Fig. 2.6

and σ2t1, the set of basis markings is obtained, Mb(w6, 6) = {m1 =

[1, 2, 0, 0, 0, 0]T ,m2 = [1, 0, 1, 1, 0, 0]T , and the sets of minimal firing se-
quences are Γmin(m1,w6) = {σ1t1}, Γmin(m2,w6) = {σ2t1}. The time
equation at time 6 is min{ι(σ1t1), ι(σ2t1)} = 6, and the set of time equa-
tions is obtained as O = {min{ι(σ1t1), ι(σ2t1)} = 6}.

At time 9, t1 is observed, i.e., w9 = t1t1. The sets of minimal explana-
tions are

Σmin(m1, t1) = {σ1, ε4},

Σmin(m2, t1) = {σ2, ε6}.

Firing σ1t1 and ε4t1 at m1, we get m3 = [1, 4, 0, 0, 0, 0]T , m4 =

[2, 1, 1, 0, 0, 0]T , respectively; Firing σ2t1 and ε6t1 at m2, the markings
are m4 and m5 = [1, 0, 2, 2, 0, 0]T , respectively. The set of basis markings
at time 9 is obtained as Mb(w9, 9) = {m3,m4,m5} and the sets of minimal
firing sequences are

Γmin(m3,w9) = {σ3 = σ1t1σ1t1},

Γmin(m4,w9) = {σ4 = σ1t1ε4t1,σ6 = σ2t1ε6t1},

Γmin(m5,w9) = {σ5 = σ2t1σ2t1}.

From the sets of minimal firing sequences, we obtain the time equation at
time 9:

o9 : min{ι(σ3), ι(σ4), ι(σ5), ι(σ6)} = 9.

The firing sequence σ3 and σ5 satisfy Prop. 2.24, and there is

ι(σ3) > 2× ι(σ1) + θ1, ι(σ5) > 2× ι(σ2) + θ1.

From O, we have ι(σ3) > 6− 1 = 5 and ι(σ3) > 6− 1 = 5. It means that
ι(σ3) > 11, ι(σ5) > 11 (according to O), which are not consistent with the
observation, then o9 is reduced to o9 : min{ι(σ4), ι(σ6)} = 8. The set of
time equations is

O =

{
min{ι(σ1t1), ι(σ2t1)} = 6,

min{ι(σ4), ι(σ6)} = 9.

}

The set of basis markings is reduced to Mb(w9, 9) = {m4}.
At time 10, t5 is observed, i.e., w10 = t1t1t5. The set of minimal expla-

nations Σmin = (m4, t5) = {ε7}. Firing ε7t5, the set of basis markings

[September 6, 2016 at 9:07 – classicthesis version 4]

2.5 state class graph 21

p2

t1

ε5ε4

ε3ε2

p3

p4p1

Figure 2.8: Example of PN’s with choice

Mb(w10, 10) = {m6 = [2, 1, 0, 1, 0, 0]T }, and the set of minimal firing
sequences is Γmin(m6,w10) = {σ7 = σ4ε7t5,σ8 = σ6ε7t5}. The time
equation obtained at time 10 is o10 : min{ι(σ7), ι(σ8)} = 10. The set of
time equations is

O =

min{ι(σ1t1), ι(σ2t1)} = 6,

min{ι(σ4), ι(σ6)} = 9,

min{ι(σ7), ι(σ8)} = 10.

2.4.5 Discussion

The min operation cannot be applied to PN’s with choices. Let us
consider the PN’s in Fig. 2.8 with immediate transitions ε2 and ε4,
θ1 = 1, θ2 = θ4 = 0, and initial marking m0 = [1, 0, 0, 0]T . Assume t1
is observed at time 4. It means that one of ι(ε2ε3) and ι(ε4ε5) is 4, and
another one can be greater or less than 4 or equal to 4. It means that
we cannot say the minimal one of ι(ε2ε3) and ι(ε4ε5) is 4. Therefore,
min{ι(ε2ε3), ι(ε4ε5)} = 4 cannot be applied.

To apply the algorithm to general nets with choices, we can treat
each choice separately, i.e., enumerate all possible combinations of
firing sequences. It is similar with the state estimation of the untimed
PN’s.

2.5 state class graph

2.5.1 State class graph and its construction

Because time is continuous, the reachability graph of a TPN may con-
tain an infinite number of states. In order to cope with this problem,
the State Class Graph (SCG) has been proposed [10]. The State Class
Graph (SCG) is an abstracted reachability graph of TPN. In order to
compute SCG, we recall the algorithms in [33], in which the reduced
SCG (a compact representation of the SCG for model checking) is
computed based on the SCG.

Because time in TPN is continuous, in general the reachability graph
of a TPN is infinite. In order to cope with this problem, the states in
the reachability graph of a TPN are partitioned into regions called
state classes. A state class is a pair α = 〈m, F〉, where m is a reachable

[September 6, 2016 at 9:07 – classicthesis version 4]

22 time petri net and state class graph

marking and F is a conjunction of inequalities representing the (time)
firing domains, i.e., the possible firing delays of transitions. If tj is
an enabled transition at m and it can be fired after l time units and
must be fired before u time units, then there exists an inequality of
the form l 6 xj 6 u in F, where xj is the time delay in which tj can
be fired at m.

The state class α = 〈m, F〉 is a partition in the reachability set of the
TPN. It represnets the states that:

• the markings of the states are m,

• the transitions enabled at m can be fired in the firing domain
described by F.

In this way, the infinite reachability set is partitioned into finite num-
ber of subsets/partitions.

For the computation of the SCG, the following two functions are
required (for details, see [33]):

1. isFireable(α, tj) (see Algorithm 2.1) returns true if tj can be fired
at α. In the algorithm, the set of enabled transitions at m is
denoted by En(m) = {tj|m > Pre[·, tj]}.

2. succ(α, tj) (see Algorithm 2.2) computes the successor of α by
firing tj.

Algorithm 2.1 [33] isFireable(α = 〈m, F〉, tj)
1: if tj 6∈ En(m) then
2: return false
3: end if
4: let F ′ := F∧ (

∧
tk∈En(m)\{tj}

xj 6 xk)
5: if F ′ is consistent then . exists a solution of F ′

6: return true
7: else
8: return false
9: end if

Algorithm 2.2 [33] succ(α = 〈m, F〉, tj)
1: m ′ :=m−Pre[·, tj] +Post[·, tj]
2: F ′ := F∧ (

∧
tk∈En(m)\{tj}

xj 6 xk)
3: replace in F ′ each variable xk 6= xj by xk + xj
4: eliminate by substitution in F ′, xj and all variables associated with

transitions conflicting with tj at m
5: for each newly enabled transition tk at m ′ do
6: add xk ∈ I(tk) to F ′

7: end for
8: return α ′ := 〈m ′, F ′〉

Definition 2.27. [33] A state class graph is a triple SCG = 〈Ω,�,α0〉,
where:

[September 6, 2016 at 9:07 – classicthesis version 4]

2.5 state class graph 23

1. α0 = 〈m0, F0〉 is the initial state class;

2. �= {〈α, t,α ′〉| isFireable(α, t) = true,α ′ = succ(α, t)} is the set of
edges;

3. Ω = {α|α0 �∗ α} is the set of nodes (reachable state classes), where
�∗ is the reflexive and transitive closure of�.

Algorithm 2.3 computes the state class graph. This algorithm im-
plements two additional steps (steps 12 and 13) comparing with the
original version in [33], because, without them, some edges could be
omitted. The SCG is returned as a tuple 〈Ω,�,α0〉, where Ω is the
set of nodes (reachable state classes), � is the set of edges in SCG,
and α0 is the initial node (initial state class). An edge 〈α, t,α ′〉 be-
longs to �, if t is fireable at α and α ′ is obtained by firing t at α.
The set W keeps state classes that are not explored yet. For a newly
computed state class α ′, if it has not been explored, it is added to W
(step 10) and the edge 〈α, t,α ′〉 is inserted into �. Considering the
edge 〈α, t,α ′〉, if α ′ exists in Ω, but the edge does not exist in�, then
the edge will be added into �, while α ′ is not inserted in Ω or W
(steps 12 and 13).

Algorithm 2.3 〈Ω,�,α0〉 = SCG(N,m0)

1: α0 := 〈m0, F0〉
2: Ω := {α0}

3: �:= ∅
4: W := {α0}

5: while W 6= ∅ do
6: get and remove α := 〈m, F〉 from W

7: for each t ∈ En(m) s.t. isFireable(α, t) do
8: α ′ := succ(α, t)
9: if α ′ 6∈ Ω then

10: add α ′ to Ω and to W
11: add 〈α, t,α ′〉 to�
12: else if 〈α, t,α ′〉 6∈� then
13: add 〈α, t,α ′〉 to�
14: end if
15: end for
16: end while
17: return 〈Ω,�,α0〉

Example 2.28. Let us consider the TPN in Figure 2.9(a) with the initial
markingm0 = p1 + 2p2†. The initial state is α0 whose marking ism0 and
its firing domain is F0 = (1 6 x1 6 4)∧ (2 6 x2 6 3)∧ (1 6 x3 6 4).
Three transitions are enabled at α0 and let us assume, for example, that t1
will be fired first. In order to check if t1 is fireable or not before all other
enabled transitions, Algorithm 2.1 adds the following constraints to F: x1 6
x2 and x1 6 x3 obtaining F ′.

† We use p1 + 2p2 to represent the marking where there are one token in p1 and two
tokens in p2.

[September 6, 2016 at 9:07 – classicthesis version 4]

24 time petri net and state class graph

p1

p2 p5

p4

p3

p6

p7

t1

t3

t5

t4 t6

t7

t2
[1, 4]

[2, 3]

[1, 4]

[2, 5]

[3, 5]

[1, 1]

[2, 4]

α0

α1

α2

α3

t1

t2

t3

(a)

(b)

Figure 2.9: (a) A TPN where ε4 is a fault transition [23]. (b) A part of the
SCG starting from the inital class α0, whose marking is m0 =

p1 + 2p2. Details of nodes are shown in Table 2.1.

Table 2.1: State classes in Figure 2.9(b)

state class marking firing domain

α0 p1 + 2p2 (1 6 x1 6 4) ∧ (2 6 x2 6 3) ∧ (1 6
x3 6 4)

α1 p1 + p2 + p5 (1 6 x1 6 4)∧ (0 6 x2 6 2) ∧ (0 6
x3 6 3)∧ (x3 − x2 6 2)

α2 2p2 + p4 0 6 x1 6 2

α3 2p2 + p3 0 6 x1 6 3

[September 6, 2016 at 9:07 – classicthesis version 4]

2.5 state class graph 25

The successor of α0 reached by firing t1 is α1, which is computed by
using Algorithm 2.2. The marking of α1 is obtained with the state equation
of untimed PN. In order to compute the firing domain of α1, the following
steps are preformed:

1. Let F0 = (1 6 x1 6 4)∧ (2 6 x2 6 3)∧ (1 6 x3 6 4) (the firing
domain of α0).

2. Add two constraints (x1 6 x2)∧ (x1 6 x3) (where the variable xi
represents time from the enabling of ti or εi to its firing) to F0 in order
to represent that t1 is fired not later than the other enabled transitions.

3. For the transition ε2 (ε3) whose local clock is x2 (x3), the residual
time is x2 − x1 (x3 − x1) (because after x1 time units t1 is fired).
Replace in the previous set of inequalities x2 and x3 with x2+ x1 and
x3 + x1, respectively. The resulted firing domain is Fb = (1 6 x1 6
4)∧ (2 6 x2 + x1 6 3)∧ (1 6 x3 + x1 6 4)∧ (0 6 x2)∧ (0 6 x3).

4. Eliminate x1 from Fb by using Fourier-Motzkin technique. The re-
sulted firing domain is Fc = (0 6 x2 6 2)∧ (0 6 x3 6 3)∧ (x3 −

x2 6 2).

5. Add the inequalities corresponding to newly enabled transitions after
the firing of t1 into Fc (t1 in this case). The inequality 1 6 x1 6 4 is
inserted into Fc and the firing domain of α1 is obtained as F1 = (1 6
x1 6 4)∧ (0 6 x2 6 2)∧ (0 6 x3 6 3)∧ (x3 − x2 6 2).

2.5.2 Reduction rules of TPN

Nevertheless, the number of state classes (nodes) in the SCG could
be enormous. An approach to speed up the computation of the SCG
of a TPN is to reduce the net, by removing some transitions, before
constructing its SCG. Structural reduction rules are powerful tools in
the analysis of untimed PN [9, 56]. Most of the reduction rules are de-
signed to preserve properties of the PN system, such as boundedness
and liveness, and they are applied to state estimation in [13]. How-
ever, most of these reduction rules are not applicable to TPN, due to
the time intervals.

Consider the TPN in Figure 2.10(a) whose initial marking is m0 =

2p1. The reduction rule of untimed net is applied and the net in Fig-
ure 2.10(b) is obtained by merging t1 and t2. In the reduced net, the
transition t ′12 replaces t1 and t2 and its time interval is [x,y]. We will
illustrate that in this example there is no feasible solution for x and
y. In the original TPN, the global time interval at which t3 is fired
for the first time is I1 = [3, 7] and in the reduced TPN the global time
interval is I ′1 = [x + 1,y + 1]. To have equivalent behaviors, x = 2

and y = 6. The time intervals at which t3 can be fired for the second
time in the original TPN is I2 = [4, 10] while in the reduced TPN is
I ′2 = [2x + 1, 2y + 1]. In this case, x = 1.5 and y = 4.5. Obviously,
this is not consistent with the first values of x and y. Therefore, this
reduction rule is not preserving the time behavior of the original net.

[September 6, 2016 at 9:07 – classicthesis version 4]

26 time petri net and state class graph

p2

t1
[1,3]

[1,1]

[1,3] [x,y]

[1,1]

p1

p3 p3

p1

t2

t3 t3

t ′12

(a) (b)

p2

t1
[1,3]

[1,1]

[1,3] [2,6]

[1,1]

p1

p3 p3

p1

t2

t3 t3

t12

(c) (d)

p ′2

Figure 2.10: A reduction rule that cannot be applied if the TPN is not safe
(from PN in (a) to the one in (b)). It can be applied when p2 is
safe (shown in (c) and (d)).

This happens because in the original TPN t1 and t2 can be fired
concurrently, while in the reduced TPN t ′12 cannot have different time
intervals for the intermediate marking. In TPN, due to the addition
of time intervals, structural reduction rules can only be applied un-
der certain conditions. For example, some reduction rules have been
proposed in [60] for parts of TPN in which the upper bound of the
number of tokens in each place is 1. Let us consider again the PN
in Figure 2.10(a), but assume now that the capacity of p2 is 1. The
equivalent PN is shown in Figure 2.10(c), where the new place p ′2
ensures that the maximum number of tokens in p2 is 1 at every reach-
able marking. In that subnet system, the previous reduction rule can
merge t1 and t2 and remove the places p2 and p ′2. The time interval
of t12 is [2, 6] computed by summing the lower and upper bounds
of the time intervals of t1 and t2, respectively (see in Figure 2.10(d)).
This is a rule considered in [13] for safe TPN‡.

2.6 pn in resource allocation systems

A resource allocation system represents the allocation and deallocation
of resources in a physical system. It is widely used in deadlock anal-
ysis, collision avoidance and system performance investigation on re-
source critic systems.

‡ In a safe TPN, the maximum number of tokens in every place is 1 at every reachable
marking.

[September 6, 2016 at 9:07 – classicthesis version 4]

2.6 pn in resource allocation systems 27

p1 p2

t1

t2

t3

t4

p1 p2

t1

t2

t3

t4

p ′1 p ′2

(a)

(c)

p1 p2

t1

t2

t3

t4

(d)

p1 p2

t1

t2

t3

t4

p ′1 p ′2

(b)

Figure 2.11: Assuming the net system in (a) is binary, (a) and (b) have the
same behavior. The inhibitor arcs in (c) are transformed as p ′1
and p ′2 with their input and output arcs shown in the net in (d).

2.6.1 Alternative notations of PN

In resource allocation systems and deadlock analysis, two subclasses
of PN, S3PR and S4PR, are used.

Example 2.29. Let us consider the PN in Figure 2.11(a) with the assump-
tion that the markings of places are upper bounded by one. Their capacities
can be represented by two additional places as in Figure 2.11(b). The in-
hibitor arcs (p1, t3) and (p2, t2) (Figure 2.11(c)) could be replaced by two
reading arcs§ as shown in Figure 2.11(d).

2.6.2 The Class of S3PR

In the sequel, we introduce S3PR (System of Simple Sequential Pro-
cesses with Resource)[24].

Definition 2.30. Let IN be a finite set of indices, an S3PR is a Petri net
N = 〈P, T , F〉¶ where:

1. P = PS ∪ PR ∪ P0 is a partition such that:

a) P0 = {p10, . . . ,pk0},k > 0 (p ∈ P0 is called an idle place);

b) PS =
⋃k
i=1 P

i
S, where ∀i 6= j,PiS ∩ P

j
S = ∅ (p ∈ PS is called an

operation or process place);

c) PR = {r1, . . . , rn},n > 0 (r ∈ PR is called a resource place);

2. T =
⋃k
i=1 T

i, where ∀i 6= j, T i ∩ T j = ∅;

3. ∀i ∈ IN the subnet Ni generated by {pi0} ∪ PiS ∪ T i is a strongly
connected state machine such that every circle contains {pi0} (Ni is
called a simple sequential process (S2P));

§ A reading arc (p ′1, t3) is a self-loop and it means two arcs (p ′1, t3) and (t3,p ′1). A
reading arc can also be called a bidirectional arc.

¶ In order to be consistent to the widely used notation in S3PR, we use F instead of
Pre and Post in deadlock prevention on S3PR.

[September 6, 2016 at 9:07 – classicthesis version 4]

28 time petri net and state class graph

4. N is strongly connected;

5. ∀i ∈ IN, ∀p ∈ PiS, ••p∩ PR = p•• ∩ PR and |••p∩ PR| = 1.

From 2.30, we can see that an S3PR is a well-defined system mean-
ing. The firing of a transition will allocate and/or release one resource.
If a resource is allocated in p ∈ PS by firing t ∈ •p, it will be released
by the firing of t ′ ∈ p•. The notation IN is the set of indices of pro-
cesses in an S3PR N.

Definition 2.31. Let N = 〈PS ∪ PR ∪ P0, T , F〉 be an S3PR. An initial
marking m0 is called acceptable if:

1. m0[p] > 1, ∀p ∈ PR;

2. m0[p] = 0, ∀p ∈ PS;

3. m0[p] > 1, ∀p ∈ P0.

The couple 〈N,m0〉 is called an (acceptably) marked S3PR if:

1. at least one token is assigned to each idle place and resource
place;

2. all process places are empty.

In the S3PR in Figure 2.12:

• P0 = {p10,p20},

• PS = {pi, i = 1, . . . , 8},

• Pr = {ri, i = 1, . . . , 5}.

Definition 2.32. Let IN be a finite set of indices. An S4PR net is a con-
nected self-loop free PN N = 〈P, T , F〉, where:

1. P = P0 ∪ PS ∪ PR is a partition such that:

a) Ps =
⋃
i∈IN P

i
S, PiS 6= ∅ and ∀i 6= j,PiS ∩ P

j
S = ∅;

b) P0 =
⋃
i∈IN {p

i
0};

c) PR = {r1, . . . , rn}, n > 0;

2. T =
⋃
i∈IN Ti, Ti 6= ∅, ∀i 6= j, Ti ∩ Tj = ∅;

3. ∀i ∈ IN, the subnet Ni generated by PiS ∪ {pi0} and Ti is a strongly
connected state machine, such that every cycle contains pi0;

4. for each r ∈ PR, there exists a minimal P-semiflow, yr such that
{r} = ||yr||∩ PR, yr[r] = 1, P0 ∩ ||yr|| = ∅ and PS ∩ ||yr|| 6= ∅.

The constraint in S3PR that each process can only allocate one re-
source is relaxed in S4PR. As shown in Figure 2.13, the process place
p3 can allocate resources from r3 and r6. Therefore, S4PR can repre-
sent a wider range of systems than S3PR.

[September 6, 2016 at 9:07 – classicthesis version 4]

2.6 pn in resource allocation systems 29

t1

t6 t2

t7
t3

t4

t5 t8

t9

t10

t11

p1

p5 p2

p3

p4 p6

p7

p8

p10

p20

r1

r2

r3

r4

r5

Figure 2.12: An S3PR

[September 6, 2016 at 9:07 – classicthesis version 4]

30 time petri net and state class graph

t1

t6 t2

t7

t3

t4

t5 t8

t9

t10

t11

p1

p5

p2

p3

p4 p6

p7

p8

p10

p20

r1

r2

r3

r4

r5

r6

Figure 2.13: An S4PR

[September 6, 2016 at 9:07 – classicthesis version 4]

Part II

FA U LT D I A G N O S I S O N T I M E P E T R I N E T S

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

3
I N T R O D U C T I O N T O FA U LT D I A G N O S I S O N P E T R I
N E T

3.1 introduction

In real world, most systems are real time systems, e.g., power plant
control system, aircraft navigation system, and so on. Inside a real
time system, each components interact with others continuously, while
the whole system must react to the environment (inputs) constantly.
The correctness of the outputs and timeliness [63] ensure the logi-
cal correctness of real time systems. Time Petri nets (TPN) are pro-
posed [46] by associating time interval delays with transitions, and
they have the ability to associate time with events. Thus, TPN is one
widely used tool for real time system specification and verification.
However, the state space of a TPN system is infinite. In order to rep-
resent the state space in a finite way, some approaches are proposed.
One of them is State Class Graph (SCG) [10], which partitions the state
space of a TPN system into regions (called state classes). The states
belonging to the same state class satisfy two conditions. First, they
have the same marking, and second, their firing domains of transi-
tions (defining when each transitions can be fired) can be represented
using linear inequalities.

Fault diagnosis on TPN considers various problem configurations
on which parts of the TPN can be observed and how to define faults:

• The observable elements of TPN may contain observable places,
transitions or both. The number of tokens in an observable place
can be measured by an external observer. It may be observed
continuously, where the latter means marking of the place is
observable at some moments, but not always. The firing of an
observable transition can be detected by a sensor. The informa-
tion of which transitions are fired and when they are fired is
used in diagnosis.

• Types of faults contains fault markings or transitions. In sys-
tems with fault markings, a fault occurs when a fault marking
is reached or the marking of the system satisfies a pattern, e.g.,
an inequality. The firing of a transitions can be considered as a
fault and the transition is a fault transition. In TPN, some fault
transition describe faults with time, while others do not. For ex-
ample, the firing of a fault transition in the latter type means
a fault event occurs irrespective of when it is fired. If a fault is
associated with a given time interval, then the firing of the corre-
sponding transition outside the time interval does not represent
the occurrence of the fault.

We consider also the case in which some transitions are observable,
while markings are not. In the representation of faults, we assume

33

[September 6, 2016 at 9:07 – classicthesis version 4]

34 introduction to fault diagnosis on petri net

some (unobservable) transitions are associated with faults (without
time) and no marking is fault marking. Based on the problem config-
uration, we propose the definition of diagnoser in Section 3.3.2.

In order to deal with the problem, we propose FDG. In brief, FDG
contains necessary information for diagnosis on TPN such that at
each time, the diagnosis algorithm can take information from FDG
without using a TPN model. In detail, an FDG is a projection of SCG,
and in the FDG we remove nodes and edges if they are not used in di-
agnosis. Therefore, FDG has less nodes than the corresponding SCG.
Moreover, some labels are associated with both nodes and edges in
FDG to improve the diagnosis procedure, in particular, the time com-
plexity. FDG is constructed incrementally, meaning that a part of an
FDG will not be constructed until it is used. We also propose some re-
duction rules on FDG so that it can be more compact without loss of
information for diagnosis. Then, FDG is applied to both centralized
and decentralized problems. In centralized diagnosis, a single diag-
noser manages all tasks of diagnosis, including observing firings of
transitions, constructing FDG and computing diagnosis states. In de-
centralized diagnosis, several local diagnosers collaborate through a
coordinator. Each local diagnoser observes its local observable transi-
tions and constructs a local FDG. The coordinator update the (global)
diagnosis states using messages sent by local diagnosers.

In Chapter 4, besides the details of algorithms on construction of
FDG, we also illustrate the details of the algorithm computing the
firing domain of a given firing sequence. A firing domain describes the
earliest and latest time in which all transitions in the firing sequence
can be fired sequentially. It checks whether a firing sequence is consis-
tent with an observed transition and the observed time or not. Using
the firing domain, false diagnosis states or uncertain diagnosis states
are reduced. The case study in Chapter 7 shows that, by incremen-
tally constructing the FDG and using labels in the FDG, the diagnosis
on FDG can be as fast as an untimed approach, which does not use
timing information. The time and space complexities are discusses in
Chapter 5, in which we prove that for a finite observation the num-
ber of consistent states is polynomial according to the length of the
observation.

The problem to be considered in the first part of the thesis relate
to fault detection, and they are presented in Chapter 4, Chapter 5,
Chapter 6 and Chapter 7:

• In order to deal with the problem, we propose Fault Diagno-
sis Graph (FDG). The definition and detailed algorithms of con-
structing FDG are proposed in Chapter 4. In order to construct
FDG, firing domain of a firing sequence must be computed. We
give an algorithm to complete this task. After that, we propose
an algorithm to construct FDG incrementally according to ob-
servations. We also define some rules to reduce FDG to save
storage space and improve time complexity.

• In Chapter 5, FDG is applied to centralized diagnosis and de-
tailed algorithms are given with an analysis on computational

[September 6, 2016 at 9:07 – classicthesis version 4]

3.2 literature review 35

complexity. We first give general steps on centralized diagnosis
and explain how it works with an example. Second, the cen-
tralized diagnosis algorithm using FDG is introduced. Last, we
show results on computational complexity analysis of central-
ized diagnosis using FDG.

• Chapter 6 discusses decentralized diagnosis using FDG. The de-
centralized system architecture consists of several local systems
and a coordinator. We propose how each local diagnoser (asso-
ciated with each local systems) collaborate with others through
the coordinator.

• A case study containing two systems are proposed in Chap-
ter 7. The FDG based approach is compared with an approach
where timing information is not considered. As expected, our
approach can reduce uncertainty to states of fault diagnosis.

3.2 literature review

An interpreted diagnoser is proposed in [4] for untimed PN using
Integer Linear programming Problem (ILP) with the assumption that all
unobservable events (transitions) can be detected. It means that the
observed information is sufficient to detect whether a fault transition
has been fired or not. In order to manage the diagnosis, the so called
g-marking (short for generalized marking) approach is developed. When
an observable transition is observed and it was not enabled in the net
system, a firing sequence containing only unobservable transitions
must have been fired to enable the observed transition. By using the
PN state equation, a marking having negative elements is obtained
from the firing of the observed transition and this marking is called
a g-marking. The g-marking corresponding to the firing of an observ-
able transition is not unique in general, because the firings of various
unobservable firing sequence may be able to explain the enabling of
the observable transition. Hence, a set of possible g-markings can be
obtained according to an observation. If the set of g-markings is a
singleton, then the g-marking is used in diagnosis; otherwise, more
observations are necessary.

For the diagnosis on untimed PN, basis marking is introduced in [15]
with the assumption that the unobservable subnet is acyclic. When
an observable transitions is fired, a basis marking is reached by firing
only a minimal sequence of unobservable transition followed by the
observed transition. The Basis Reachability Graph (BRG) is constructed,
whose nodes are basis markings, and used to summary information
required for diagnosis. After constructing the BRG, when an observ-
able transition is fired, the diagnosis procedure can look at the BRG
for paths to update the diagnosis states.

An on-line fault detection strategy is proposed [23] avoiding the
redefinition and redesign of dianogser when the structure of the un-
timed PN varies. They assume that the PN structure and the initial
marking are known. The set of transitions is partitioned into observ-

[September 6, 2016 at 9:07 – classicthesis version 4]

36 introduction to fault diagnosis on petri net

able and unobservable subsets, while fault transitions are unobserv-
able ones. A set of constraints is maintained during the diagnosis
process. When an observable transition is fired, some inequalities are
added into the set of constraints. The set of constraints is used in
an ILP. The firing of fault transitions is potentially detected by maxi-
mizing the firing counts of fault transitions. The proposed algorithms
do not need off-line calculation. However, the number of constraints
may become colossal. In order to reduce the computational complex-
ity, a sufficient condition is given: if the PN system is a bounded state
machine, the continuous relaxation of the ILP can be applied.

In [25], this approach is extended to the diagnosis of timed systems
modeled by TPN. The constraints of the ILP problems characterize
consistent firing sequences according to the observation and the time.
In order to integrate the representation of time information into ILP
problems, they compute the time bounds of a firing sequence by sum-
ming the lower and upper bounds of time delays associated with tran-
sitions in the firing sequence. The approach is complete, which means
that if a new observation comes, the computation of diagnosis states
is done starting from the initial time of the system. Our approach,
which is incremental, is enumeration-based and ILP problems are not
involved in diagnosis. When a new observation comes, we compute
(if necessary) only the part corresponding with the observed transi-
tion. The time bounds of a firing sequence are represented by linear
constraints and computed by solving LPPs.

In timed PN, a (non-interval) time delay is associated with each
transition representing the time that must elapse from the enabling
until the firing of the transition. Basile et al. [3] present Timed Expla-
nation Tree (TET) for fault diagnosis on timed PN. If an unobservable
firing sequence containing an fault transition is enabled, then a timer
is associated with the fault transition. If no firing sequence containing
the fault transition is remaining being enabled after the firing of an
observable transition, then the timer is reset. A candidate g-marking
can be discarded if the timer does not match the possible firing time
of the corresponding observable transition.

In [5], it is assumed that observations contain only the firings of
some (observable) transitions, which are associated with sensors and
the sensors generate output when the observable transitions are fired.
The firing of other transitions are not observable. The same sensor
can be associated with more than one transition so that the same out-
put may mean the firings of various transitions that share the same
sensor. These transitions are indistinguishable. The SCG is extended to
Modified State Class Graph (MSCG) by attaching labels to edges. The
labels contains timing variables of transitions and constraints. The
number of nodes in an MSCG is larger than the one of the corre-
sponding SCG, because of the modifications in the MSCG. In order
to determine which states are consistent with a given observation
with a given time, a procedure is proposed that explores the MSCG
and solve Linear Programming Problems (LPP). In order to provide a
trade-off between computation time and storage space, MSCG is con-
structed off-line while LPP is solved on-line. In our approach, FDG

[September 6, 2016 at 9:07 – classicthesis version 4]

3.2 literature review 37

has less nodes than the corresponding SCG and it is constructed in-
crementally meaning the SCG is not necessary to be computed in the
beginning.

For on-line distributed asynchronous diagnosis, a net unfolding ap-
proach is proposed in [8]. A so called true concurrency is considered
where no global state or global time is available. As a result, partial
order model of time is used. Using net unfolding, the state explosion
is under control by paying the cost on on-line diagnosis performance,
which is typical in diagnosis of complex asynchronous systems in a
true concurrency environment. The disadvantage of net unfolding is
that it constrains the approach to safe nets, whose places can have
most one token each.

Genc and Lafortune [27] propose a distributed diagnosis approach
for on-line fault detection and isolation of modular dynamic systems
represented by place-bordered PN. A place-bordered PN consists of
submodels sharing places on their borders. Their solution contains
two steps: first, diagnose fault occurrence in each module in an on-
line manner, and second, use the diagnosis results in all module to
recover the diagnosis states of the global system. The second step uses
the pattern of the construction of the global system. Each diagnoser
can use its local information about the corresponding module and the
shared place. One diagnoser sends messages to another diagnoser
if they share places with each other on their border. The messages
contain only changes of markings in the shared places and they are
sent when a change occurs. When a diagnoser receives a message, it
updates its diagnosis states accordingly.

Distributed diagnosis in large scaled systems is considered in [35],
in which a distributed protocol is defined for fault detection and iso-
lation. The global system contains local processes and each local pro-
cesses is modeled as a TPN system. The local processes interacts with
each other using guarded transitions, which are associated with con-
ditions and can be enabled only when the corresponding conditions
are satisfied. A condition on a guarded transition is a predicate over
the marking of some places in other processes. Two types of faults
associated with transitions are considered, where the firing of some
transitions means faults occur and for some other fault transitions,
if they are fired in some given intervals, then faults occur. An agent
(local diagnoser) is associated with each local process, while they ex-
change limited information between each other. It is proved that with
the communication, the diagnosis performance is same as in the cen-
tralized case.

Cabasino et al., address decentralized diagnosis using PN in [14],
where the global system consists of sites. Each site has the knowl-
edge of the structure and the initial marking of the global system,
but can only observe the firing of a subset of observable transitions
(via different masks). A site performs local diagnosis based on its lo-
cal knowledge and the approach used in local diagnosis is the one
proposed in [15]. After that, following a protocol, the local observa-
tions and some other information are sent to a coordinator, which is
in charge of calculating global diagnosis states.

[September 6, 2016 at 9:07 – classicthesis version 4]

38 introduction to fault diagnosis on petri net

3.3 problem statement

Fault diagnosis has been studied for many years. In DES, various
diagnosis approaches are developed in automata, PN, etc. Because
most systems are real time systems, we consider diagnosis on TPN
(defined in Chapter 2). In our problem, a TPN system has observable
and unobservable transitions, while faults are the firings of some un-
observable transitions. Our target is to estimate the firings of fault
transitions using observations, which contains the firings of observ-
able transitions with the time when they are fired. The diagnoses
without using timing information lead to many uncertain states.

Definition 3.1. The unobservable SCG of a TPN system 〈N, I,m0〉 is the
SCG of the TPN system 〈Nu, Ium0〉, i.e., the SCG of the TPN obtained by
firing only unobservable transitions. �

Definition 3.2. An observed word is a sequence of ordered pairs w =

〈t1, τ1〉 · · · 〈tk, τk〉 ∈ (To ×Q0)
∗, in which t1 is the first observed tran-

sition and it is observed at τ1, while tk is the last observed transition at
τk. Let 〈N, I,m0〉 be a TPN system and w = 〈t1, τ1〉 . . . 〈tk, τk〉 be an ob-
served word. We define the set of firing sequences consistent with w by
Lλ(w) = {σ|m0[σ〉,w = λ(σ) = t1 . . . tk, such that ti is fireable at τi, i =
1, . . . ,k}. �

3.3.1 Fault classes

We model faults using unobservable transitions. It means that some
unobservable transitions and all observable transitions represent nor-
mal behaviors. To denote the fault and regular behaviors, we use Tf
to represent the set of fault transitions and Treg for all regular unob-
servable transitions. That is Tu = Tf ∪ Treg and Tf ∩ Treg = ∅. Because
there are several types of faults, the set of fault transitions is further
partitioned according to these types such that

Tf = T
1
f ∪ T2f ∪ · · · ∪ Trf .

All transitions in the same subset represent one type of fault (called a
fault class). Hence, we concentrate on the firing of transitions in each
fault class rather than the firing of each individual fault transition.

3.3.2 Diagnoser

Now, we formally define the diagnoser and diagnosis states. Diagno-
sis states describe whether each faulty event occurred or not, while
fault transitions are grouped into fault classes. The diagnoser is used
to characterize diagnosis states corresponding to observations.

There are three diagnosis states namely normal, faulty and uncer-
tain. A diagnoser maps each observed word to one of these diagnosis
states.

Definition 3.3. A diagnoser is a function ∆ : (To × Q0)
∗× {T1f , T2f ,

. . . , Trf } → {N, F, U}, where (To ×Qo)
∗ is the set of observed words w =

[September 6, 2016 at 9:07 – classicthesis version 4]

3.3 problem statement 39

〈t1, τ1〉 . . . 〈tj, τj〉 and N, F and U represent Normal, Faulty and Uncer-
tain states, respectively. The diagnoser associates with each observed word
w and with each fault class T if , i = 1, . . . , r, a diagnosis state.

• ∆(w, T if) = N if for all σ ∈ Lλ(w) and ∀tf ∈ T if it holds tf 6∈ σ.

In this case, none of the firing sequences consistent with the obser-
vation contains a fault transition of class i, i.e., the i-th fault cannot
have occurred.

• ∆(w, T if) = U if

1. ∃σ ∈ Lλ(w) and tf ∈ T if such that tf ∈ σ, but

2. ∃σ ′ ∈ Lλ(w) such that tf 6∈ σ ′,∀tf ∈ T if .

In this case, a fault transition of class i may have occurred or not, i.e.,
it is uncertain.

• ∆(w, T if) = F if ∀σ ∈ Lλ(w) and ∃tf ∈ T if it holds tf ∈ σ.

In such a case, because every fireable sequence consistent with the
observation contains at least one fault transition of class i, it is certain
that the i-th fault have occurred.

Let us use ∆(w) to denote the set of all diagnosis states corresponding to
the observation w, i.e.,

∆(w) = {∆(w, T if), i = 1, . . . , r}.

�

Definition 3.4. Considering an observation word w = 〈to1, τo1〉 〈to2,
τo2〉 . . . 〈ton, τon〉, a consistent state class α is a state class reached by
firing a firing sequence σ = σu1to1σu2to2 . . . σunton,σui ∈ T∗u with
i = 1, . . . ,n,w = λ(σ) = to1 . . . ton. �

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

4
FA U LT D I A G N O S I S G R A P H A N D A L G O R I T H M S

Fault diagnosis graph is proposed for diagnosis on TPN in this chap-
ter with algorithms on the construction of fault diagnosis graph in an
incrementally way. Two algorithms are introduced: one computes the
firing domain of a given firing sequence, and the other one constructs
fault diagnosis graph incrementally. In diagnosis, firing domains char-
acterize whether firing sequences are consistent with observations or
not. We propose a linear programming problem (LPP) based algo-
rithm to compute firing domains. The construction of fault diagno-
sis graph starts from computing an state class graph. After that, the
nodes and edges in the state class graph are removed if they will not
be used in diagnosis. Hence, the number of nodes of a fault diagnosis
graph is smaller than the one of the corresponding state class graph.
Fault diagnosis graph will be used in centralized and decentralized
in Chapter 5 and Chapter 6, respectively.

41

[September 6, 2016 at 9:07 – classicthesis version 4]

42 fault diagnosis graph and algorithms

4.1 introduction

In this chapter, we propose Fault Diagnosis Graph (FDG) and de-
tailed algorithms to construct FDG and illustrate it with an example.
Next two chapters concentrate on applications of FDG to centralized
(Chapter 5) and decentralized diagnoses (Chapter 6).

In order to construct FDG, firing domain of a given firing sequence
is necessary (Section 4.2). It is used to check whether an unobservable
firing is consistent with an observation or not and will be a part of
labels of edges in FDG. We construct a Linear Programming Problem
(LPP), whose constraints represent the firings of transition in a firing
sequence, to compute the firing domain of the firing sequence. The
LPP represents the tight firing domain of a firing sequence. Solving
the LPP is a simple problem with widely used solvers. However, the
number of constraints of the LPP grows with the length of the firing
sequence. Therefore, it is appliable to finite firing sequences.

Having firing domains, we can construct FDG from an SCG incre-
mentally. Nodes and edges are removed from the SCG, if they will
not be used in diagnosis forever. In order to speed up diagnosis on
FDG, we associate labels to edges, which contains firing domains. An
example is used to illustrate the construction of FDG.

4.2 firing domain of a given firing sequence

In order to reduce the SCG keeping only information that is relevant
for fault diagnosis, the firing domain of a given firing sequence∗ (or sim-
ply the firing domain) is computed as the time interval [gl,gu] describ-
ing the earliest and latest instants to fire all transitions in the firing
sequence according to the order of transitions in the firing sequence.
It will be used in diagnosis to verify whether a state class is consistent
with an observation or not. Moreover, the firing domain of σut is the
time interval at which t can be observed.

The firing domain of a firing sequence is a time interval defining the
earliest and latest instants in which all transitions belonging to the
firing sequence can be fired sequentially. This firing domain is used
to detect if a firing sequence is consistent with an observation or not,
i.e., whether the observed transition can be fired at the observed time
or not. Also, this information is shown on the edges in the FDG.

In order to compute the firing domain [gl,gu] of a sequence σ, we
define k = |σ| variables to represent the time when each transition is
fired. For each transition t in σ, the following steps are applied:

1. Find when the transition becomes enabled.

2. Construct the linear inequalities of the firing duration of t rep-
resenting when it is enabled and when it is fired.

3. Find the transitions that are disabled by the firing of t and add
constraints to represent that they are disabled before reaching

∗ The firing domain verifies a given firing sequence is consistent with the observation
or not.

[September 6, 2016 at 9:07 – classicthesis version 4]

4.2 firing domain of a given firing sequence 43

their upper bounds of time intervals (otherwise, they must be
fired).

4. For each transition enabled before the firing of the last transition
of σ, we add a constraint to describe that the last transition must
be fired before them.

Finally, minimize and maximize the last variable, which represents
the time moment when all transitions in σ have been fired, subject to
the linear constraints, to calculate gl and gu.

Algorithm 4.1 [gl,gu] := domain(σ,Gscg,α0)
1: σ̄ := σ = t1t2 · · · tk
2: get α0 = 〈m0, F0〉

t1→ α1 = 〈m1, F1〉
t2→ · · · tk→ αk = 〈mk, Fk〉 from

Gscg
3: define k variables y1, . . . ,yk
4: cons := 0 6 y1 6 · · · 6 yk
5: while |σ̄| > 0 do
6: let σ ′ s.t. σ̄ = σ ′t

7: find max j s.t. σ ′ := σ ′′σ ′′′, j = |σ ′′|, t is enabled after σ ′′ and
remains enabled during σ ′′′

8: get αj and αs s.t. α0
σ ′′→ αj

σ ′′′→ αs
9: [l,u] := minimize and maximize xt s.t. Fj

. l and u are the earliest and latest time at which t can be fired
10: cons := cons∧ (l 6 y|σ̄| − yj 6 u)
11: for each tq ∈ En(ms) \ (En(ms −Pre[·, t])∪ t) do

. the clock of tq is reset after the firing of t
12: find max q s.t. σ ′ := σ1σ2, q = |σ1|, tq is enabled after σ1 and

remains enabled during σ2
13: get αq s.t. α0

σ1→ αq
14: uq := maximize xq subject to Fq

. uq is the latest time at which tq must be fired
15: cons := cons∧ (y|σ̄| − yq 6 uq)
16: end for
17: σ̄ = σ ′

18: end while
19: for each t ∈ En(mk−1) \ {tk} do
20: max j s.t. σ = σ ′′σ ′′′, j = |σ ′′|, t is enabled after σ ′′

21: u := maximize xt s.t. Fk−1
22: cons := cons∧ (yk − yj 6 u)

. tk must not be forced to fire before the latest firing time of t
23: end for
24: [gl,gu] := minimize and maximize yk subject to cons
25: return [gl,gu]

Algorithm 4.1 computes the firing domain of a given firing se-
quence σ. It constructs linear constraints of the transitions in σ from
the last transition to the first one. Before proposing the algorithm, we
first define two variables xi and yi associated with the transition ti.
In the linear constraints, both xi and yi are time instants when ti
could be fired, but:

[September 6, 2016 at 9:07 – classicthesis version 4]

44 fault diagnosis graph and algorithms

Table 4.1: State classes in Figure 4.1(b)

state class marking firing domain

α0 p1 + 2p2 (1 6 x1 6 4) ∧ (2 6 x2 6 3) ∧ (1 6
x3 6 4)

α1 p1 + p2 + p5 (1 6 x1 6 4)∧ (0 6 x2 6 2) ∧ (0 6
x3 6 3)∧ (x3 − x2 6 2)

α2 2p2 + p4 0 6 x1 6 2

α3 2p2 + p3 0 6 x1 6 3

α7 p2 + p4 + p5 (1 6 x1 6 4)∧ (2 6 x4 6 5)

α8 p2 + p3 + p5 (1 6 x1 6 4)∧ (3 6 x5 6 5)

1. xi is the local time counting the time units from the moment
when ti becomes enabled;

2. yi is the global time counting the time units from the initial time
of the whole system.

Assume the time interval of ti is [a,b] and, at time τ, ti becomes
enabled. The time at which ti could be fired is xi ∈ [a,b] and yi ∈
[a+ τ,b+ τ]. The variable xi appears only in the firing domains as-
sociated with state classes, while the constraints obtained in Algo-
rithm 4.1 contain only yi.

The sequence of state classes corresponding to σ is found in Gscg
(step 2). We associate a variable yi with the i-th transition ti in σ

(step 3). Because the transitions in σ are sequentially fired, the time
moment (yi) should be in the same order (step 4). Every transition in
σ is enabled either from the beginning or after a subsequence. Let the
transition t be the last transition of σ and assume that t is enabled
after the firing of the first j transitions of σ, i.e., t is enabled at yj,
and then the time between the enabling of t until it is fired is given
by y|σ| − yj. Let αj be the state class at which t starts to be enabled.
Hence, the firing delay of t is constrained by the firing domain Fj of
αj (step 8). The time interval in which t can be fired is obtained in
step 9.

Next, we consider transitions that are disabled due to the firing of t
(steps 11 to 15). For each disabled transition, obtain the upper bound
of the time domain and add an inequality describing that t must be
fired earlier than the disabled transition (step 15).

If a transition t 6∈ σ is enabled but not fired in σ, then the firings of
all transitions in σ must be earlier than t (steps 19 to 23). Finally, the
firing domain of the firing sequence σ is obtained by minimizing and
maximizing the last variable yk subject to cons (step 24).

Example 4.1. Let us consider again the TPN in Figure 4.1 and the firing
sequence σ = t1ε2ε4, which is enabled at α0 = 〈m0, F0〉 with m0 =

p1 + 2p2 and F0 = (1 6 x1 6 4)∧ (2 6 x2 6 3)∧ (1 6 x3 6 4). The
computation of the firing domain of σ is as follows. First, the path α0

t1→
α1

ε2→ α5
ε4→ α12 is found in the SCG and it is shown as follows (step 2 of

Algorithm 4.1).

[September 6, 2016 at 9:07 – classicthesis version 4]

4.2 firing domain of a given firing sequence 45

p1

p2 p5

p4

p3

p6

p7

t1

ε3

t5

ε4 ε6

t7

ε2
[1, 4]

[2, 3]

[1, 4]

[2, 5]

[3, 5]

[1, 1]

[2, 4]

α0

α1

α2 α7

α4 α8

t1

t1

t1

ε2

ε3

α0

α1

α7

α8

t1

ε2t1

ε3t1

Guscg

(a)

(b) (c)

Figure 4.1: (a) A TPN where ε4 is a fault transition [23]. (b) A part of the
SCG starting from the initial class α0, whose marking is m0 =

p1+ 2p2. (c) The corresponding FDG. Details of nodes are shown
in Table 4.1.

[September 6, 2016 at 9:07 – classicthesis version 4]

46 fault diagnosis graph and algorithms

α0 :

p1 + p2

(1 6 x1 6 4)

∧ (2 6 x2 6 3)

∧ (1 6 x3 6 4)

t1→ α1 :

p1 + p2 + p5

(1 6 x1 6 4)

∧ (0 6 x2 6 2)

∧ (0 6 x3 6 3)

∧ (x3 − x2 6 2)

ε
2
→

α12 :

p2 + p6 + p7

(0 6 x1 6 2)

∧ (1 6 x6 6 1)

∧ (2 6 x7 6 4)

ε4← α5 :

p2 + p4 + p5

(0 6 x1 6 4)

∧ (2 6 x4 6 5)

Second, three variables y1, y2 and y4 are assigned to t1, ε2 and ε4,
respectively. From the order of transitions in σ, the first inequalities are
0 6 y1 6 y2 6 y4 (step 4). Let σ ′ = t1ε2 (step 6) and find the last time
when ε4 turns from being disabled to enabled (step 7). The state class when
ε4 starts to be enabled is α5 and it is reached after the firing of t1ε2 (step 8).
The firing domain of α5 is F5 = (0 6 x1 6 4)∧ (2 6 x4 6 5) and it means
that two transitions t1 and ε4 are enabled at α5. Note that t1 is enabled at
α0 and also at α1. By minimizing and maximizing x4 subject to F5, the time
interval in which ε4 can be fired is [2, 4]. The inequality describing the time
delay to fire ε4 is 2 6 y4 − y2 6 4 and it is inserted into the constraints
cons (step 9 to 10). There is not any transition disabled by the firing of ε4
(step 11). Therefore, no other inequality is added to cons. The sequence σ is
set to σ̄ = σ ′ = t2ε2 (step 17) and the constraints are

cons =

{
2 6 y4 − y2 6 4,

0 6 y1 6 y2 6 y4.

After that, ε2 is considered, which is enabled at α0 and there is σ ′ = t2,
σ ′′ = ε and σ ′′′ = t2 (step 7). The constraint 2 6 y2 6 3 is obtained by
minimizing and maximizing x2 subject to F0 and it is added to cons (steps
9 to 10). The transition ε2 is fired at α1 leading to α5 (step 11). Its firing
disables ε3 (step 11), which is enabled at α0 (steps 12 and 13). Maximize
x3 subject to the firing domain of α0, the upper bound of time delay of ε3
is 4 (step 14). The constraint y2 6 4 is attached to cons (step 15). After
constructing the inequalities of t1 and ε2, the constraints are

cons =

2 6 y2 6 3,

y2 6 4,

2 6 y4 − y2 6 4,

0 6 y1 6 y2 6 y4.

[September 6, 2016 at 9:07 – classicthesis version 4]

4.3 fault diagnosis graph 47

p1 p2 p3

p6p5p4

p8 p9

p11

p10

ε1 t2 t3 ε4

t5ε6t7ε8

ε9

[1, 5] [1, 1] [3, 4] [1, 1]

[1, 4]

[3, 5]

[4, 4][4, 5]
[1, 3]

Figure 4.2: A manufacturing system having two sequential processes. One
process is represented by p1, p2 and p3; the other one contains
p4, p5 and p6. There are two robots p8 and p9 moving materials
and can be used by both processes. We assume that ε9 is a fault
transition representing that by mistake a material is moved from
p3 to p5†.

The constraints corresponding to the firing of t1 is constructed in the same
way and they are attached to cons:

cons =

1 6 y1 6 4,

2 6 y2 6 3,

y2 6 4,

2 6 y4 − y2 6 4,

0 6 y1 6 y2 6 y4.

At α12, transition t1 is enabled but it is not fired, then the inequalities to
represent that the last transition ε4 is fired earlier than the upper bound of
the time interval of t1 must be attached to cons (step 19). The state class
at which t1 starts to be enabled is α1 and an inequality y4 − y1 6 4 is
included to cons (steps 20 to 23). Minimizing and maximizing y4 subject
to

cons =

y4 − y1 6 4,

1 6 y1 6 4,

2 6 y2 6 3,

y2 6 4,

2 6 y4 − y2 6 4,

0 6 y1 6 y2 6 y4.

The firing domain of σ = t1ε2ε4 is obtained as [4, 7].

[September 6, 2016 at 9:07 – classicthesis version 4]

48 fault diagnosis graph and algorithms

α0 α1

α2

α4

(a) Partial SCG (b) Partial FDG

α3

α0

α2

α4

α3

ε1

t5

t5

t2
t5

ε1t2

ε1t5

(c) The reduced FDG in (b)

α0

α24

α3

ε1t2

t5

Figure 4.3: A partial SCG and FDG of the TPN in Figure 4.2. The markings
of αi, i = 0, 1, . . . , 4 are mi such that m0 = 2p8 + p9 + p10 + p11,
m1 = p1+2p8+p9+p11,m2 = p6+2p8+p10,m3 = p2+p8+

p9 + p11 and m4 = p1 + p6 + 2p8, respectively. The domains of
αi, i = 0, 1, . . . , 4 are Fi such that F0 = (1 6 x1 6 5, 1 6 x5 6 4),
F1 = (1 6 x2 6 1, 0 6 x5 6 3), F2 = (0 6 x1 6 4, 3 6 x6 6 5),
F3 = (3 6 x3 6 4, 0 6 x5 6 3) and F4 = (0 6 x1 6 1, 3 6 x6 6 5),
respectively.

4.3 fault diagnosis graph

4.3.1 Motivation

A Fault Diagnosis Graph (FDG) is a projection of SCG such that the
information needed for fault diagnosis is kept.

Because of the huge number of reachable state classes, it is time
consuming to compute the full SCG. For fault diagnosis, only the
parts of the SCG corresponding to the observation and the consistent
states, which are reached by firing observable transitions are used. Let
us assume that no transition has been observed in the PN system in
Figure 4.2, where t2, t3, t5 and t7 are observable and the initial mark-
ing is m0 = 2p8 + p9 + p10 + p11. Assume one fault class T1f = {ε9}.
We compute the part of SCG starting from m0 that contains only two
state classes, α0 and α1 (see Figure 4.3(a)). Then, by firing observable
transitions at α0 and α1, the SCG in Figure 4.3(a) is obtained, where
more state classes are computed: α2, α3 and α4. The FDG is obtained
from the SCG in Figure 4.3(a) by removing the node α1, because it
is reached by firing the unobservable transition ε1. The information
of paths ε1t2 and ε1t5 is associated with the corresponding edges
α0 → α3 and α0 → α5 (see Figure 4.3(b)). The graph used to update
the FDG is shown in Figure 4.3(b), where the labels associated with
edges are listed in Table 4.2.

In diagnosis we care about whether fault transitions are fired or
not, instead of which transitions are fired earlier than the others. It is
sufficient to record the firing count vector, not the firing sequence. By
means of this vector, the representation of the relevant information
becomes more compact, since the firing sequence grows to infinite
when the time elapses, but such a vector has a fixed length.

Definition 4.2. A fault diagnosis graph (FDG) is a 4-tuple G = 〈Ω,�
,α0,L〉, where:

• α0 = 〈m0, F0〉 is the initial state class,

[September 6, 2016 at 9:07 – classicthesis version 4]

4.3 fault diagnosis graph 49

α0

α2
α3α5

α6 α7
α8

α4

t 5 ε
1 t
2

ε
1 t
5

ε1t2
ε 1
ε 6
t 2

ε
1 ε
6 t
2

t 2

Figure 4.4: The FDG corresponding to w = t5 is observed at time 4 in the
PN system of in Figure 4.2.

Table 4.2: Details of edges in the FDG shown in Figure 4.4

edge to I D

α0 → α2 t5 [1, 4] (N)

α0 → α3 t2 [2, 4] (N)

α0 → α4 t5 [1, 4] (N)

α2 → α5 t2 [1, 5] (N)

α2 → α6 t2 [3, 5] (N)

α2 → α7 t2 [4, 5] (N)

α4 → α8 t2 [0, 1] (N)

[September 6, 2016 at 9:07 – classicthesis version 4]

50 fault diagnosis graph and algorithms

• � is the set of edges, such that α � α ′ means ∃σu ∈ T∗u, to ∈ To
and α ′ is reachable from α by firing σuto,

• Ω = {α|α0 �∗ α}, where�∗ is the reflexive and transitive closure of
�, is the set of reachable state classes,

• L :�→ To × {Q0 × (Q0 ∪ {∞})}× {N, F}r is a labeling function of
edges, i.e., for an edge e representing α σuto−−−→ α ′, the label of e is
L(e) = 〈to, Iσuto ,Dσuto〉, where to is the observed transition, Iσuto
is the firing domain of σuto and Dσuto records the firing of fault
transitions in σuto. �

An FDG is a directed multi graph. Each node (excepting the initial
one) corresponds to a state class, which can be reached by the fir-
ing of an observable transition preceded eventually by the firings of
some unobservable transitions. A label is associated with each edge
containing:

1. the observable transition,

2. the firing domain of the corresponding firing sequence,

3. the diagnosis information.

The diagnosis information is a vector representing the firing of fault
transitions in the corresponding sequence. We denote the edge from
node α to α ′ with the observable transition t, the firing domain I

and the diagnosis information D as 〈α, 〈t, I,D〉,α ′〉. For example, in
Table 4.2, the label of α0 → α3 is 〈t5, [2, 4], (N)〉, where t5 is the ob-
served transition, [2, 4] is the firing domain of the corresponding fir-
ing sequence and (N) indicates that the fault transition is not fired in
the unobservable firing sequence.

4.3.2 Construction of an FDG

The approach to construct an FDG is straightforward. Given a consis-
tent state class (node) α in the FDG, the subgraph of the FDG starting
from α is computed from the unobservable SCG, in which α is the
initial state class. The unobservable SCG is obtained by firing only
unobservable transitions.

In the construction of FDG, first, we find in the unobservable SCG
all state classes enabling observable transitions. All the paths are com-
puted from the initial state class of the SCG (i.e., α0) to those ones.
As we assumed that the unobservable subnet is acyclic, the number
of these paths is finite.

Notice that the state classes, in which the TPN can be before the
firing of the first observable transition (i.e., α1 in Figure 4.3(a)), are
not explicitly given in the FDG. However, the diagnosis states can be
computed by considering only the edges obtained in the FDG since
they contain the same information.

The computation of the FDG is incremental according to the obser-
vation. Algorithm 4.2 constructs the FDG G by using the unobservable

[September 6, 2016 at 9:07 – classicthesis version 4]

4.3 fault diagnosis graph 51

SCG Gscg. The initial state class of Gscg is (any) one of the consistent
state classes of the observation. The unobservable SCG is computed
by firing only unobservable transitions. Algorithm 4.2 also updates
the set of unexplored state classes W, which is both an input and an
output parameter of Algorithm 4.2.

Algorithm 4.2 [G,W] = FDG(N,G,Gscg,W)

1: let α0 be the initial state class of Gscg = 〈Ωscg,�scg,α0〉
2: for each αu = 〈mu, Fu〉 ∈ Gscg do
3: for each t ∈ En(mu) s.t. t ∈ To∧

isFireable(αu, t) do
4: α := succ(αu, t) . compute the successor
5: if α 6∈ G then . if α is not explored
6: W =W ∪ {α} . update W
7: end if
8: let Σ be the set of paths from α0 to αu

in Gscg
9: for each σ ∈ Σ do

10: I := domain(Gscg,σt,α0) . the firing domain of σt
11: add α and 〈α0, 〈−→σt, I〉,α〉 to G

12: end for
13: end for
14: end for
15: return G,W

For every state class αu in the unobservable SCG Gscg, which en-
ables an observable transition (step 3), the successor state class α (of
αu) is computed by firing t (step 4). If α is a newly obtained state class
such that it has not been explored, then α is added into the set of un-
explored state classes W (step 6). All paths from the initial state class
α0 of the Gscg to αu are computed in Gscg (step 8), and for each of
them, its firing domain I is computed (step 10). The FDG is updated
with the state class α (as a new node) and an edge 〈α0, 〈−→σt, I〉,α〉 (step
11).

Example 4.3. Let us consider the net system of Figure 4.1(a) with a fault
class T1f = {ε4}. The third input parameter of Algorithm 4.2 is the unob-
servable SCG Gscg starting from the initial state class α0, and it contains
three state classes α0, α2 and α4 (shown in Figure 4.1(b)). The last input
parameter is the set of unexplored state classes is W = {α0}. The observable
transition t1 is fireable at α4, and then by firing t1 its successor is α8 (step
4). Because α8 is not in G, it is added into W and W = {α8} (step 6). The
path from α0 to α8 is α0

ε3→ α4
t1→ α8 (step 8). By applying 10, the firing

domain of ε3t1 is obtained equal to [1, 4] (step 10). Then the node α8 and the
edge 〈α0, 〈−−→ε3t1, [1, 4]〉,α8〉 are included in G (step 11). After the execution
of the algorithm, the FDG in Figure 4.1(c) is constructed and the labels of
edges in the FDG are:

• α0 → α1 is labeled with 〈−→t1 , [1, 3]〉,

• α0 → α7 is labeled with 〈−−→ε2t1, [2, 4]〉,

[September 6, 2016 at 9:07 – classicthesis version 4]

52 fault diagnosis graph and algorithms

e
1
:〈t

5 ,I
1 ,D

1 〉

e
2
:〈t

5 ,I
2 ,D

2 〉
e
3
:〈t

5 ,I
3 ,D

3 〉

(a) (c)

α1

α1

α2

α2

p1

p2p3

p4

ε1

t5

ε2

ε3
ε4

[1, 2]

[1, 1] [2, 3]

[2, 4]

[1, 1]

(b)

t6
[7, 8]

Figure 4.5: Reduction rule 1: A TPN (a) and a part of its FDG (b). The FDG
is reduced to the one in (c) by merging two edges in a single
one. In (b) and (c), I1 = I2 = I3 = [4, 6], D1 = 〈F〉, D2 = 〈N〉,
D3 = 〈U〉, T1F = {ε3}

• α0 → α8 is labeled with 〈−−→ε3t1, [1, 4]〉.

Three state classes are reachable from the initial state class by firing only
unobservable transitions followed by an observable one. When an observable
transition is fired, the state classes consistent with the observation can be
found by looking at the output edges of α0. After updating the FDG, α0
is removed from W, because it has been explored and the three new state
classes are added into W. Finally, the set of unexplored state classes is W =

{α1,α7,α8}.

4.3.3 Reduction of an FDG

As already pointed out, the number of nodes in an FDG is smaller
than the one of the corresponding SCG, since the state classes ob-
tained by the firing of the unobservable transitions are not kept (e.g.,
α1 in Figure 4.3(a)). Moreover, in order to save storage space, three
reduction rules can be used to eliminate edges and nodes from an
FDG, while important information for diagnosis is kept. The impor-
tant information includes observable transitions, firing domains and
the firing of fault transitions.

The first reduction rule is illustrated using the PN in Figure 4.5(a).
Assume that the initial marking ism0 = p1 and the only fault class is
T1f = {ε3}. Its FDG is shown in Figure 4.5(b) in which the initial state
is α1 and the two edges are:

[September 6, 2016 at 9:07 – classicthesis version 4]

4.3 fault diagnosis graph 53

e
1
: 〈t

4 , I
1 ,D

1 〉

e
2
:〈t

4,I2,D
2〉

e
3
:〈t

4 ,I
3 ,D

3 〉

(b)

(c)

α1

α1

α23

α2α3

p1

p2

p4

ε1

ε2
ε3

t4

[1, 1]

[3, 6][2, 3]

[1, 2]

p3

(a)

t5
[8, 9]

Figure 4.6: Reduction rule 2: A TPN (a) and a part of its FDG (b). The FDG
in (b) is reduced to the one in (c) by merging nodes α3 and α2
in α23. In (b) and (c), I1 = I2 = I3 = [4, 6], D1 = 〈N〉, D2 = 〈F〉,
D3 = 〈U〉, T1F = 〈ε2〉

1. e1 : 〈t5, I1 = [4, 6],D1 = 〈F〉〉 corresponding to the firing se-
quence ε1ε3t5,

2. e2 : 〈t5, I2 = [4, 6],D2 = 〈N〉〉 corresponding to ε2ε4t5.

The observable transition and firing domains of e1 and e2 are the
same. The transition t5 will be fired in an interval I1 = I2 = [4, 6].
When t5 is observed, the consistent state is α2 and the labels of two
edges (i.e., e1 and e2) are used to compute the diagnosis states. Since
the time intervals in e1 and e2 are the same, both edges can be merged
in e3 = 〈t5, I3 = [4, 6],D3 = 〈U〉〉 (Figure 4.5(c)). Therefore, the num-
ber of edges of the FDG is reduced by one in this situation.

The second reduction rule for the FDG is shown by using the TPN
in Figure 4.6(a), whose initial marking is m0 = p1 and assume the
fault class T1f = {ε2} and the only observable transition is t4. A part
of its FDG (not firing ε5) is shown in Figure 4.6(b). The initial state is
α1 having two output edges:

1. e1 : 〈t4, I1 = [4, 6],D1 = 〈N〉〉 corresponding to the firing se-
quence ε1ε3t4 and

2. e2 : 〈t4, I2 = [4, 6],D2 = 〈F〉〉 corresponding to ε1ε3ε2t4.

The observable transition t4 can be observed in time interval [4, 6].
If it is observed, two state classes α2 and α3 are consistent with the
observation, and both e1 and e2 will be considered in diagnosis. Ob-
viously, α2 and α3 can be merged into one node α23 and the edges

[September 6, 2016 at 9:07 – classicthesis version 4]

54 fault diagnosis graph and algorithms

e
2
: 〈t

5 , I
2 ,D
〉

e
1
:〈t

5,I1,D
〉

e
3
:〈t

5 ,I
1
2 ,D
〉

(b) (c)

α1
α12

α3

α2

α3

p1

p2

p4

t1t2

ε3

t5
[1, 1]

[1, 3][1, 3]

[1, 2]

p3

(a)

ε4

[2, 2]

t6
[7, 8]

α4

e
3
:〈t

2,I3,D
3〉

e
4
: 〈t

1 , I
4 ,D

4 〉

α4

e
4
:〈t

1 ,I
4 ,D

4 〉

e
3
:〈t

2 ,I
3 ,D

3 〉

Figure 4.7: Reduction rule 3: A TPN (a) and its FDG (b). The FDG in (b)
is reduced to the one in (c) by merging nodes α1 and α2 into
α12. In (b) and (c), I1 = I2 = I12 = [1, 3], I3 = [1, 2], I4 = [2, 2],
D = 〈F〉, D3 = D4 = 〈N〉, T1F = {ε3, ε4}

reduced to e3 : 〈t4, I3 = [4, 6],D3 = 〈U〉〉. The resulted FDG is shown
(see Figure 4.6(c)).

We can adapt the previous rule to merge the predecessors of a
node. Let us consider the TPN in Figure 4.7(a) with the initial mark-
ing m0 = p1 corresponding to the state class α4. Assume that the
fault class is T1f = {ε3, ε4} and the observable transitions are t1, t2 and
t5. At α4, t1 is enabled and by firing it, state α1 is obtained (corre-
sponding to the markingm1 = p2). Moreover, t2 is also enabled at α4
and by firing it state class α2 is obtained (corresponding to the mark-
ing m2 = p3). The node α3 (corresponding to m3 =

−→
0) is reachable

by the firing sequences ε3t5 from α1 or ε4t5 from α2 (Figure 4.7(b)).
When α3 is reached, the edges α1 → α3 and α2 → α3 provide the
same information for fault diagnosis, since both correspond to firing
sequences that include fault transitions (ε3 and ε4) finishing with the
firing of the same observable transition. For this reason, the nodes α1
and α2 can be merged into one node α12 (Figure 4.7(c)).

For example, by applying the previous rule to merge α2 and α4
in the FDG shown in Figure 4.3(b), node α24 in Figure 4.3(c) is ob-
tained‡.

‡ In order to explain more clearly how diagnosis algorithms works, in the sequel we
use the original FDG, not the reduced one.

[September 6, 2016 at 9:07 – classicthesis version 4]

5
C E N T R A L I Z E D D I A G N O S I S A L G O R I T H M S

In this chapter, we apply fault diagnosis graph (Chapter 4) to central-
ized diagnosis. In centralized diagnosis, a single (unique) diagnoser
conducts the diagnosis task. It monitors the firings of all observable
transitions, constructs the fault diagnosis graph and computes diag-
nosis states of the target system. As will be illustrated in this chapter,
only a part of the full diagnosis graph is used in the diagnosis. In
order to analyze the complexity of centralized diagnosis, a section of
discussion addresses both time and space complexities. In the space
complexity analysis, we propose an approach to compute an upper
bound of the number of consistent state classes, which is critical to
the use of computer memory (space) and the time needed to construct
fault diagnosis graph and diagnosis.

55

[September 6, 2016 at 9:07 – classicthesis version 4]

56 centralized diagnosis algorithms

5.1 introduction

In this chapter, we propose centralized diagnosis based on FDG. Gen-
eral steps of the centralized diagnosis are presented in Section 5.2.
For the fault diagnosis, the construction of FDG is performed incre-
mentally, when a new observation is available. Therefore, the diag-
nosis contains mainly two steps: update the FDG and diagnosis on
the FDG. In centralized diagnosis, a (unique) centralized diagnoser
(monitor) collects observations and computes diagnosis states. After
initializing the FDG, the diagnoser waits for an observation. With
an observation, the diagnoser update the FDG, if the corresponding
parts are not in the FDG. After that, the diagnosis algorithm is ap-
plied to compute diagnosis states. The diagnosis algorithm is given
in Section 5.3. Diagnosis states, corresponding to an observed word,
describe:

1. whether any fault transition has been fired when the current
observed word appears;

2. whether there exist any fault transition that can be fired before
next possible observed words.

Hence, when an observable transition is fired, we first look for all
consistent state classes in the FDG, and second explore the subgraphs
starting at the consistent state classes for the firing of fault transitions
before next observation. Because it uses labels associated with edges
in the FDG, the diagnosis process is efficient. An example is given to
illustrate the steps in the centralized diagnosis.

We also discuss the time and space complexity of constructing FDG
and diagnosing on it. We show that the number of consistent state
classes is polynomial according to the length of the observation. The
results on complexity analysis can also be used in decentralized diag-
nosis in Chapter 6.

5.2 general algorithm

The fault diagnosis algorithm is presented in Algorithm 5.1. The algo-
rithm first initializes the FDG and conducts the diagnosis correspond-
ing to the empty observation. After that, it waits for an observation.
When a transition is observed, the algorithm updates the FDG if it is
necessary, and then computes diagnosis states.

Before the system starts to evolve, i.e., the observation word is w =

ε, the SCG of the unobservable subnet with the initial state class α0 is
computed (step 2). Based on it, the FDG corresponding to the empty
word is obtained (step 3). In the same step, W is initialized with the
set of nodes in the actual FDG minus α0. The state classes in W will
not be explored at this observation, because it is enough to check the
diagnosis state based only on the labels of the output edges of α0. If
a transition of a fault class T if is fired in all output edges of α0, the
diagnosis state is set to F; if no fault transition is fired in any output
edge of α0, the diagnosis state is set to N; otherwise, the diagnosis

[September 6, 2016 at 9:07 – classicthesis version 4]

5.3 centralized diagnosis on fdg 57

Algorithm 5.1 General fault diagnosis algorithm
1: v := ε

2: Gscg := SCG(Nu,α0)
. Compute the unobservable SCG starting from α0

3: [G,W] := FDG(N, ∅,Gscg, {α0})
. Construct FDG consistent with the empty word

4: compute the diagnosis state based on the labels of the output
edges of α0 in G

5: S := {〈α0,
−→
0 〉}

. Next observation is obtained by exploring the output edges of
state classes in S

6: let tj be a new observation and w = vtj at τw
7: if W 6= ∅ then
8: for each α ∈ S s.t. ∃〈α, 〈−→σtj, I〉,α ′〉 ∈ G∧α ′ ∈W do
9: Gscg := SCG(Nu,α ′)

. compute the unobservable SCG starting from α ′

10: [G,W] := FDG(N,G,Gscg,W)

. update the FDG by adding Gscg
11: W :=W \ {α ′} . Remove explored α ′ from W

12: end for
13: end if
14: [∆(w), S] := diag(G, S, tj, δτ)

. δτ is the time from last observation to this one
15: go to 6

state is set to U (step 4). The set S contains nodes of the FDG, which
are consistent with the observation, together with the firing count
vectors of the paths from the initial state class to them.

When a new observation comes (step 6), the FDG is updated if
there exists unexplored nodes (step 7). For each α in S, if it has an
output edge that, in the firing count vector, the observed transition
is fired and the output state class is not explored (step 8), then the
unobservable SCG starting from the output state class is computed
(step 9). In order to update the FDG, we first fire observable transi-
tions at all state classes in Gscg (if possible), and then the state classes
obtained by firing unobservable transitions are removed and the re-
sulted graph is added to the FDG (step 10). After the computation
of the FDG corresponding to the current observation, the diagnosis
states are calculated, while S is updated (step 14).

5.3 centralized diagnosis on fdg

After updating the FDG, diagnosis states are computed. The diagno-
sis starts from the state classes consistent with the previous observa-
tion, i.e., the state classes in S. When a transition is observed, we de-
termine at which state classes it can be fired by using the firing count
vectors of the output edges of the state classes in S. Algorithm 5.2 con-
structs the set of consistent state classes corresponding to the current
observation. It also checks if fault transitions are fired or not by using

[September 6, 2016 at 9:07 – classicthesis version 4]

58 centralized diagnosis algorithms

the firing counts of fault transitions in the path vectors, from the ini-
tial state class of the FDG to the consistent state classes, and the firing
count vectors labeled on the output edges of consistent state classes.

Algorithm 5.2 [∆(w), S] := diag(G, S, tj, δτ)
1: Sf := ∅
2: for each 〈α,−→σ α〉 ∈ S do
3: for each 〈α, 〈−−→σutj, I〉,α1〉 ∈ G s.t. lI 6 δτ 6 rI do . δτ is the time

between the pervious observation and the current one, I = [lI, rI]
4: −→σ α1 :=

−→σ α +
−−→
σutj

5: Sf := Sf ∪ {〈α1,−→σ α1〉}
6: update ∆(w) by −→σ α1 and the output edges of α1
7: end for
8: end for
9: S := Sf

10: return [∆(w), S]

In Algorithm 5.1, for each element 〈α,−→σ α〉 of S, the algorithm
checks if the transition tj is fireable at α by using the firing count
vectors associated with the output edges of α in the FDG. Let α1 be
a state class reachable from α such that tj is fired according to the
firing count vector of the edge from α to α1. If α1 is consistent with
the observation (step 3), the firing count vector of the path from the
initial state class of the FDG to α1 is computed (−→σ α1) and 〈α1,−→σ α1〉
is inserted into Sf (steps 4 and 5). Using both −→σ α1 and the output
edges of α1, the diagnosis states in ∆(w) are updated (step 6). The
following steps are performed to update diagnosis states:

1. Considering T if , if ∃tf ∈ T if and the firing count of tf in −→σ α1
is not zero, then it has been fired and the diagnosis state of T if
corresponding to α1 is set to F. If tf is not fired in the path, then
check the firing counts of tf in output edges of α1. If all the
firing counts are greater than zero, then the diagnosis state of
T if is set to F; if they are zero, then the diagnosis state is set to
N; otherwise, the diagnosis state is set to U.

2. If the diagnosis state of T if is empty, i.e., ∆(w, T if) = ε, ∆(w, T if)
is set to the diagnosis state of α1. If ∆(w, T if) = N and the diag-
nosis state in the first step is N too, then the updated diagnosis
state of T if is N. If both of them are F, then the updated diagno-
sis state is ∆(w, T if) = F. Otherwise, the updated diagnosis state
is U.

5.4 example

Continuing Example 4.3, let us assume t1 is observed at time 4. The
FDG in Figure 4.1(c) is updated using Algorithm 4.2 and it is shown
in Figure 5.1. Nodes and the labels of edges are given in Table 5.1 and
Table 5.2, respectively. The input parameters of Algorithm 5.2 are:

[September 6, 2016 at 9:07 – classicthesis version 4]

5.4 example 59

α0

α1

α8

α7

α4
α11

α18 α23

α15

α22

α14

α16

α13

t 1

ε
2 t
1

ε3t1

t 1 ε2t1

ε3t1
ε3t5

ε
2 ε
4 t
1

ε
2 ε
4 ε
6 t
1

ε2ε4ε6t7

t1

ε
4
t 1

ε 4
ε 6
t 1

ε4ε
6
t7

t 1

t 5

Figure 5.1: The FDG corresponding to w = t1. For diagnosis, we need to
consider all consistent firing sequences of the form: σ = σ ′ut1σ

′′
u

where σ ′u and σ ′′u are firing sequences of unobservable transi-
tions. Since in the FDG we keep only the nodes corresponding
to the firing of observable transitions, we will fire after σ ′′u the
enabled observable transitions. Notice that we assume that the
observable transitions are normal transitions which implies that
the diagnosis state is not affected by firing of an observable tran-
sition after σ.

1. G is the updated FDG;

2. S = {〈α0,
−→
0 〉} and it will be updated during the execution of the

algorithm;

3. t is t1;

4. δτ = 4, because t1 is the first observed transition and it is ob-
served at 4.

For 〈α0,
−→
0 〉 ∈ S, there are three output edges from α0 in G to α1,

α7 and α8, respectively. The label of the edge α0 → α1 is 〈−→t 1, [1, 3]〉.
Although t1 is fired, it cannot be fired at time 4, because δτ = 4 is not
in the firing domain associated with the edge (step 3).

The edge α0 → α7 is considered and its label is 〈ε2t1, [2, 4]〉. The
observed transition t1 is fired according to the firing count vector
and δτ is in the firing domain [2, 4] (step 3). The path vector of α7 is
computed as σα7 =

−→
0 +
−−→
ε2t1 =

−−→
ε2t1 (step 4). Corresponding to the

current observation, the set of consistent state classes Sf is updated
to Sf = {〈α7,

−−→
ε2t1〉} (step 5).

In order to update ∆(w), the path vector of α7, which is
−−→
ε2t1, and

the labels of four output edges of α7 are considered (step 6). There is
one fault class in the net system T1f = {ε4}. The fault transition ε4 is
not fired in the path vector of α7. In the label of the edge α7 → α15,
which is 〈−→t 1, [1, 4]〉, ε4 is not fired. In the labels of other three edges,
ε4 is fired, and then the diagnosis state corresponding to α7 is U.
Because, in ∆(w), ∆(w, T1f) = N, the diagnosis state of T1f is updated
to ∆(w, T1f) = U.

[September 6, 2016 at 9:07 – classicthesis version 4]

60 centralized diagnosis algorithms

Table 5.1: State classes of the FDG in Figure 5.1

state class marking firing domain

α0 p1 + 2p2 (1 6 x1 6 4) ∧ (2 6 x2 6 3) ∧ (1 6
x3 6 4)

α1 p1 + p2 + p5 (1 6 x1 6 4) ∧ (0 6 x2 6 2) ∧ (0 6
x3 6 3)∧ (x3 − x2 6 2)

α4 p1 + 2p5 (0 6 x2 6 1)∧ (0 6 x3 6 2)

α7 p2 + p4 + p5 (1 6 x1 6 4)∧ (2 6 x4 6 5)

α8 p2 + p3 + p5 (1 6 x1 6 4)∧ (3 6 x5 6 5)

α11 p4 + 2p5 0 6 x4 6 5

α13 p3 + 2p5 0 6 x5 6 5

α14 p2 + p6 + p7 (0 6 x1 6 1) ∧ (1 6 x6 6 1) ∧ (2 6
x7 6 4)

α15 p4 + 2p5 0 6 x4 6 4

α16 p3 + 2p5 0 6 x5 6 4

α18 p5 + p6 + p7 (0 6 x6 6 1) ∧ (1 6 x7 6 4) ∧ (1 6
x7 − x6 6 3)

α22 p2 + p5 + p6 (1 6 x1 6 4)∧ (0 6 x7 6 3)

α23 p1 + 2p2 (0 6 x1 6 0) ∧ (2 6 x2 6 3) ∧ (1 6
x3 6 4)

Table 5.2: Edges of the FDG in Figure 5.1

edge firing vector firing domain

α0 → α1
−→
t1 [1, 3]

α0 → α7
−−→
ε2t1 [2, 4]

α0 → α8
−−→
ε3t1 [1, 4]

α1 → α4
−→
t1 [1, 2]

α1 → α11
−−→
ε2t1 [1, 4]

α1 → α13
−−→
ε3t1 [1, 4]

α1 → α14
−−→
ε3t5 [3, 6]

α1 → α18
−−−−→
ε2ε4t1 [2, 4]

α1 → α22
−−−−−−→
ε2ε4ε6t1 [3, 4]

α1 → α23
−−−−−−→
ε2ε4ε6t7 [3, 4]

α7 → α15
−→
t1 [1, 4]

α7 → α18
−−→
ε4t1 [2, 4]

α7 → α22
−−−−→
ε4ε6t1 [3, 4]

α7 → α23
−−−−→
ε4ε6t7 [4, 4]

α8 → α14
−→
t5 [3, 4]

α8 → α16
−→
t1 [1, 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

5.5 boundedness 61

After considering the edge α0 → α7, the algorithm updates ∆(w)
with the other edge α0 → α8. Finally, the diagnosis state is ∆(w) =

{∆(w, T1f) = U} and the set of consistent state classes corresponding
to the observation is S = {〈α7,

−−→
ε2t1〉, 〈α8,

−−→
ε3t1〉}.

5.5 boundedness

In general, the boundedness of the number of state classes of TPNs is
an undecidable problem [11]. However, a TPN has a bounded number
of state classes if it is bounded and the bounds of time durations are
rational for all transitions [10]. The FDG is completely constructed
when the set of unexplored state classes (W) is emptied (all state
classes have been explored). In the worst case, the number of state
classes in the FDG equals the one in the SCG.

5.6 time complexity

The LPP obtained from F the firing domain of a state class 〈m, F〉) is
used in both Algorithm 2.1 and Algorithm 4.1. We first discuss the
construction of the constraints of the LPP. In a state class 〈α, F〉, F is
the conjunction of inequalities representing the firing domain of en-
abled transitions. In the LPP, the number of variables is the number of
enabled transitions, and, in the worst case equals |T |. Assuming there
are n enabled transitions, then 2n inequalities are used for the time
bounds of transitions in F. The order of the firings of two transitions
in F needs two inequalities to be described. In the worst case, the
number of inequalities of each two transitions in F is n(n− 1). There-
fore, in the worst case the LPP includes |T | variables and |T |(|T |+ 1)

inequalities.
The time complexity of Algorithm 4.1 (the algorithm of computing

the firing domain of a given firing sequence) depends on the length
of the firing sequence. Considering a firing sequence of length k, in
order to find when the i-th transition is enabled, the algorithm checks
at most i− 1 state classes in step 7. Therefore, the algorithm checks
k(k− 1)/2 state classes for all transitions in the firing sequence. After
that, for each transition, its firing domain is calculated by using the
domain F of the state class 〈α, F〉, at which the transition is enabled.
If the firing of a transition disables h transitions, h inequalities are
attached to the set of constraints. The number h depends on the num-
ber of choices at a place and in the worst case, the firing of a transition
can disable |T |− 1 transitions. In Algorithm 4.1 step 24, the cons con-
tains k inequalities obtained in step 4, 2k inequalities representing the
time delays of all transitions and k(|T |− 1) inequalities represent the
conflict between transitions.

Algorithm 4.2 finds paths from the initial state class of the unob-
servable SCG (〈Ω,�,α0〉) to each state class where observable tran-
sitions can be fired. The time complexity of finding paths between
two state classes is O(|�|+ |Ω|), when the breadth-first search is ap-
plied. Therefore, the complexity of computing paths from the initial

[September 6, 2016 at 9:07 – classicthesis version 4]

62 centralized diagnosis algorithms

p1

p2

p3

p4

t1

ε2

ε3

t4

t5

[1, 1]

[1, 2]

[2, 4]

[2, 5]

[1, 2]
p1

p2

p3

p4

t1

ε2

ε3

t4
[1, 1]

[1, 2]

[2, 3]

[1, 2]

p5

(a) (b)

Figure 5.2: Examples that the numbers of consistent states in TPN and un-
timed PN are not comparable in general.

state class to k state classes is O(k× (|�|+ |Ω|)). Assume in the un-
observable SCG that every observable transition can be fired from
every state class. The steps 3 to 12 will be executed |To| times for each
state class and the complexity is O(|To| × |�| × (|�| + |Ω|)). In this
case, the algorithm can be adapted to that it computes paths from the
initial state class to all other state classes and it can be done within
one breadth-first search at the beginning (between steps 1 and 2). Al-
though this adaptation is faster in this case, it may use more space to
store all paths.

The algorithm of diagnosis, Algorithm 5.2, checks all output edges
of every consistent state classes in the FDG (set S). Assuming each
state class has at most n output edges, the complexity of Algorithm 5.2
is O(n× |S|).

5.7 upper bound on the number of consistent states

As discussed in the previous section, the complexity of the diagnosis
algorithm depends on the number of consistent states. In this section,
we compute an upper bound of the number of consistent states cor-
responding to the observation. In [53], the computation of an upper
bound of the number of consistent markings in untimed PN is pro-
posed. However, it cannot apply directly to TPN.

In the following example, we show the number of consistent states
in TPN is not comparable to the one in untimed PN. Let us consider
the nets in Figure 5.2 and assume ε3 is the fault transition. In the
net in Figure 5.2(a), if the observation is wa = 〈t1, 1〉〈t5, 4〉, there are
two consistent states in the TPN and one in the untimed PN (shown
in Table 5.3). In the other net (Figure 5.2(b)), if wb = 〈t1, 1〉〈t4, 2〉,
in the untimed PN there are more consistent states than the ones in
TPN; and if wc = 〈t1, 1〉〈t4, 3〉, both of TPN and untimed PN have
the same number of consistent states.

In [53], it is proved that in untimed PN the number of consistent
markings corresponding to an observation is polynomial in the length
of the observation. We are going to compute an upper bound on the
number of state classes with the same marking, i.e., the maximal k

[September 6, 2016 at 9:07 – classicthesis version 4]

5.7 upper bound on the number of consistent states 63

Ta
bl

e
5
.3

:C
on

si
st

en
t

st
at

es
an

d
m

ar
ki

ng
s

in
TP

N
an

d
un

ti
m

ed
PN

of
ex

am
pl

es
in

Fi
gu

re
5

.2

ne
t

w
TP

N
un

ti
m

ed
PN

m
or

e
st

at
es

a
〈t
1

,1
〉〈
t 5

,4
〉

α
a
=
〈m

1
=
p
3

,0
6
x
4
6
2
〉,
α
′ a
=
〈m

1
=
p
3

,0
6
x
4
6
3
〉

m
1
=
p
3

TP
N

b
〈t
1

,1
〉〈
t 4

,2
〉

α
b
=
〈m

2
=
p
4

,∅
〉

m
2
=
p
4

,m
3
=
p
5

un
ti

m
ed

PN

〈t
1

,1
〉〈
t 4

,3
〉

α
b

,α
′ b
=
〈m

3
,∅
〉

m
2

,m
3

eq
ua

l

[September 6, 2016 at 9:07 – classicthesis version 4]

64 centralized diagnosis algorithms

such that ∀i, j ∈ {1, . . . ,k}, i 6= j, αi = 〈m, Fi〉, αj = 〈m, Fj〉, Fi 6= Fj.
Using this upper bound, the result in [53] can be adapted to TPN. We
assume that the unobservable subnet Nu of N is bounded and the
bounds of time intervals are non-negative integer numbers∗.

We define the following notations:

1. Cuo is the submatrix of C = Post− Pre such that its rows cor-
respond to Pu and columns correspond to To;

2. Cuu = Postu −Preu;

3. yu is a |Pu|-dimensional vector with strictly positive integer en-
tries such that yTuCuu 6 0;

4. I(t) = [I−(t), I+(t)] such that I−(t) and I+(t) are the lower and
upper bounds of the time interval associated to t.

Proposition 5.1 ([53]). In an untimed PN, in which the set of unobservable
transitions is Tu, if the length of observation is k, the number of consistent
markings is upper bounded by(

|Tu|

c1 + c2k+ |Tu|

)
(5.5)

where c1 = yTum
u
0 , mu0 is the marking of places p ∈ P,∃t ∈ Tu, t ∈

•p∪ p• and c2 is the maximal entry (element) of yTuCuo .

Proposition 5.2 ([10]). Let N be a TPN, the inequalities in every state class
are in the following forms:

1. at 6 xt 6 bt, for all enabled t, indicates that the transition t could
be fired in at time units and must be fired in no more than bt time
units;

2. xt − xt ′ 6 ctt ′ , for all enabled t and t ′ such that t 6= t ′, implies
that the time between the firing of t and t ′ is not larger than ctt ′ time
units.

Remark 5.3 ([10]). It is proved that at, bt and ctt ′ are linear combinations
with integer coefficients of I−(t) and I+(t). If ∀t ∈ T , I−(t), I+(t) ∈N>0,
the constants at,bt and ctt ′ in every domain are non-negative integer.

In the sequel, we will show first that the number of state classes,
which have the same marking, has an upper bound, and the upper
bound is independent of the length of observation (shown in Propo-
sition 5.4). Second, using Proposition 5.1 and Proposition 5.4, we
will indicate that the number of consistent state classes is finite corre-
sponding to the length of observation (Corollary 5.5).

Proposition 5.4. Let N = 〈P, T ,Pre,Post, I〉 be a TPN and m be a
marking. If the time bounds of the time intervals associated with transitions
are non-negative rational numbers, an upper bound of the number of state
classes corresponding tom is θ|T |

2+|T |, where θ = max({δ|t ∈ En(m), δ =
I+(t)})

†.
∗ It can also be applied to the case that the bounds are rational numbers. In this case,

the bounds can be multiplied by a number to convert them into integers.
† Here, θ is the maximal upper bound of the time intervals of enabled transitions.

[September 6, 2016 at 9:07 – classicthesis version 4]

5.7 upper bound on the number of consistent states 65

Proof. The number of state classes corresponding to one marking
equals the number of possible firing domains that could be obtained
by combining the inequalities in Proposition 5.2:

1. The form “at 6 xt 6 bt”: Initially, at = I−(t) and bt = I+(t). If
a transition t ′ 6= t is fired and t remains enabled in the new state
class, a new firing interval is selected for t in the new state class
a ′t 6 xt 6 b

′
t such that 0 6 a ′t 6 at and 0 6 b ′t 6 bt. Because

at (a ′t) and bt (b ′t) are non-negative integers, the number of
possible values of them are I−(t) + 1 and I+(t) + 1, respectively.
Therefore, for xt, the maximal number of inequalities in the
form at 6 xt 6 bt is (I−(t) + 1)(I+(t) + 1). In a state class
whose marking is m, the maximal number of inequalities of
this form is: ∏

t∈En(m)

(I−(t) + 1)(I+(t) + 1).

In the worst case, if all transitions are enabled, an upper bound
is θ2|T |.

2. The form “xt − xt ′ 6 ctt ′”: The variable xt and xt ′ satisfy xt 6
I+(t) and xt ′ > 0. There is xt − xt ′ 6 I+(t) − xt ′ 6 I+(t) and
the maximum number of inequalities of this form is:∏

t,t ′∈En(m),t 6=t ′
I+(t),

and an upper bound is θ|T |
2−|T |.

Finally, the maximal number of state classes corresponding to one
marking is θ2|T |θ|T |

2−|T | = θ|T |
2+|T |.

The number of consistent state classes is upper bounded by the
product of the upper bound of consistent markings, which is poly-
nomial in the length of observation, and the one of state classes that
have the same marking.

Corollary 5.5. Let 〈N = 〈P, T ,Pre,Post〉, I〉 be a TPN and m be a mark-
ing. If the time bounds of the time intervals associated with transitions are
non-negative integer numbers, the upper bound of consistent state classes
corresponding to each observation is finite.

Proof. The proof is trivial. An upper bound can be obtained by multi-
plying the number of consistent markings Equation 5.5 with the max-
imal number of state classes corresponding to one marking θ|T |

2+|T |:(
|Tu|

c1 + c2k+ |Tu|

)
θ|T |

2+|T |.

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

6
D E C E N T R A L I Z E D D I A G N O S I S A L G O R I T H M S

A system can be large and distributed in several (local) subsystems.
In this case, a centralized diagnoser (Chapter 5) is not practical and
a decentralized one is convenient. In this chapter, based on fault di-
agnosis graph (Chapter 4), we propose algorithms of decentralized
diagnosis using a coordinated decentralized architecture. According
to subsystems, each local diagnoser can observe only a subnet of the
observable transitions. They construct local fault diagnosis graphs us-
ing local observations and communicate local states to a coordinator.
The coordinator is constrained by limited memory and processing ca-
pability. It is in charge of computing diagnosis states of the global
system using information provided by local diagnosers.

67

[September 6, 2016 at 9:07 – classicthesis version 4]

68 decentralized diagnosis algorithms

Local observation Local observation Local observation

Local diagnosis

Coordinator

Local diagnosis Local diagnosis

(limited memory and processor)

Fault state

Subsystem 1 Σ1 Subsystem 2 Σ2 Subsystem n Σn

Figure 6.1: A coordinated decentralized architecture

6.1 introduction

In this chapter, we propose algorithms and examples on decentralized
diagnosis using FDG (Chapter 4).

The decentralized diagnosis uses a coordinator and local diagnosers.
The general algorithm for decentralized diagnosis (Section 6.2) is dif-
ferent from the one for centralized diagnosis (Section 5.2). In decen-
tralized diagnosis, first, each local diagnoser initialize its local FDG.
Second, they wait for an observation. Third, when a local diagnoser
observes the firing of an observable transition, it updates its local
FDG if necessary (Section 6.3). Forth, the local diagnoser send infor-
mation as a message to the coordinator. Last, the coordinator com-
putes diagnosis states (Section 6.4).

6.1.1 Decentralized diagnosis architecture

In real world, sensors may be distributed in various locations being
impractical to have a centralized diagnoser. Therefore, a decentralized
diagnosis approach, in which computation is distributed into local
diagnosers, is convenient.

We consider that the global system consists of several local diag-
nosers. Each one can observe a subset of the observable events (tran-
sitions) and computes local diagnosis states. Moreover, there is a
global coordinator, which receives messages from local diagnosers.
The message contains only brief information about local diagnosis
states, which can be transmitted efficiently. The coordinator has only
limited computation capacity, and the global diagnosis states must
be computed easily using the received messages. The decentralized
diagnosis architecture is illustrated in Figure 6.1.

[September 6, 2016 at 9:07 – classicthesis version 4]

6.1 introduction 69

Assuming there are k local diagnosers, we denote the set of ob-
servable transitions of the i-th local diagnoser as Toi such that To =⋃k
i=1 Toi.

Definition 6.1. For the TPN of a global system 〈N = 〈P, T ,Pre, Post〉, I〉,
the unobservable subnet of a subsystem Σi, whose subset of observable
transition is Toi, is 〈Nui = 〈P, Tui,Preui,Postui〉, Iui〉, where:

1. P is the set of places;

2. Tui = T \ Toi is the set of transitions which cannot be observed in Σi;

3. Preui and Postui are pre and post incidence matrices restricted to
Tui;

4. Iui : Tui → Q0 × (Q0 ∪ {∞}).

�

A subsystem Σi is the projection of the global system correspond-
ing to the observable transition of the i-th local diagnoser. The local
observation function of Σi is λi : σ → T∗oi. It extracts from σ the
sequence of observable transitions that can be observed by Σi. The
global observable function is λ : σ→ T∗o.

The considered decentralized diagnosis architecture follows the as-
sumptions in the sequel:

A1) The unobservable subnets in subsystems are acyclic. Does not
exist arbitrary long unobservable firing sequence in subsystems;

A2) All messages sent between the coordinator and subsystems are
received in the same order in which they are sent;

A3) Every subsystem knows which are observable transitions in the
whole system. (Nevertheless, it does not mean that every sub-
system can observe all observable transitions.)

A4) The coordinator does not know the structure and the initial state
of the system.

6.1.2 Adaptation of FDG to decentralized diagnosis

The FDG is optimized for diagnosis on timed systems, and in general
it has fewer state classes than the corresponding SCG. Hence, it will
be suitable for local diagnosers to store FDG rather than SCG, and
then we adapt FDG for decentralized diagnosis.

In decentralized diagnosis, each subsystem contains a subset of ob-
servable transitions of the global system, and then the number of
state classes in the local FDG is less than the one of the global FDG.
Remember that in the FDG the state classes obtained by the firing of
unobservable transitions are removed. Let us consider the PN in Fig-
ure 6.2(a) under the assumption that To = {t1, t3, t4, t5} and T1f = {t2}.
The full FDG is computed and shown in Figure 6.3(a). It contains
three state classes, while in the SCG (given in Figure 6.2(b)) there are

[September 6, 2016 at 9:07 – classicthesis version 4]

70 decentralized diagnosis algorithms

p1

p2

p3

p4

t1

ε2

t3

t4

t5

[1,2]

[1,2]

[1,2]

[1,3]

[1,1]

(a)

α0 α3

α1

α2

ε2 t4

t1

(b)

t5t3

Figure 6.2: (a) A TPN model, with the initial marking m0 = p1, used to
illustrate the computation of the firing domain. (b) The SCG of
the TPN system in (a).

Table 6.1: State classes in the SCG in Figure 6.2(b)

state class marking domain

α0 p1 (1 6 x2 6 2)∧ (1 6 x3 6 2)

α1 p2 1 6 x4 6 3

α2 p3 1 6 x5 6 1

α3 p4 1 6 x1 6 2

[September 6, 2016 at 9:07 – classicthesis version 4]

6.1 introduction 71

α0 α3

α2

t1

α0 α3

t1

α0 α3

α2
t3

t1

ε2t4

(a) FDG G1

(b) FDG G2

ε2t4

t3t5

(c) FDG G3

t5t1

ε2t4

t3 t5

Figure 6.3: (a) The FDG G of the net system in Figure 6.2(a) where To = {t1,
t3, t4, t5}. (b) The FDG G1 in the subsystem Σ1 where To1 = {t1,
t4, t5}. (c) The FDG G2 in Σ2 where To2 = {t1, t3, t4}.

[September 6, 2016 at 9:07 – classicthesis version 4]

72 decentralized diagnosis algorithms

four. The three state classes are reached by firing the observable tran-
sitions in To. Assume there are two subsystems Σ1 and Σ2, such that
in Σ1, the observable transitions are To1 = {t1, t4, t5}, while in Σ2, the
observable transitions are To2 = {t1, t3, t4}. The corresponding FDG
are computed using the same approach as in centralized case. They
are illustrated in Figure 6.3(b) and (c).

Having now only partial information, some information is lost.
One part of such information is the firing orders of the observable
transitions. Let us consider a firing sequence of the global system
σ = σu1t1σu2t2σu3t3. Assume a subsystem Σi in which only t3 is
observable, while t1 and t2 are observable but by other subsystems.
In the local FDG of Σi, there is an edge α0 → α1 with the label
〈t3, Iσ,Dσ〉, where:

1. t3 is the observed transition,

2. Iσ is the firing domain of σ, and

3. Dσ records the firing of fault transitions in σ.

Because Σi knows t1 and t2 are observable by other subsystems, this
knowledge can be used in the construction of local FDG and diagno-
sis. In order to preserve this information, we replace the first element
in the label, the observed transition, with a sequence of observable
transitions. In the case of σ, the associated sequence is λ(σ) = t1t2t3.
The last transition in the sequence is the one that can be observed in
the subsystem Σ3. The length of λ(σ) depends on σ. Because we as-
sume there is no arbitrary long unobservable firing sequence in any
subsystem, the number of transitions in λ(σ) is finite.

The other part of information, which is lost, consists of the firing
of unobservable transitions at a state class. Let us consider again the
firing sequence σ = σu1t1σu2t2σu3t3, but assume now that the lo-
cal observable transitions are t1 and t3. In the global system, where
t1, t2 and t3 are observable, there exists a path in the global FDG

α0
σu1t1−−−−→ α1

σu2t2−−−−→ α2
σu3t3−−−−→ α3. Assuming t1 is observed, α1 is a

consistent state class, and the label associated with the edge from α1
to α2 will be used in diagnosis. However, in the local FDG, because

t2 cannot be observed, the path becomes α0
σu1t1−−−−→ α1

σu2t2σu3t3−−−−−−−→ α3,
where σu2t2σu3 becomes an unobservable firing sequence. It is help-
ful to keep the information that t2 can be observed by other subsys-
tems. Using this information, we can partition the firing sequence
σu2t2σu3t3 into σu2t2 and σu3t3. Since we are interested in the fir-
ing of fault transitions, we store the diagnosis information of σu2t2
in the label of the edge α1 → α3.

Since more information is necessary to be kept in the decentralized
case, we extend the definition of the FDG to the following one.

Definition 6.2. A fault diagnosis graph of a subsystem Σi is a triple
Gi = 〈Ω,�,α0,Lv,Le〉, where:

1. α0 = 〈m0, F0〉 is the initial state,

[September 6, 2016 at 9:07 – classicthesis version 4]

6.2 general algorithm 73

2. � is the set of edges, such that α � α ′ means ∃σu ∈ T∗u, to ∈ Toi
and α ′ is reachable from α by firing σuto,

3. Ω = {α|α0 �∗ α}, where�∗ is the reflexive and transitive closure of
�,

4. Lv : Ω → {N, F, U}r is a labeling function that associates diagnosis
labels to nodes, where r is the number of fault classes,

5. Le :�→ T∗o × {Q>0× (Q>0 ∪ {∞})}× {N, F}∗ is a labeling function
of edges, i.e., for an edge e corresponding to α σuto−−−→ α ′, the label of e
is Le(e) = 〈λ(σuto), Iσuto ,Dσuto〉.

�

6.2 general algorithm

The general Algorithm 6.1 briefly shows how the diagnosis works.
The idea is that, when a transition is observed in a subsystem, first,
the subsystem updates its FDG and the set of consistent states (by
using Algorithm 6.2); second, it sends the observed transition and
consistent states to the coordinator; third, the coordinator computes
the diagnosis state using the observed transition and consistent states
sent by subsystems (by applying Algorithm 6.3).

In Algorithm 6.1, when the system starts evolving, the coordinator
is initialized (step 1). Assuming there are k subsystems, the coordina-
tor keeps for each one the partial observed wordswi, i = 1, . . . ,k from
the last communication from the subsystem to the present time. The
local FDGs and sets of consistent states of subsystems are also initial-
ized at the same time (steps 2 to 6). The set Wi contains unexplored
states in the local FDG and initially it contains output states of the
initial state (step 4). The set of consistent states S contains elements
as 〈α,−→σα,wα〉, where:

1. α is a reachable state, e.g., assuming there is a path α0
σu1t1−−−−→

α1
σu2t2−−−−→ α2

σu3t3−−−−→ α3 and t1t2t3 is observed, then a reachable
state is α3;

2. −→σα is the path vector from the initial state to α, e.g., in the above
mentioned path, the path vector to α3 is

−−−→
σu1t1+

−−−→
σu2t2+

−−−→
σu3t3;

3. wα is the list of observable transitions, e.g., considering the path
above, since the input edge of α3 is σu3t3, then wα3 is t3.

When a new observation comes at subsystem Σi, the local FDG is
updated if there exists unexplored vertices in it (step 8). For each
reachable state α in S, if in the local FDG it has an output edge, de-
noted as 〈α, 〈−→σtj, I,we〉,α ′〉, from α to α ′ and labeled with 〈−→σtj, I,we〉
that, in the firing count vector σ, the firing count of the observed tran-
sition is 1 and the output state α ′ is not explored (step 9), then the lo-
cal FDG and W are updated (steps 10 to 13). Considering an element
〈α,−→σα,wα〉 ∈ Si, if α has an output edge 〈α, 〈−→σtj, I,we〉,α ′〉 and tj can

[September 6, 2016 at 9:07 – classicthesis version 4]

74 decentralized diagnosis algorithms

be fired at τj according to I , then a new element 〈α ′,−→σα +
−→
σtj,we〉

is inserted into the updated set of consistent states corresponding to
the observation that tj is observed at τj (step 15). After updating, the
subsystem sends the observed transition tj and the following infor-
mation Vi to the coordinator (step 16). The information Vi contains
elements in the form 〈−→σα,wα,Dα〉:

1. path vector −→σα of a consistent state 〈α,−→σα,we〉, which is used
for detecting fault occurrence before tj is observed,

2. the list of observable transitions wα for the verification if α is
reachable or not based on global observation,

3. the diagnosis label Dα of α.

The coordinator uses Vi and tj for diagnosis and send the partial
observed word wli to Σi (step 17). Elements satisfying 〈α,−→σα,wα〉
that wα 6= wli are removed from Si (step 18).

Algorithm 6.1 General Fault Diagnosis Algorithm

1: Wco := {wi|wi = ε, i = 1, . . . ,k} . the coordinator
2: for each Σi, i = 1, . . . ,k do
3: compute the unobservable Gscg based on Toi

. Toi is the set of observable transitions in Σi
4: [Gi,Wi] := FDGd(N, ∅,Gscg, ∅, Toi, To)

. initialize the FDG of each subsystem
5: Si := {〈α0, 0, ε〉}

. initialize the set of consistent states
6: end for
7: let tj be a new observation at τj at Σi
8: if Wi 6= ∅ then
9: for each α ∈ Si s.t. ∃〈α, 〈−→σtj, I,we〉,α ′〉 ∈ Gi

∧α ′ ∈Wi do
10: compute the SCG Gscg of the unobservable subnet based on

Toi with the initial state α ′

11: [Gi,Wi] := FDGd(N,Gi,Gscg,Wi, Toi, To)
. update Gi by using Gscg

12: Wi :=Wi \ {α
′} . remove explored α ′ from Wi

13: end for
14: end if
15: update Si according to tj and τ
16: compute Vi from Si and Gi

. compute the information for sending to the coordinator
17: [wli,Wco,D] := coordinator(Wco,Vi, tj)
18: remove states inconsistent with wli from Si
19: go to 7

6.3 update the fdg in the subsystems

In a subsystem, the local FDG is updated using an SCG, where its
initial state is a state in the FDG. The SCG is obtained by firing only

[September 6, 2016 at 9:07 – classicthesis version 4]

6.4 the coordinator 75

transitions which cannot be observed in the subsystem. If a state in
the SCG enables a transition that can be observed in the subsystem,
then the successor state is computed by firing the observable transi-
tion at the state and a new node representing the successor state is
inserted into the FDG. Paths in the SCG from the initial state of the
SCG to the successor state are found and edges labeled with the paths
are added into the FDG.

The local FDG of a subsystem is constructed using Algorithm 6.2.
For every state αu in the SCG Gscg, such that there exists an observ-
able transition tj that can be fired at αu (step 4), the successor state α
(of αu) is computed by firing tj (step 5). If α does not belong to the
FDG, i.e., α is a newly obtained state and it has not been explored,
then α is added to the set of unexplored states W (step 7). All paths
from the initial state α0 of Gscg to αu are found in Gscg (step 9), and
then for each path its firing domain I is computed (step 11). The list
of observable transitions of the edge is computed as w (step 12), and
the FDG is updated with the state α as a node and an edge labeled
with 〈α0, 〈−→σt, I,w〉,α〉 (step 13).

The fault occurrence in the unobservable firing sequences starting
at α0 is detected in two steps and stored as the label of α0. The first
step consists in finding the unobservable firing sequences from α0
to every node (step 14). In the second step, the unobservable firing
sequences are used to update the label of the node of α0 (step 15).
Considering an unobservable firing sequence σu and a fault class T if ,
if ∃t ∈ T if and t is fired in σu, then we label σu with 〈i, F〉; otherwise,
the label is 〈i, N〉. If Dα0 is emptied, then the label of σu is added into
Dα0 . If the diagnosis state of T if in Dα0 is the same as the label asso-
ciated to σu, then Dα0 remains unchanged; otherwise, the diagnosis
state of T if in Dα0 will be changed to U.

6.4 the coordinator

6.4.1 Coordinator design

In decentralized diagnosis, the diagnosis states are computed by the
coordinator using messages sent from local diagnosers. The tasks of
local diagnosers consist of:

1. observing the firings of observable transitions,

2. constructing local FDG, and

3. reporting local states to the coordinator.

Only local diagnosers that observe firings of observable transitions
perform the second and third tasks. The tasks of the coordinator in-
clude:

1. computing the diagnosis states, and

2. sending to each diagnoser, which reported its local states, mes-
sages so that they can update local consistent states.

[September 6, 2016 at 9:07 – classicthesis version 4]

76 decentralized diagnosis algorithms

Algorithm 6.2 [G,W] = FDGd(N,G,Gscg,W, T io, To)

1: α0 := the initial state in Gscg
2: Dα0 := ∅ . initialize the label of α0
3: for each αu = 〈mu, Fu〉 ∈ Gscg do
4: for each t ∈ En(mu)∩ To s.t. isFireable(αu, t) do
5: α = succ(αu, t) . compute the successor
6: if α 6∈ G then . if α is not explored
7: W =W ∪ {α} . update W
8: end if
9: P := the paths from α0 to αu in Gscg

10: for each σ ∈ P do
11: I := domain(Gscg,σt,α0) . the firing domain of σt
12: w = λi(σt) based on To
13: add α and 〈α0, 〈−→σt, I,w〉,α〉 to G

14: divide σ into σ = σut
′
oσ
′

15: update Dα0 using σu
16: end for
17: end for
18: end for
19: associate Dα0 with α0 that Lv(α0) = Dα0
20: return G,W

We assume a limited computing capacity for the coordinator in-
cluding processors, memory and so on. Therefore, we must ensure
that:

1. the coordinator does not save FDG,

2. the computation of diagnosis states should be simple.

The coordinator receives messages from local diagnosers. Let us
discuss first the information available in local diagnosers:

1. the observed transition;

2. the diagnosis information of the paths from the initial state class
to the consistent ones, and the information is represented using
a vector whose length equals to the number of fault classes;

3. the partial observed word that is a list representing the observed
transitions in their observed order since the last communication
with the coordinator;

4. the consistent state classes corresponding to the observed tran-
sition;

5. the consistent classes corresponding to the observed transition;

6. the diagnosis labels associated with these consistent state classes;

7. the local FDG.

[September 6, 2016 at 9:07 – classicthesis version 4]

6.4 the coordinator 77

Among these information, 1), 4), 6) and 7) are needed in local diagno-
ers. The coordinator needs 2), 3) and 5). The reasons are in the sequel.
The observed transition is the last transition in the partial observed
word, so it is not necessary to be sent. Because the computation of
diagnosis states focuses on paths (not in which state classes the sys-
tem is), the consistent state classes are not used in diagnosis and will
not be sent. With these information, the coordinator does not need
local FDG for diagnosis. Moreover, it is too large to be sent to the
coordinator.

The coordinator keeps in its memory a partial observed word for
each diagnoser. The observed word starts from the last communica-
tion with the diagnoser until the current observation.

6.4.2 Algorithms

The coordinator keeps, for each subsystem, a partial observed word
to check if the consistent states reported by a subsystem are consis-
tent with the global observation or not. Because a subsystem does
not observe all observable transitions, a consistent state in a subsys-
tem may not be consistent in the global system. In the diagnosis, the
coordinator first removes inconsistent states and second finds the oc-
currence of fault events corresponding to each consistent state, i.e.,
every fault transition is fired or not in the path from the initial state
to the consistent state and the unobservable firing sequences starting
at the consistent state. Last, the diagnosis state is computed using the
occurrence of fault events in the first step.

In Algorithm 6.3, the partial observed words wi, i = 1, . . . ,n of all
subsystems are updated using to in the received information (steps
1 to 3). The observed word of the subsystem which reports an ob-
servation will be set to the empty word after the diagnosis in the
coordinator. The coordinator uses the partial observation wi and the
list of observed transitions to check the consistence of each element
in the received information Vi (steps 4 to 8). After removing from Vi
the inconsistent elements, the system is diagnosed using Vi (steps 9

to 24). For the i-th fault class, firstly, each element in the received mes-
sage is checked (steps 10 to 16). If there is a transition in the fault class
fired in σ, then this element is labeled as fault of the corresponding
fault class (step 12). Otherwise, the element is labeled as Dl, which
represents the fault transitions are fired or not in the unobservable fir-
ing sequences after the observation (step 14). After all elements have
been processed, the coordinator computes the diagnosis state of the
global system. If all elements are labeled as N, then the fault has not
occurred (step 17) and in the global diagnosis state D, the diagnosis
state of T if is N (step 18). The global diagnosis state of T if is F, if ev-
ery element is labeled as F (step 19). Otherwise, fault may occur, and
the diagnosis state is U (step 22). The variable wi will be sent to the
subsystem Σi as wli (step 25), and wi is set to the empty word (step
26).

[September 6, 2016 at 9:07 – classicthesis version 4]

78 decentralized diagnosis algorithms

Algorithm 6.3 [wli,Wco,D] = coordinator(Wco,Vi, to)

1: for each wi ∈Wco, i = 1, . . . ,k do
. assume there are k subsystems

2: wi := wito
3: end for
4: for each 〈σ,wl,Dl〉 ∈ Vi do
5: if wl 6= wi then . wi is the i-th element in Wco
6: Vi := Vi \ {〈σ,wl,Dl〉}
7: end if
8: end for
9: for each T if , i = 1, . . . , r do

10: for each 〈σ,wl,Dl〉 ∈ Vi do
11: if ∃tf ∈ T if , tf ∈ σ then
12: T if is labeled as fault of 〈σ,wl,Dl〉
13: else
14: T if is labeled as the corresponding

diagnosis state in Dl
15: end if
16: end for
17: if ∀〈σ,wl,Dl〉 ∈ Vi, the labels of T if are normal then
18: The diagnosis state of T if in D is normal.
19: else if ∀〈σ,wl,Dl〉 ∈ Vi, the labels of T if are fault then
20: The diagnosis state of T if in D is fault.
21: else
22: The diagnosis state of T if in D is uncertain.
23: end if
24: end for
25: wli := wi
26: wi := ε

[September 6, 2016 at 9:07 – classicthesis version 4]

6.5 example 79

p1

p2

p3

p4

p5

p6

p7

p8

ε5

t6

t7

ε8 ε4

ε3

ε2

ε1

t9

t10

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

[1, 4]

Figure 6.4: A TPN containing two subsystems

6.5 example

Let us consider the TPN system in Figure 6.4 with m0 = [1 1 0 0 0

0 0 0]T . The set of observable transitions is To = {t6, t7, t9, t10}. There
are two subsystems Σ1 and Σ2. The sets of observable transitions of
Σ1 and Σ2 are To1 = {t6, t9, t10} and To2 = {t7, t9, t10}, respectively.
Time duration of every transition is [1, 4]. There is one fault class T1f
containing transition ε2. The initial state is α1 = 〈m0, (1 6 x5 6 4)
∧(1 6 x6 6 4) ∧(1 6 x7 6 4) ∧(1 6 x8 6 4〉). Let us assume the
observed transition is t6(2), which means t6 is observed at time 2.

In the diagnosis corresponding to the empty observation, the coor-
dinator and two subsystems initialize their variables. Since there are

Table 6.2: States in local FDGs in Figure 6.5

m F Dα

α1 [1 1 0 0 0 0 0 0]T 1 6 x5 6 4∧ 1 6 x6 6 4∧ 1 6 x7 6
4∧ 1 6 x8 6 4

N

α2 [0 1 0 1 0 0 0 0]T 0 6 x7 6 3 ∧ 0 6 x8 6 3 ∧ −3 6
x7 − x8 6 3

U

α3 [1 0 0 0 1 0 0 0]T 0 6 x5 6 3 ∧ 0 6 x6 6 3 ∧ −3 6
x5 − x6 6 3

N

α4 [0 0 1 0 1 0 0 0]T 1 6 x1 6 4 N

α5 [0 0 0 1 0 1 0 0]T 1 6 x2 6 4 N

α6 [0 0 0 1 1 0 0 0]T 1 6 x4 6 4 N

[September 6, 2016 at 9:07 – classicthesis version 4]

80 decentralized diagnosis algorithms

Table 6.3: Edges in local FDGs Figure 6.5

σ I we

e11 [0 0 0 0 0 1 0 0 0 0] [1, 4] t6

e12 [0 0 0 0 0 1 1 0 0 0] [1, 4] t7t6

e13 [0 0 0 0 0 1 0 1 0 0] [1, 4] t6

e14 [1 0 0 0 1 0 1 0 1 0] [3, 12] t7t9

e15 [0 0 1 0 1 0 0 1 0 1] [3, 12] t10

e16 [0 0 0 1 0 0 1 0 0 1] [2, 11] t7t10

e17 [0 1 0 0 0 0 0 1 1 0] [2, 11] t8

e18 [0 0 0 1 0 0 0 0 0 1] [2, 8] t10

e19 [0 1 0 0 0 0 0 0 1 0] [2, 8] t9

e21 [0 0 0 0 0 0 1 0 0 0] [1, 4] t7

e22 [0 0 0 0 1 0 1 0 0 0] [1, 4] t7

e23 [0 0 0 0 0 1 1 0 0 0] [1, 4] t6t7

e24 [0 0 1 0 1 0 0 1 0 1] [3, 12] t10

e25 [0 1 0 0 0 1 0 1 1 0] [3, 12] t6t9

e26 [1 0 0 0 1 0 0 0 1 0] [2, 11] t9

e27 [0 0 0 1 0 1 0 0 0 1] [2, 11] t6t10

e28 [1 0 0 0 0 0 0 0 1 0] [2, 8] t9

e29 [0 0 0 1 0 0 0 0 0 1] [2, 8] t10

[September 6, 2016 at 9:07 – classicthesis version 4]

6.5 example 81

α1

α6

α5

α2

e11

e13

e12
e15

e14
α1

α4

α6

α3

e21

e23

e22
e25

e24

α1

α6

α5

α2

e11e16

e13

e19

e12e18
e15

e14

e17

α1

α4

α6

α3

e21

e23

e22
e25

e24

(a) Σ1 (w = ε) (b) Σ2 (w = ε)

(d) Σ2 (w = t6)(c) Σ1 (w = t6)

Figure 6.5: Local FDGs

two subsystems, the coordinator initializes Wco = {w1 = ε,w2 = ε}.
The local FDGs of two subsystems are initialized as shown in Fig-
ure 6.5(a) and (b). Details of vertices and edges are shown in Table 6.2
and Table 6.3, respectively. In order to explain clearly, if two states in
different local FDGs are the same, we give them the same name, e.g.,
the initial state in two FDGs are the same state and they are denoted
as α1. In the initialization of local FDGs, the sets of unexplored states
of Σ1 and Σ2 are W1 = {α2,α5,α6} and W2 = {α3,α4,α6}, respec-
tively, and the set of consistent states of Σ1 is S1 = {〈α1, 0, ε〉} while
for Σ2 the set is S2 = {〈α1, 0, ε〉}.

In the diagnosis corresponding to the empty word, two subsystems
send messages to the coordinator. Considering Σ1 sends a message to
the coordinator, the message is ε, which is the empty observation,
and V1 = {〈0, ε, N〉}, where 0 and ε are from the element 〈α1, 0, ε〉 in
S1 and N, which is the label Dα of α1 in the FDG of Σ1 and it means
that ε2 is not fired in the unobservable firing sequences starting at
α1. When receives the information V1, the coordinator compares the
vector 0 in V1 with w1 in Wco. The information V1 is consistent with
wi, then the diagnosis state is computed using the message. Because
the path vector is 0, which means no fault transition is fired in the
path, and in the information the label of fault information is normal,
so the diagnosis state of T1f is N.

After the diagnosis, the coordinator sends w1 to Σ1 and sets w1
to the empty word. In Σ1, element in S1 is compared with w1. The

[September 6, 2016 at 9:07 – classicthesis version 4]

82 decentralized diagnosis algorithms

received w1 is ε and a list of observable transition in the element
〈α1, 0, ε〉 is also the empty word. The communication between Σ2 and
the coordinator is similar to the one between Σ1 and the coordinator.
After the communication, there are:

1. in the coordinator is Wco = {w1 = ε,w2 = ε},

2. in Σ1 and Σ2, the sets of unexplored states areW1 = {α2,α5,α6}
and W2 = {α3,α4,α6}, respectively,

3. the sets of consistent states in Σ1 and Σ2 are S1 = {〈α1, 0, ε〉}
and S2 = {〈α1, 0, ε〉}, respectively.

The observation is t6 at time 2 in Σ1. In the local FDG of Σ1, from
the consistent state α1, three states α2, α5 and α6 can be reached by
observing t6. Since the three states have not been explored, W1 =

{α2,α5,α6}, its FDG is updated as shown in Figure 6.5(c). After the
update, three states are removed from W1 and no state is inserted
into W1, then W1 becomes an empty set. It means the local FDG of
Σ1 has been obtained completely and in further diagnosis, it will not
be updated. The consistent states corresponding to the observed word
are found in the local FDG and S1 is constructed as {〈α2, [0 0 0 0 0
1 0 0 0 0], t6〉, 〈α5, [0 0 0 0 0 1 0 1 0 0], t6〉, 〈α6, [0 0 0 0 0 1 1 0 0 0], t7t6〉}.
Take the last element in S1 as an example. The state α6 is reached
from α1 by the edge e12 and the path vector is obtained by adding
0, which is the path vector of α1 in previous set of consistent state,
and [0 0 0 0 0 1 1 0 0 0], which is the firing count vector of the
edge e12. The sequence t7t6 comes from the label of e12. The infor-
mation sent to the coordinator contains the observed transition t6
and V1 = {〈[0 0 0 0 0 1 0 0 0 0], t6, U〉, 〈[0 0 0 0 0 1 0 1 0 0], t6, U〉,
〈[0 0 0 0 0 1 1 0 0 0], t7t6, N〉}. Considering the first element 〈[0 0 0
0 0 1 0 0 0 0], t6, U〉, the vector [0 0 0 0 0 1 0 0 0 0] and t6 are from
the first element in S1 while the diagnosis information U is the label
of α2 in the local FDG. The message sent to the coordinator is V1 and
t6, the observed transition. In the coordinator, when the message is
received, first the set Wco is updated using the observed transition t6
to Wco = {w1 = t6,w2 = t6}. Using the updated Wco, the coordina-
tor checks the consistency of elements in V1. Because there are t6 in
the first and second elements in V1, so they are consistent with w1 in
Wco. In the third element in V1, there is t7t6 and it means the global
observation generated by this path is t7t6. Since w1 is t6, so the ele-
ment is not consistent with w1 and it is eliminated from V1 and V1
becomes V1 = {〈[0 0 0 0 0 1 0 0 0 0], t6, U〉, 〈[0 0 0 0 0 1 0 1 0 0], t6, N〉}.
The diagnosis is conducted using the reduced V1 as following:

1. the first element is labeled as uncertain since the diagnosis label
in it is uncertain, which means the fault transition ε2 may be
fired in unobservable firing sequences after the observation;

2. the second element is labeled as uncertain;

3. because the two elements show the fault transition is fired in
some cases and not fired in others, then the global diagnosis
state is U of T1f .

[September 6, 2016 at 9:07 – classicthesis version 4]

6.5 example 83

After the diagnosis, the coordinator sends w1 = t6 to Σ1 and set
w1 = ε. The subsystem Σ1 uses received w1 = t6 to reorganize S1
and the element 〈α6, [0 0 0 0 0 1 1 0 0 0], t7t6〉} is removed from S1.
Finally, the variables in the coordinator and two subsystems are:

1. in the coordinator, Wco = {w1 = ε,w2 = t6};

2. in Σ1, S1 = {〈α2, [0 0 0 0 0 1 0 0 0 0], t6〉, 〈α5, [0 0 0 0 0 1 0

1 0 0], t6〉} and W1 = ∅;

3. in Σ2, S2 = {〈α1, 0, ε〉} and W2 = {α3,α4,α6}.

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

7
C A S E S T U D Y

We apply fault diagnosis graph (Chapter 4) based centralized (Chap-
ter 5) and decentralized diagnosis (Chapter 6) to three cases. There
are two systems used in the case study for centralized diagnosis. One
first system is a flexible manufacturing system. It contains four robot
arms and two vehicles. The second case is a semiconductor produc-
tion system. We compare our approach with an untimed one using
these systems. The third case study focus on a robot motion system.
It is represented using a TPN with two processes. The decentralized
diagnosis is illustrated with detailed analysis. The diagnosis pack-
age is implemented in SimHPN, which can be downloaded from
https://webdiis.unizar.es/GISED/.

85

[September 6, 2016 at 9:07 – classicthesis version 4]

86 case study

7.1 introduction

We apply the algorithms of centralized diagnosis (Chapter 5) to the
example in Section 7.2 and use decentralized diagnosis algorithms
(Chapter 6) to the system in Section 7.3.

In the case on centralized diagnosis, our algorithms are applied to a
flexible manufacturing with an untimed approach. A numerical com-
parison shows that: first, our approach can be as fast as the untimed
one; second, because timing information is not taken into account by
the untimed approach, false diagnosis states may appear, but ours do
not have this problem. The case study on the decentralized system
illustrates how the algorithms work, including: how local diagnosers
construct local fault diagnosis graph and extract information from
these graphs for sending to the coordinator; and how the coordina-
tor computes diagnosis states and helps local diagnosers to improve
their local fault diagnosis graph.

7.2 centralized diagnosis

7.2.1 A flexible manufacturing system

In this section, we apply the proposed approach to a manufacturing
system. Let us consider the automated manufacturing system whose
layout is sketched in Figure 7.1 and its PN model is shown in Fig-
ure 7.2 [44]. Our approach is compared with the one in [15, 51], which
focuses on untimed PN, in terms of computational complexity. When
the firing of an observable transition is observed, we look in the FDG
for the part necessary for the diagnosis. If the part has already been
constructed, the algorithm passes to the next step. In this case, the
FDG based approach is as fast as the untimed one. The numerical ex-
periment is carried out on a Intel Mac with a clock of 2.3 GHz using
Matlab with GLPK [45].

Let us consider the automated manufacturing system whose layout
is sketched in Figure 7.1 and its PN model is shown in Figure 7.2 [44].

The plant consists of five machines (M1 to M5), four robots (R1

to R4), a finite capacity buffer B, two inputs of raw parts (I1 and
I2) of type 1 and type 2, respectively, two automated guided vehicle
(AGV) systems (AGV1 and AGV2), and finally two outputs (O1 and
O2) for the processed parts. The plant produces two different types
of products from two types of raw materials. An unlimited source of
raw parts is assumed.

The plant is described using an untimed PN in which there are 35
places and 24 transitions. The marking of place p33 is the number of
free buffer slots in the cobuffer. As in [30], we assume that the system
is controlled by the addition of three monitor places (p36, p37, p38).

Let the observable transitions be t1 to t12 and unobservable tran-
sitions be ε13 to ε24, which correspond to regular events. The ob-
servable transitions are the introduction of parts in one of the two
production lines (transitions t1 and t12), the introduction of parts in

[September 6, 2016 at 9:07 – classicthesis version 4]

7.2 centralized diagnosis 87

I1

M1

R3

M3

AGV1

O1

R1

M2

R2

B

I2

M4

R4

M5

AGV2

O2

I1

M1 M2

B

M3

AGV1

I2

M4

B

M5

AGV2

Figure 7.1: An automated manufacturing system

p1

p2

p3
p4

p5
p24 p6 p25

p7 p8

p9

p10

p11

p12

p13
p34

p26

p31

p36

p29

p38

p33

p30

p14

p15

p16

p17 p27

p18

p19

p20

p21 p28

p22

p35p23

p32

p37

t1

t2 t3

t4

t5 t11

t10

t9

t8

t7

t6

t12

ε13 ε14

ε15 t16

ε17
ε18

ε19

ε20

ε21 ε24

ε23

ε22
ε25

ε26

C1
C2

C3

M2 M4

R1

B

R2

AGV1

AGV2

M5M3

R3 R4

M1
6

Figure 7.2: PN system of the manufacturing system in Figure 7.1

[September 6, 2016 at 9:07 – classicthesis version 4]

88 case study

the buffer by R3 (transitions t2 and t3), all operations performed by
robot R4 (transitions t6, t7, t8 and t9), the withdrawal of parts from
one of the two production lines by robot R2 (transitions t4 and t10)
and the output parts in the AGV systems AGV1 and AGV2 (transi-
tions t5 and t11).

Two different types of faults modeled by the unobservable transi-
tions ε25 and ε26 are considered and we assume two fault classes
T1f = {ε25} and T1f = {ε26}. The first class of fault corresponds to
a malfunctioning of robot R1 that moves one raw part of the second
type to the first production line, so that it is processed by machine M2

instead of M4. The second class of fault corresponds to a malfunction-
ing of robot R2 that moves one part of the first type, after it has been
processed by machine M3, and sends it to AGV2 who directs it to the
wrong output (O2 instead of O1).

The time intervals of the transitions are: I(t1) = [3, 8], I(t2) = [1, 8],
I(t3) = [2, 6], I(t4) = [2, 7], I(t5) = [3, 5], I(t6) = [8, 8], I(t7) = [7, 8],
I(t8) = [2, 5], I(t9) = [7, 7], I(t10) = [5, 7], I(t11) = [1, 3], I(t12) = [2, 2],
I(ε13) = [2, 4], I(ε14) = [1, 3], I(ε15) = [1, 3], I(t16) = [3, 8], I(ε17) =

[3, 3], I(ε18) = [4, 7], I(ε19) = [5, 7], I(ε20) = [5, 6], I(ε21) = [5, 7],
I(ε22) = [3, 7], I(ε23) = [5, 7], I(ε24) = [3, 8], I(ε25) = [5, 8], I(ε26) =

[3, 4], respectively. The initial marking is shown in Figure 7.2, and it
corresponds to an intermediate production state. The initial marking
implies that: 1) one product is being taken by R2 from M3 to AGV1

(one token in p12); 2) one material is being moved to M4 by R1 (one
token in p16); 3) M4 is producing a product (one token in p17); 4) one
product is in the buffer B (one token in p19). The observed word is
w = 〈t11, 5〉 〈t8, 7〉 〈t12, 9〉 〈t9, 16〉 〈t10, 23〉 〈t6, 26〉 〈t11, 29〉 〈t12, 31〉
〈t7, 34〉 〈t8, 39〉 〈t9, 46〉 〈t10, 53〉 〈t6, 56〉 〈t11, 59〉 〈t12, 61〉 〈t7, 64〉 〈t8, 69〉
〈t9, 76〉.

The computation results are briefly summarized in Table 7.1. The
columns are divided into three parts. In the ‘observation’ part, each
row corresponds to an observed transition in the observed word w.
The columns titled ‘PN_DIAG’ contain the results obtained using
the untimed approach [15]. There are three columns in this part: col-
umn ‘total’ consists of the computation time consumed for diagnosis,
while the diagnosis states are given in columns ‘T1f ’ and ‘T2f ’. The re-
sults based on the untimed approach are shown in the last columns.
The computation time consumed using FDG are represented in three
columns: 1) ‘total’: the total computation time consumed using FDG;
2) ‘generate’: the computation time spent on updating the FDG; 3) ‘di-
agnose’: the computation time spent on diagnosis on FDG. The time
unit is second. The column ‘size’ contains the size of FDG and the
values in the column ‘S’ are the sizes of S (the set of consistent state
classes). The diagnosis states are given in columns ‘T1f ’ and ‘T2f ’.

Let us first discuss the time consumed in both approaches. The re-
sults are divided into two parts. The first part starts from the first row
until the thirteen one, and the rest corresponds to the second part. In
the first part, the size of the FDG increases in each step and in the
second part it remains constant because the algorithm of updating
the FDG (Algorithm 4.2) is not performed. In the first part, the time

[September 6, 2016 at 9:07 – classicthesis version 4]

7.2 centralized diagnosis 89

Ta
bl

e
7

.1
:R

es
ul

ts
of

so
m

e
nu

m
er

ic
al

si
m

ul
at

io
ns

ca
rr

ie
d

on
th

e
sy

st
em

in
Fi

gu
re

7
.2

(t
im

e
un

it
:s

=s
ec

on
d)

.B
y

us
in

g
th

e
in

fo
rm

at
io

n
fr

om
ti

m
e

in
te

rv
al

s,
th

e
FD

G
ba

se
d

ap
pr

oa
ch

co
m

pu
te

s
th

e
di

ag
no

si
s

st
at

es
in

a
m

or
e

pr
ec

is
e

w
ay

(l
es

s
un

ce
rt

ai
n

st
at

es
)

th
an

th
e

un
ti

m
ed

on
es

.H
ow

ev
er

,i
n

or
de

r
to

us
e

th
e

ti
m

e
in

fo
rm

at
io

n,
th

e
ti

m
e

co
m

pl
ex

it
y

is
in

cr
ea

se
d.

ob
se

rv
at

io
n

PN
_D

IA
G

(U
nt

im
ed

)
FD

G

t o
to

ta
l(

s)
T
1 f

T
2 f

to
ta

l(
s)

ge
ne

ra
te

(s
)

di
ag

no
se

(s
)

S
si

ze
T
1 f

T
2 f

1
〈ε

,0
〉

0
.0

0
1
7

N
U

0
.1

2
4
9

0
.1

2
4
3

0
.0

0
0
6

1
4

N
U

2
〈t
1
1

,5
〉

0
.0

0
2
9

N
F

0
.0

4
3
9

0
.0

4
2
8

0
.0

0
1
1

1
5

N
F

3
〈t
8

,7
〉

0
.0

0
1
3

N
F

0
.0

4
0
8

0
.0

3
9
1

0
.0

0
1
7

1
6

N
F

4
〈t
1
2

,9
〉

0
.0

0
0
9

N
F

0
.0

5
0
7

0
.0

4
9
0

0
.0

0
1
7

1
7

N
F

5
〈t
9

,1
6
〉

0
.0

0
1
2

N
F

0
.0

6
0
1

0
.0

5
8
8

0
.0

0
1
3

1
8

N
F

6
〈t
1
0

,1
3
〉

0
.0

0
1
4

N
F

0
.1

2
8
2

0
.1

2
7
0

0
.0

0
1
2

1
1
0

N
F

7
〈t
6

,2
6
〉

0
.0

0
5
4

U
F

0
.7

6
8
9

0
.7

6
7
1

0
.0

0
1
8

2
2
2

N
F

8
〈t
1
1

,2
9
〉

0
.0

0
3
1

U
F

1
.0

2
4
5

1
.0

1
9
8

0
.0

0
4
7

5
3
5

N
F

9
〈t
1
2

,3
1
〉

0
.0

0
2
9

U
F

1
.2

9
3
9

1
.2

8
7
3

0
.0

0
6
6

7
4
0

N
F

1
0
〈t
7

,3
4
〉

0
.0

0
2
4

U
F

1
.7

5
1
4

1
.7

3
1
4

0
.0

2
0
0

5
4
7

U
F

1
1
〈t
8

,3
9
〉

0
.0

0
3
6

U
F

1
.3

9
5
7

1
.3

8
6
6

0
.0

0
9
1

6
5
3

U
F

1
2
〈t
9

,4
6
〉

0
.0

0
1
9

U
F

0
.7

9
8
3

0
.7

9
0
7

0
.0

0
7
6

5
5
8

U
F

1
3
〈t
1
0

,5
3
〉

0
.0

0
4
7

U
F

0
.1

4
2
4

0
.1

4
0
0

0
.0

0
2
5

2
5
9

U
F

1
4
〈t
6

,5
6
〉

0
.0

0
8
2

U
F

0
.0

0
2
9

0
.0

0
0
3

0
.0

0
2
6

2
5
9

N
F

1
5
〈t
1
1

,5
9
〉

0
.0

0
4
1

U
F

0
.0

0
5
4

0
.0

0
0
3

0
.0

0
5
1

5
5
9

N
F

1
6
〈t
1
2

,6
1
〉

0
.0

0
3
6

U
F

0
.0

0
9
4

0
.0

0
0
4

0
.0

0
9
0

7
5
9

N
F

1
7
〈t
7

,6
4
〉

0
.0

0
3
7

U
F

0
.0

1
4
7

0
.0

0
0
7

0
.0

1
4
0

5
5
9

U
F

1
8
〈t
8

,6
9
〉

0
.0

0
3
9

U
F

0
.0

1
3
3

0
.0

0
0
6

0
.0

1
2
6

6
5
9

U
F

1
9
〈t
9

,7
6
〉

0
.0

0
3
7

U
F

0
.0

0
8
5

0
.0

0
0
5

0
.0

0
8
1

5
5
9

U
F

[September 6, 2016 at 9:07 – classicthesis version 4]

90 case study

used by the approach in [15] is shorter than the approach based on
FDG, where most of the time is spent on updating the FDG. In the sec-
ond part, the time spent by the approach based on FDG is decreased
because FDG is not updated.

The time spent on diagnosis is influenced by the size of S, because
the diagnosis algorithm (Algorithm 5.1) uses the output edges of each
state class in S to compute diagnosis states. Consider the column of
the time of diagnosis (‘diagnose’) and the sizes of S (‘S’). The influ-
ence is twofold. On one hand, in the diagnosis after the observation
of t11 (the second row), the algorithm finds one consistent state class,
while after the observation of t12 for the second time (the ninth row),
seven consistent state classes are found. This makes the time con-
sumed by the diagnosis algorithm after the observation of t12 for the
second time higher than the one corresponding to t11. If there are
n state classes in the consistent state classes computed in the previ-
ous step, the diagnosis algorithm has to check the output edges of
n state classes for the firings of fault transitions. This influences the
time spent on diagnosis.

In the second part of Table 7.1 (from the fourteenth row), the values
in the column ‘generate’ should be very small, because the FDG is
not updated. The times in the column ‘generate’ correspond to the
execution of steps 8 to 11 in Algorithm 5.1, which check if consistent
state class has been explored or not (step 8) and update the FDG if
the consistent state class has not been explored (steps 9 to 11).

In general, the time complexity of updating the FDG is higher than
the one of the diagnosis on FDG. In the case in which the FDG is
updated, the consumed time by our approach is higher than the un-
timed approach presented in [15]. On the contrary, the FDG based
approach works as fast as the untimed approach. Since the FDG is
incrementally updated, the enumeration of all reachable state classes
of the time system is avoided. This feature makes the proposed ap-
proach to have a low space complexity comparing with other state
based ones, such as model checking in [12].

After the discussion of running time, let us look at the diagnosis
states. In the seventh row, when t6 is observed for the first time, the
diagnosis states of T1f given by the untimed approach and FDG are U
and N, respectively. In the untimed PN, when w = t11t8t12t9t10t6 is
observed, there exists a consistent marking m10 = p15 + p16 + p18 +

p23 + p24 + p25 + p26 + p27 + p28 + p30 + p31 + p34 + 6p36 + p37 +

2p38. The enabled transitions at m10 are t7, t11 and ε23. If ε23 is
fired, then a token is generated in p29, enabling the fault transition
ε25. Therefore, there exists a consistent firing sequence containing
a fault transition and a firing sequence without any fault transition
(empty firing sequence for example). In the timed case, there exists
two consistent state classes α9 and α10 consistent with w shown in
Figure 7.3. Let us consider α10. The marking of α10 is m10 and the
firing domain is F10 = (7 6 x7 6 8)∧ (1 6 x11 6 3)∧ (5 6 x23 6
7). The enabled transitions are t7, t11 and ε23 (the same as in the
untimed case). However, the firing domain F10 indicates that only the
observable transition t11 can be fired at α10. Therefore, there does

[September 6, 2016 at 9:07 – classicthesis version 4]

7.2 centralized diagnosis 91

α0

α1
α2

α3

α4
α5

α13
α14

α11

α12

α7

α6

α9

α10

α15 α16 α18

α19
α17

α20

α21

α8

t8

ε
2
6
t 8

ε
26 t
11

t 8

t12
t9

t10

t6

ε24t6

t7

ε23
t7

ε24
t7

ε 2
4
t 1
1

ε 2
3
ε 2
4
t 7

ε
2
3
ε
2
4
t
1
1

ε
2
4 ε
2
3 t
7

ε
24 ε
23 t
11

ε
24ε
23ε
22 t11

ε23ε24ε22t11

ε24ε23ε22t7

t11

Figure 7.3: The FDG corresponding to the observation word w = 〈t11, 5〉
〈t8, 7〉 〈t12, 9〉 〈t9, 16〉 〈t10, 23〉 〈t6, 26〉.

not exist any unobservable firing sequence starting at α10 containing
the fault transition ε25. The unobservable firing sequence starting at
the other consistent state class α9 do not contain ε25 either. Hence,
the diagnosis state is normal.

7.2.2 An IC Wafer Fabrication System

In this case, we illustrate the FDG based approach using a photolithog-
raphy (photo) area in a real-world IC wafer fabrication system [72].
The major products of the system are 4MB unpackaged DRAM wafers,
which will be diced and packaged in another plant. The whole pro-
cess is divided into four processes and the system is also organized
into four corresponding functional segments. The four processes are
photo, etching, diffusion and thin film processes: The photo area
makes patterns of photo resistors on wafers and its process is di-
vided into 20 subprocesses called layers. Each layer belongs to one
of four types: N1 and N2, which are noncritical layers, and C1 and C2,
which are critical layers. Fifty machines belonging to seven types are
available in the area. The machines are steppers for alignment and
exposure, developers for development and baking individually.

The PN mode of the IC wafer fabrication system is shown in Fig-
ure 7.4 and meanings of places and transitions are in Table 7.3. Dis-
tinguished by the output transitions of p6, there are five concurrent
processes, which are respectively starting from t5, t9, t13, t19 and
t20, and t34 and t35. The process starting from t45 and t46 deals
with the outputs of the previous ones unless faults occur. If no fault
occurs in the concurrent processes, they send their outputs to the
buffer p16, and the last process continues to deal with the outputs
from the buffer. If a fault occurs, e.g., the fault associated to t44, the
corresponding process sends directly the output to the stripper p19
skipping the last process. Faults may also occur in the last process. In

[September 6, 2016 at 9:07 – classicthesis version 4]

92 case study

p1

p2

p3

p4

p5

p18

p8

p6

p7 p9 p10

p11

p12
p14 p15

p16

p17 p59p13

p20

p21

p22

p36

p23

p24

p25p35

p26

p27
p45

p28

p29

p30

p31

p46

p32
p34

p33

p37

p44

p38

p39

p40

p41

p42

p43

p47p49p50

p51 p48

p52p53

p54

p55

p57

p56

p19

p58

t58

t1

t3 t4

t2

t5 t9

t10t6

t7 t11

t13

t8 t12

t15

t16

t17 t18 t19 t20

t21

t22

t23

t24

t32

t25

t26

t33

t27

t34

t35

t36

t37

t38

t39

t43

t44

t40

t41

t28

t29

t30

t31
t42

t45

t46t47t48

t52t53

t49t50

t54

t51

t55

t56

t57

t14

5

Figure 7.4: PN model of a semiconductor production system [72]

the model, if there is not any fault occurrence in the whole system,
tokens are generated in p58; otherwise, the number of tokens in p19
increases.

In the model, we associate the time interval [0, 1000] to each tran-
sition. The observable transitions are t1, t3, t5, t9, t17, t21, t24, t30,
t37, t39, t48, t57 and t58. The fault classes are T1f = {t32, t33, t43} and
T2f = {t44, t52, t53, t54}. The meanings of fault transitions are shown
in Table 7.3. We assume the observed word is w = 〈t58, 8〉 〈t1, 16〉
〈t17, 24〉 〈t21, 32〉 〈t24, 40〉 〈t30, 48〉 〈t48, 56〉 〈t57, 64〉 〈t58, 72〉 〈t1, 80〉
〈t21, 88〉 〈t24, 96〉 〈t3, 104〉 〈t17, 112〉 〈t37, 120〉 〈t39, 128〉 〈t48, 136〉 〈t57,
144〉 〈t58, 152〉 〈t1, 160〉 〈t17, 168〉.

The computation results are shown in Table 7.3 and the time unit
is second. In the beginning of Table 7.3, the size of the FDG increases
from 1 to 41 until t48 is observed at time 56 (the seventh row). In the
table, the column of the sizes of FDG (“FDG.size”) and the column of
time consumption of updating FDG (“FDG.gen”) shows that the FDG
is not updated from the following observed transition t48 is observed
at time 56 (the seventh row) to t24 is observed at time 96 (the twelfth
row). In the last six observed transitions, the FDG is also not updated.
At the time when t3 is observed, the fault occurrence of the fault class
T1f is F. From this moment, the diagnosis state of T1f remains being
faulty and has nothing to do with which transition is observed.

[September 6, 2016 at 9:07 – classicthesis version 4]

7.3 decentralized diagnosis 93

p1 p2 p3 p4 p5 p6
p7

p9p8

p16

p15p14p13p12p11p10

t1 t2 t3 t4 ε5 t6

t10

t8

ε9
t7

t11 t12 t13 t14 t15 ε16

t17

p17

Figure 7.5: A manufacturing system.

7.3 decentralized diagnosis

Here, we apply the decentralized diagnosis approach on a manufac-
turing system. The TPN model of the system is shown in Figure 7.5.
The purpose of this case study is to illustrate how local FDG is con-
structed and the communication between local diagnosers and the
coordinator.

There are two processes in the TPN: one process contains places
pi, i = 1, . . . , 9, and the other one contains pj, j = 10, . . . , 16. Place p1
(p10) represents a material is waiting to be processed in the first (sec-
ond) process. In order to be processed by the first (second) process,
there must be a free plate, which is allocated by the first (second) pro-
cess by firing the transition t1 (t11). When the first (second) process
finishes, transitions t6 and t10 (t16) are fired and the correspond-
ing plate is released. In the first process, there are two subprocesses,
which start from t4 and t8, respectively. In the subprocess starting
from t8, ε9 is One material is waiting to be processes (one token in
p1 and p10), and there are two free plates initially (two tokens in p17).
The time intervals associated to transitions are xxx. We consider the
global observed word w = 〈t1, 1〉〈t11, 1〉〈t2, 2〉.

There are three subsystems such that: 1) in the first subsystem
Σ1, t1, t4, t8, t12 and t15 are observable; 2) in Σ2, the observable
transitions are t2, t6, t10, t13 and t17; 3) the observable transitions in
Σ3 include t3, t7, t11 and t14.

Because in diagnosis we do not use markings and domains of state
classes, in the sequel, only labels associated with edges and diagnosis
labels associated with nodes are provided.

The labels of edges in G1 are:

α0 → α1: 〈t1, [1, 1], (0)〉;

[September 6, 2016 at 9:07 – classicthesis version 4]

94 case study

α0

α1
α2

α3

α4
α5

α6

w = ε

Figure 7.6: The local FDG G1 of Σ1 corresponds to the observation of t1.

α0 → α2: 〈t11t1, [1, 2], (0)〉;

α0 → α3: 〈t12t12, [2, 2], (0)〉;

α1 → α4: 〈t11t12, [1, 1], (0)〉;

α1 → α5: 〈t11t2t12, [1, 1], (0)〉;

α2 → α5: 〈t2t12, [1, 1], (0)〉;

α2 → α6: 〈t12, [0, 1], (0)〉.

The diagnosis labels associated with nodes αi, i = 0, 1, 2, 3, in G1 are
(0).

The labels of edges in G2 are:

α0 → α1: 〈t1t11t12t2, [2, 2], (0)〉;

α0 → α2: 〈t11t1t2, [2, 2], (0)〉, 〈t1t11t12, [2, 2], (0)〉;

α0 → α3: 〈t11t1t12t2, [2, 3], (0)〉;

α0 → α4: 〈t11t12t1t2, [3, 4], (0)〉;

α0 → α5: 〈t11t12t1t13, [4, 4], (0)〉;

α1 → α6: 〈t13, [2, 3], (0)〉;

α1 → α7: 〈t3t13, [2, 3], (0)〉;

α1 → α8: 〈t3t4t13, [2, 3], (0)〉;

α1 → α9: 〈t3t8t13, [2, 3], (0)〉;

α1 → α10: 〈t3t8t9t13, [3, 3], (0)〉;

α2 → α6: 〈t12t13, [2, 3], (0)〉;

α2 → α7: 〈t12t3t13, [2, 3], (0)〉;

[September 6, 2016 at 9:07 – classicthesis version 4]

7.3 decentralized diagnosis 95

α0 α3

α2

α1

α4

α5

α9

α8

α6

α10

α7

α12

α11

α13

α14

w = ε

Figure 7.7: The local FDG G2 of Σ2 corresponds to the observation of t2.

[September 6, 2016 at 9:07 – classicthesis version 4]

96 case study

α0

α3

α2α1

α4α5

α9

α8α6

α7

w = ε

Figure 7.8: The local FDG G3 of Σ3 corresponds to the observation of t11.

α2 → α8: 〈t12t3t4t13, [2, 3], (0)〉;

α2 → α9: 〈t12t3t8t13, [2, 3], (0)〉;

α2 → α10: 〈t12t3t8t13, [2, 3], (1)〉;

α3 → α7: 〈t3t13, [1, 3], (0)〉;

α3 → α8: 〈t3t4t13, [2, 3], (0)〉;

α3 → α9: 〈t3t8t13, [2, 3], (0)〉;

α3 → α10: 〈t3t8t13, [3, 3], (1)〉;

α3 → α11: 〈t13, [1, 3], (0)〉;

α4 → α7: 〈t3t13, [1, 2], (0)〉;

α4 → α12: 〈t13, [0, 2], (0)〉;

α4 → α13: 〈t3t4t13, [2, 2], (0)〉;

α4 → α14: 〈t3t8t13, [2, 2], (0)〉;

The diagnosis labels associated with nodes αi, i = 0, 1, 4, in G2 are
(0), and the one associated with α2 and α3 are (1).

The labels of edges in G3 are:

α0 → α1: 〈t1t11, [1, 1], (0)〉;

α0 → α2: 〈t11, [1, 1], (0)〉;

α1 → α3: 〈t2t12t3, [2, 4], (0)〉, 〈t12t2t3, [2, 4], (0)〉;

α1 → α5: 〈t2t12t13t3, [3, 4], (0)〉, 〈t12t2t13t3, [3, 4], (0)〉;

α2 → α3: 〈t1t2t12t3, [2, 4], (0)〉, 〈t1t12t2t3, [2, 4], (0)〉;

α2 → α4: 〈t12t1t2t3, [3, 4], (0)〉;

α2 → α5: 〈t1t2t12t13t3, [3, 4], (0)〉;

[September 6, 2016 at 9:07 – classicthesis version 4]

7.3 decentralized diagnosis 97

α2 → α6: 〈t1t12t2t13t3, [3, 5], (0)〉;

α2 → α7: 〈t12t1t2t13t3, [3, 6], (0)〉;

α2 → α8: 〈t12t1t2t13t14, [6, 6], (0)〉, 〈t12t1t13t2t14, [6, 6], (0)〉;

α2 → α9: 〈t12t1t13t2t3, [4, 6], (0)〉;

The diagnosis labels associated with nodes α0, α1 and α2 in G3 are
(0).

In the initial step, each local diagnoser initializes its local FDG. The
three local FDG are shown in Figure 7.6, Figure 7.7 and Figure 7.8,
where the parts in the block indicated by w = ε are the local FDG in
this step. All local diagnosers send messages to the coordinator. Let
us consider Σ1 as an example. The message from Σ1 to the coordina-
tor contains 〈

−→
0 , ε, (0)〉, where

−→
0 is the firing count vector represent-

ing the path from the initial state class to the consistent state class
in the local system (in Σ1, it is α0), ε is the list of observable transi-
tions associated in the label of the input edge corresponding to the
observation (In this step, no such edge is considered, and it will be
explained in next step), and (0) is the diagnosis label associated with
the consistent state class. Because this is the initial step, when the co-
ordinator receives all three messages, it uses the diagnosis labels to
compute the diagnosis state. The diagnosis state is normal, because
ε9 is not fired.

Let us assume t1 is observed at time 1. The local diagnoser corre-
sponding to Σ1 observes the firing of t1, and then it updates its local
FDG. The updated FDG is shown in Figure 7.6 containing all seven
state classes and seven edges. The message that will be sent to the
coordinator containing two entries:

• 〈
−→
0 , t1, (0)〉 corresponding to the consistent state class α1,

• 〈
−→
0 , t11t1, (0)〉 corresponding to the consistent state class α2.

In the first entry, the second element t1 is the list of observation asso-
ciated with the input edge α0 → α1. When this message is sent to the
coordinator, the coordinator uses it to compute the diagnosis state cor-
responding to w = 〈t1, 1〉. Because before receives the message from
Σ1, the coordinator did not receiving any message, it can be inferred
that, globally, the first fired observable transition is t1. Then, t11t1 is
not consistent with this result, and it will not be used in diagnosis and
will be removed from the received message. At this moment, the re-
ceived message contains only the first entry mentioned above. Using
the message, the diagnosis state is computed as normal. Finally, the
coordinator sends the reduced message to Σ1. In Σ1, the local diag-
noser uses the received message to delete the consistent state classes
that are not consistent with the global states (α2). Meanwhile, the
local FDG corresponding to the other subsystems are not updated,
because no transition is observed by their local diagnosers.

After t1, t11 is observed by the local diagnoser of Σ3. Then the
local diagnoser updates its FDG as shown in Figure 7.8 containing

[September 6, 2016 at 9:07 – classicthesis version 4]

98 case study

ten state classes and eleven edges. At last, t2 is observed at Σ2 and
the corresponding FDG is updated by the local diagnoser and shown
in Figure 7.7.

[September 6, 2016 at 9:07 – classicthesis version 4]

7.3 decentralized diagnosis 99

Ta
bl

e
7

.2
:M

ea
ni

ng
s

of
pl

ac
es

an
d

ev
en

ts
as

so
ci

at
ed

w
it

h
tr

an
si

ti
on

s
in

th
e

ph
ot

o
ar

ea
m

od
el

Pl
ac

es
Tr

an
si

ti
on

s

p
1

:C
oa

te
r’

s
bu

ff
er

p
2

:P
I

C
oa

te
r

t
1

:P
I

C
oa

te
r

se
tu

p
t
2

:P
I

C
oa

te
r

co
at

in
g

p
3

:w
af

er
on

PI
C

oa
te

r
p
4

:w
af

er
on

C
2

C
oa

te
r

t
3

:C
2

C
oa

te
r

se
tu

p
t
4

:C
2

C
oa

te
r

co
at

in
g

p
5

:C
2

C
oa

te
r

p
6

:b
uf

fe
r

t
5

:U
lt

ra
St

ep
pe

r
se

tu
p

t
6

:S
te

pp
in

g

p
7

:w
af

er
on

U
lt

ra
p
8

:U
lt

ra
St

ep
pe

r
t
7

:D
ev

el
op

er
se

tu
p

t
8

:D
ev

el
op

in
g

p
9

:w
af

er
on

N
ik

on
p
1
0

:N
ik

on
St

ep
pe

r
t
9

:N
ik

on
St

ep
pe

r
se

tu
p

t
1
0

:S
te

pp
in

g

p
1
1

:D
ev

el
op

er
’s

bu
ff

er
p
1
2

:w
af

er
on

D
ev

el
op

er
t
1
1

:D
ev

el
op

er
se

tu
p

t
1
2

:D
ev

el
op

in
g

p
1
3

:S
tr

ip
pe

r
p
1
4

:w
af

er
on

D
ev

el
op

er
t
1
3

:S
/D

se
tu

p
t
1
4

:S
/D

pr
oc

es
si

ng

p
1
5

:D
ev

el
op

er
p
1
6

:b
uf

fe
r

t
1
5

:S
tr

ip
pi

ng
t
1
6

:S
tr

ip
pe

r
se

tu
p

p
1
7

:w
af

er
on

S/
D

p
1
8

:w
af

er
on

St
ri

pp
er

t
1
7

:W
EE

se
tu

p
t
1
8

:W
EE

pr
oc

es
si

ng

p
1
9

:S
tr

ip
pe

r’
s

bu
ff

er
p
2
0

:w
af

er
on

W
EE

t
1
9

:N
ik

on
St

ep
pe

r
se

tu
p

t
2
0

:N
ik

on
St

ep
pe

r
se

tu
p

p
2
1

:W
EE

p
2
2

:b
uf

fe
r

t
2
1

:S
te

pp
in

g
t
2
2

:D
ev

el
op

er
se

tu
p

p
2
3

:w
af

er
on

N
ik

on
p
2
4

:D
ev

el
op

er
’s

bu
ff

er
t
2
3

:D
ev

el
op

in
g

t
2
4

:O
ve

rl
ay

pr
oc

es
si

ng

p
2
5

:p
ilo

t
w

af
er

on
D

ev
el

op
er

p
2
6

:O
ve

rl
ay

’s
bu

ff
er

t
2
5

:O
ve

rl
ay

M
ea

su
ri

ng
t
2
6

:C
D

se
tu

p

p
2
7

:p
ilo

t
w

af
er

on
O

ve
rl

ay
p
2
8

:C
D

M
ea

su
re

’s
bu

ff
er

t
2
7

:C
D

M
ea

su
ri

ng
t
2
8

:N
ik

on
St

ep
pe

r
se

tu
p

p
2
9

:p
ilo

t
w

af
er

on
C

D
M

ea
su

re
p
3
0

:S
te

pp
er

’s
bu

ff
er

t
2
9

:S
te

pp
in

g
t
3
0

:D
ev

el
op

er
se

tu
p

p
3
1

:b
od

y
w

af
er

on
St

ep
pe

r
p
3
2

:D
ev

el
op

er
’s

bu
ff

er
t
3
1

:D
ev

el
op

in
g

t
3
2

:O
ve

rl
ay

fa
ils

p
3
3

:b
od

y
w

af
er

on
D

ev
el

op
er

p
3
4

:D
ev

el
op

er
t
3
3

:C
D

fa
ils

t
3
4

:S
/D

se
tu

p

p
3
5

:D
ev

el
op

er
p
3
6

:N
ik

on
St

ep
pe

r
t
3
5

:S
/D

se
tu

p
t
3
6

:S
/D

pr
oc

es
si

ng

p
3
7

:p
ilo

t
w

af
er

on
S/

D
p
3
8

:O
ve

rl
ay

’s
bu

ff
er

t
3
7

:O
ve

rl
ay

se
tu

p
t
3
8

:O
ve

rl
ay

M
ea

su
ri

ng

p
3
9

:p
ilo

t
w

af
er

on
O

ve
rl

ay
p
4
0

:C
D

M
ea

su
re

’s
bu

ff
er

t
3
9

:C
D

se
tu

p
t
4
0

:C
D

M
ea

su
ri

ng

p
4
1

:p
ilo

t
w

af
er

on
C

D
p
4
2

:S
/D

’s
bu

ff
er

t
4
1

:S
/D

se
tu

p
t
4
2

:S
/D

pr
oc

es
si

ng

p
4
3

:b
od

y
w

af
er

on
S/

D
p
4
4

:S
/D

t
4
3

:O
ve

rl
ay

fa
ils

t
4
4

:C
D

fa
ils

p
4
5

:M
ac

hi
ne

O
ve

rl
ay

p
4
6

:M
ac

hi
ne

C
D

t
4
5

:ε
t
4
6

:O
ve

rl
ay

se
tu

p

p
4
7

:w
af

er
on

O
ve

rl
ay

p
4
8

:M
ac

hi
ne

O
ve

rl
ay

t
4
7

:O
ve

rl
ay

m
ea

su
ri

ng
t
4
8

:C
D

se
tu

p

p
4
9

:b
uf

fe
r

p
5
0

:w
af

er
on

C
D

t
4
9

:C
D

M
ea

su
ri

ng
t
5
0

:A
D

I
se

tu
p

p
5
1

:M
ac

hi
ne

C
D

p
5
2

:A
D

I’
s

bu
ff

er
t
5
1

:A
D

I
pr

oc
es

si
ng

t
5
2

:O
ve

rl
ay

fa
ils

p
5
3

:w
af

er
on

A
D

I
p
5
4

:M
ac

hi
ne

A
D

I
t
5
3

:C
D

fa
ils

t
5
4

:A
D

I
fa

ils

p
5
5

:b
uf

fe
r

p
5
6

:w
af

er
on

U
V

C
ur

er
t
5
5

:l
ea

vi
ng

th
e

ar
ea

t
5
6

:U
V

C
ur

er
se

tu
p

p
5
7

:U
V

C
ur

er
p
5
8

:M
at

er
ia

lb
uf

fe
r

t
5
7

:U
V

C
ur

in
g

t
5
8

:w
af

er
in

pu
t

p
5
9

:S
/D

[September 6, 2016 at 9:07 – classicthesis version 4]

100 case study

Table
7.

3:R
esults

of
som

e
num

ericalsim
ulations

carried
on

the
system

in
Figure

7.
4

(tim
e

unit:s=second)

w
PN

_D
IA

G
(s)

FD
G

.size
FD

G
.sum

(s)
FD

G
.gen

(s)
FD

G
.diag

(s)
∆
(w

,T
1f
)

∆
(w

,T
2f
)

〈ε,0〉
0.0
0
0
8

1
0.1
0
7
7

0.1
0
4
7

0.0
0
2
7

N
N

1
〈t
5
8 ,8〉

0.0
0
2
1

5
0.4
6
9
1

0.4
6
6
9

0.0
0
2
2

N
N

2
〈t
1 ,1
6〉

0.0
2
1
7

2
6

2
0.4
7
5
3

2
0.4
7
0
3

0.0
0
2
3

N
U

3
〈t
1
7 ,2
4〉

0.0
0
6
6

2
8

1.8
4
3
0

1.8
4
0
8

0.0
0
2
1

N
N

4
〈t
2
1 ,3
2〉

0.0
0
8
5

3
2

0.8
3
4
8

0.8
3
2
4

0.0
0
2
4

N
N

5
〈t
2
4 ,4
0〉

0.0
2
0
2

3
9

6.6
3
4
3

6.6
3
2
0

0.0
0
2
3

U
N

6
〈t
3
0 ,4
8〉

0.0
2
0
1

4
0

1
0.0
5
8
4

1
0.0
5
6
3

0.0
0
2
1

N
U

7
〈t
4
8 ,5
6〉

0.0
1
3
2

4
1

6.6
0
6
5

6.6
0
4
4

0.0
0
2
0

N
U

8
〈t
5
7 ,6
4〉

0.0
0
4
1

4
1

0.0
0
4
7

0.0
0
0
6

0.0
0
4
0

N
N

9
〈t
5
8 ,7
2〉

0.0
0
2
0

4
1

0.0
0
2
9

0.0
0
0
8

0.0
0
2
2

N
N

1
0
〈t
1 ,8
0〉

0.0
2
4
1

4
1

0.0
0
2
7

0.0
0
0
5

0.0
0
2
2

N
U

1
1
〈t
2
1 ,8
8〉

0.0
0
5
8

4
1

0.0
0
3
3

0.0
0
1
0

0.0
0
2
3

N
N

1
2
〈t
2
4 ,9
6〉

0.0
1
2
6

4
1

0.0
0
3
5

0.0
0
0
6

0.0
0
2
9

U
N

1
3
〈t
3 ,1
0
4〉

0.0
1
6
8

4
2

2
0.6
2
5
4

2
0.6
2
3
1

0.0
0
2
3

F
U

1
4
〈t
1
7 ,1
1
2〉

0.0
0
4
3

4
2

0.0
0
3
5

0.0
0
0
8

0.0
0
2
8

F
N

1
5
〈t
3
7 ,1
2
0〉

0.0
0
6
2

4
5

2.2
3
9
2

2.2
3
7
2

0.0
0
2
0

F
N

1
6
〈t
3
9 ,1
2
8〉

0.0
1
1
0

4
9

1
4.5
2
1
5

1
4.5
1
9
5

0.0
0
2
0

F
U

1
7
〈t
4
8 ,1
3
6〉

0.0
0
7
8

4
9

0.0
0
3
4

0.0
0
0
6

0.0
0
2
8

F
U

1
8
〈t
5
7 ,1
4
4〉

0.0
0
3
7

4
9

0.0
0
3
7

0.0
0
0
8

0.0
0
2
9

F
N

1
9
〈t
5
8 ,1
5
2〉

0.0
0
1
4

4
9

0.0
0
3
4

0.0
0
0
7

0.0
0
2
6

F
N

2
0
〈t
1 ,1
6
0〉

0.0
1
2
7

4
9

0.0
0
3
8

0.0
0
1
0

0.0
0
2
8

F
U

2
1
〈t
1
7 ,1
6
8〉

0.0
0
4
6

4
9

0.0
0
3
5

0.0
0
0
8

0.0
0
2
7

F
N

[September 6, 2016 at 9:07 – classicthesis version 4]

8
C O N C L U S I O N S A N D F U T U R E W O R K S O N FA U LT
D I A G N O S I S

Discrete Event Systems (DES), such as transportation, manufacturing
and logistics systems, may contain faulty behaviors, e.g., mis-delivered
cargoes in logistics systems. Fault diagnosis is the process to detect
and isolate faults. In general, faulty behaviors cannot be observed
directly. Therefore, it is critical to use observable events to estimate
faulty events (behaviors). Many works consists of building diagnosers
to achieve this task. Some diagnosers represent an alternative model
of the target system containing only normal events in the target sys-
tem. The diagnoser evolves with the target system and synchronizing
with it using the output (observable events) of the target system. If
their outputs do not match (synchronization failed), then events not
belonging to the diagnoser have occurred meaning faulty behaviors
are detected. Other diagnosers (e.g., [29]) contain both normal and
faulty behaviors of the target systems, but they remove parts of the
target system model that are not used in diagnosis, or add informa-
tion that can improve the diagnosis process.

Time Petri Net (TPN) is one of many modeling tools of DES. It uses
places to represent local states, and its transitions mean basic dynam-
ics of these local states. The timing information (interval time delays)
let TPN be capable to describe temporal knowledges of DES. TPN
is widely applied in fault diagnosis on DES (also in other aspects
of DES, e.g., performance analysis and control). When faults mean
faulty events, in TPN, some transitions, called fault transitions repre-
sents faults. The firing of a fault transition implies the occurrence of
corresponding faulty event. Because fault transitions are not observ-
able, diagnosis is using observable information to estimate the firings
of fault transitions. The observable information contains observable
transitions and/or observable places in which the numbers of tokens
can be measured by an external observer.

In this first part of the thesis, we have focused on fault diagnosis
on DES modeled with TPN, in which some unobservable transitions
represent faults and the observable information contains only the fir-
ings of some of other transitions. We have proposed Fault Diagnosis
Graph (FDG) as the base of diagnosis. FDG contains both faulty and
normal behaviors of a target system. An FDG is constructed from an
State Class Graph (SCG), which is an abstracted reachability graph of
a TPN system. In the construction of an FDG, we remove parts of the
SCG if they will not be used in diagnosis. In on-line diagnosis, time
is critical. Therefore, we introduced two techniques to improve the
time complexity of diagnosis using FDG. First, labels are associated
with nodes and edges to preserve information that is frequently used
in diagnosis. The information contains firing sequences composed of
unobservable transitions and it is generated when FDG is being con-

101

[September 6, 2016 at 9:07 – classicthesis version 4]

102 conclusions and future works on fault diagnosis

structed and stored as labels, so that when it is required, it can be
taken from labels simply. Second, we proposed an incremental ap-
proach to construct the FDG. The incremental approach implements
that an FDG is constructed with an observation, that is only parts of
the FDG is required for diagnosis. Some parts of the FDG may not be
used forever, and then we do not need to spend time on constructing
them.

We dealt with two diagnosis approaches: centralized and decentral-
ized diagnosis with FDG. In centralized diagnosis, a single diagnoser
reads outputs (observations) of a system, constructs the FDG of the
system and computes diagnosis states. Due to the FDG, the diagnoser
can quickly update diagnosis states, especially when repetitive behav-
iors appear (at this time, the construction of FDG is skipped and all
information used in diagnosis can be taken from the existing FDG).
Using a case study, we illustrated that the use of timing information
improves diagnosis. The critical factor is the firing domain of a given
firing sequence, which represents the time interval that all transitions
in a given firing sequence can fire sequentially. It is used to check
whether a firing sequence is consistent with an observable transition
and the observed time or not. The case study showed that the num-
ber of uncertain diagnosis states (i.e., the firings of fault transitions
cannot be determined) is reduced by using FDG, comparing with di-
agnosis without the use of timing information.

In decentralized diagnosis, we consider a system that is distributed.
Because it is not convenient to use a centralized diagnosis, we pro-
posed a decentralized diagnosis scheme consisting a local diagnoser
for each subsystem and a coordinator enabling the collaboration among
local diagnosers. We adapted FDG to decentralized diagnosis with a
properly designed collaboration scheme, in order to reduce the costs
of maintaining a coordinator and communication between local diag-
nosers and the coordinator. First, the processing and storing capabil-
ity of the coordinator is constrained at a low level such that it cannot
build FDG or diagnose on an FDG. Second, the communication be-
tween local diagnosers and the coordinator contains only observed
transitions and consistent states. The communication does not send
any FDG, which is costly to be sent in a decentralized environment.

Some topics based on the work in this part remains open:

• Application of FDG on state estimation: State estimation is a
topic related with fault diagnosis. State estimation cares possi-
ble states of a system at a given time, instead of firings of some
transitions. In general, TPN in state estimation contains observ-
able and unobservable places and transitions, which is similar
with the configuration of fault diagnosis.

• Predict the firings of fault transitions: Predicting the firing of a
fault transition in a given time interval in future is interesting.
One solution is to modify labels to the output edges of each
node in FDG so that they contain prediction information. The
prediction information contains at which time interval a fault
transition can be fired.

[September 6, 2016 at 9:07 – classicthesis version 4]

Part III

P E T R I N E T I N R O B O T P L A N N I N G

[September 6, 2016 at 9:07 – classicthesis version 4]

[September 6, 2016 at 9:07 – classicthesis version 4]

9
I N T R O D U C T I O N T O P E T R I N E T I N R O B O T
P L A N N I N G

9.1 introduction

When multiple mobile robots complete their tasks in a shared en-
vironment, planning and controlling them becomes critical. Mobile
robot planning and controlling has attracted a lot of attention in last
decades [19, 39]. An extensively studied problem in this field is mo-
bile robot navigation. It concentrates on automatic building control
strategies such that robots can reach target positions avoiding colli-
sions (e.g., deadlock).

In this part, we discuss the avoidance of collisions in multiple
robots systems in shared environments. A shared environment con-
tains a map, in which all robots moves. The map is partitioned into
regions, and some regions are constrained by limited capacities (e.g.,
only one robot can be in the region at a moment). The following two
problems have been investigated.

In Chapter 10, some regions’ capacities are one, while others are not
constrained. Each robot has one or more possible trajectories and it
will follow one of them. In order to ensure a deadlock free movement
of all robots, on-line (real time) control is applied to all robots. We use
S3PR (short for Systems of Simple Sequential Processes with Resources) to
deal with this problem. S3PR is a subclass of PN for resource alloca-
tion problems. It contains processes and resources, where resources
are shared by processes. We use processes to describe trajectories, and
resources imply capacities of regions shared among robots. Deadlock
problems in S3PR are caused by bad siphons, which is a PN structure
[24]. When a bad siphon is emptied, no token can enter it and it
implies a deadlock. Therefore, in S3PR, deadlock prevention policies
ensure all bad siphons will not be emptied (if emptied, it will remain
empty forever). Two types of on-line control for avoiding deadlocks
are structural control and behavioral control. The structural on-line
control in S3PR is implemented using PN structures, while behav-
ior controller uses the reachability space of a PN. While a behavior
controller may extend to other subclasses of PN, its computational
complexity is high, because the reachability space of a PN could be
huge. In Chapter 10, we construct a structural controller. A classical
solution is to use monitor places. A monitor place controls the num-
ber of tokens that can leave a bad siphon. It will prevent the last
token from leaving the bad siphon, meaning that the bad siphon will
always has at least one token in it. For example, the initial marking of
the monitor place is set to be less than the number of initial tokens in
the bad siphon so that not all tokens can leave the bad siphon. When
a token leaves the bad siphon, one token in the monitor place is con-

105

[September 6, 2016 at 9:07 – classicthesis version 4]

106 introduction to petri net in robot planning

sumed; when a token enters the bad siphon, one token is added to
the monitor place.

Such a controller is compact, but it has a disadvantage on cost. The
controller consists of several monitor places, which must be explicit
implemented and maintained. The tasks (trajectories) of robots may
change, because the robots may be reused for other purpose. When
tasks of robots change frequently, the implementation and mainte-
nance of monitor places are costly. When trajectories change, new
S3PR will be used to represent new trajectories. It means the control
places for old S3PR are not applicable and new ones must be built and
maintained. We propose a control policy without using any monitor
place so that this cost is waived. Our approach needs communicators
for robots, but they are reusable with the robots. Our policy uses in-
hibitor arcs, where an inhibitor arc prohibits the firing of a transition
when the input place of the inhibitor arc is not empty. We call it de-
centralized control policy, because by using inhibitor arcs, the decision
that a robot can move forward or stay is not made centrally, and then
a centralized controller is not necessary anymore. Because inhibitor
arcs will ensure the mutual exclusion between a set of places, the
number of inhibitor arcs will be, in general, greater than the number
of arcs necessary in the centralized implementation (i.e., normal arcs
necessary to introduce the monitor places). However, the proposed
approach is an alternative to the one based on monitor places, which
will allow a decentralized implementation and, in some cases, will
need a few cost for implementation.

For the formal point of view, the inhibitor arcs in the control pol-
icy introduce a new class of PN, named S3PR2 (S3PR with Reading
arcs), obtained from the S3PR modeling of the robot trajectories to-
gether with the inhibitor arcs controlling bad siphons. This class is
characterized and liveness analysis is addressed.

In Chapter 11, we propose an algorithmic procedure for avoiding
collisions for multiple mobile robots that are already planned in the
same environment. The environment (map) is partitioned into re-
gions, and the capacity (meaning the maximum number of robots can
be in a region at the same time) of each region is one. Each robot starts
from and returns to a depot adjacent to the environment. We assume
that each robot has a set of planned trajectories, and by following any
of these trajectories, it completes its motion task. Each trajectory con-
sists of a sequence of regions from the environment that the robot can
follow and the time duration of traversing any region is known. We
consider that no real time (on-line) controller is applicable. It means
that once a robot starts to move on a trajectory, it cannot be paused
or rerouted. Two cases are considered, in one case each robot chooses
the trajectory to follow and in the other the trajectory is chosen by a
central unit that starts or programs the robots. Collisions are avoided
by finding some initial time delays for trajectories, i.e., by delaying
the moment for starting the motion of a robot. The delays ensure that
at each time instant each region is occupied by at most one robot,
and two robots moving in opposite direction do not swap their re-
gions by simultaneously crossing the shared region border. Moreover,

[September 6, 2016 at 9:07 – classicthesis version 4]

9.2 literature review 107

since robots start from a depot and finally goes into the depot where
in the depot no collision can occur, the problem always has a solution.
The problem is casted as a Mixed Integer Linear Programming (MILP)
optimization, and the obtained initial delays guarantee that all robots
finish their movement in minimum time, i.e., the shared environment
becomes empty as quick as possible. Based on numerical simulations,
we include a statistical study comparing the solutions for the consid-
ered two cases.

9.2 literature review

Ezpeleta et al.[24] proposed a PN supervisor to enforce liveness us-
ing monitor places. It is the classical solution using structural analysis
techniques to prevent deadlocks in PN. They introduce S3PR and es-
tablish the relationship between minimal siphons and liveness. More-
over, they prove that an S3PR is live iff no siphon can be emptied
forever. A monitor place is added to each minimal siphon that can
be emptied (bad siphon). The idea is to ensure that, all bad siphons
will not be emptied, for every reachable marking. By adding monitor
places, new bad siphons may be introduced. Therefore, an iterative
procedure is needed to ensure liveness. Eventually, a live system is
obtained. The iterative procedure is bounded, according to the num-
bers of resources and processes. Their approach separates a model
and its controller.

A deadlock prevention policy is proposed in [69] for Production
Petri Net (PPN), a subclass of PN that each transition has only one
input activity place and one input resource place. If the input activity
place of a transition is marked, then the transition is process enabled,
and if the resource place of the transition is marked, then the tran-
sition is resource enabled. If a transition is both process and resource
enabled, then it is said to be enabled. The deadlock structure is a set
of process enabled transitions that are not resource enabled, i.e., no
enable resources to complete the corresponding activities. It means
that the firings of these transitions need some resources, but these
resources are not available in the deadlock structure and no transi-
tion in it can be fired. It is important to clarify that a deadlock struc-
ture may not be a bad siphon. To ensure liveness, a monitor place
is added to each deadlock structure. It is proved that if the number
of each critical resource is greater than one, a maximally permissive
controller can be obtained, where maximally permissive means in
the controlled live net every live marking in the original net can be
reached.

An MILP based deadlock detection approach is proposed in [34] to
solve the computational complexity in [24]. The authors introduce an
iterative deadlock prevention policy for S3PR consisting two phases.
The first phase builds monitors to control siphons. By introducing the
monitors, new siphons may be created, and then the second one con-
centrates on control of new siphons introduced by monitor places. In
the first phase, in each iteration, a minimal siphon is derived from a

[September 6, 2016 at 9:07 – classicthesis version 4]

108 introduction to petri net in robot planning

maximal unmarked siphon computed by using the MILP based dead-
lock detection method. Then, a monitor place is added to control the
minimal siphon. By repeating these steps, all siphons in the original
S3PR can be controlled. In the second phase, minimal siphons that
contain monitor places are derived by MILP problems, and then a
monitor place is used to control each of them. The authors provided
examples, in which their control policy is more permissive than the
one in [24] by examples.

There are several related works to the problem we consider, as fol-
lows. In [38], each robot has multiple possible trajectories, but the
traversal time for each region is unknown, meaning no time informa-
tion is available. Some regions have a limited capacity (possible larger
than one) for simultaneously accommodating more robots, and the
robots can communicate with others. Robot Motion Petri Net (RMPN)
is introduced to solve the problem, where RMPH has a similar behav-
ior to S3PR. [38] constructs a global model for all robots and trajecto-
ries in form of a Petri net with special monitor places. Based on these
places, the robots are paused during their motion before entering an
area where collisions or deadlocks are possible.

[49] focuses on the collision-free coordination of multiple robots
with dynamic constraints (i.e., velocity, acceleration and force/torque
constraints) following predefined trajectories. An approach is pro-
posed to build multiple robots’ continuous collision free velocity pro-
files satisfying all requirements including dynamic constraints and
minimizing the completion time. The approach identifies collisions
in robots’ trajectories and optimize velocities of robots to avoid col-
lisions. The collisions free constraints are formulated as a Mixed In-
teger Nonlinear Programming (MINLP) problems. In order to reduce
the complexity to solve MINLP problems, two MILP problems are
proposed in [49]. Only one path is given for each robot and the opti-
mization imposes the necessary crossing time for each region along
trajectory, instead of a single initial delay and no controllable crossing
times through regions as in our case.

In coordinating the motions of multiple robots in a shared envi-
ronment, [2] discuss the problem of coordination of the motions of
multiple robots with predefined trajectories (both path and velocity).
The necessary sufficient and necessary conditions are identified for
multiple robots coordination. A MILP formulation is used to repre-
sent the optimization problem, and the MILP problems can be solved
using commercial solvers. The potential collision conditions are iden-
tified by using a collision detection software. The proposed approach
can deal with multiple robots with various degrees of freedom, where
the number of degrees of freedom is not restricted. The approach can
also be applied to Automated Guided Vehicles (AGV) with fixed paths.

[September 6, 2016 at 9:07 – classicthesis version 4]

10
D E C E N T R A L I Z E D D E A D L O C K P R E V E N T I O N

In this chapter, we discuss the problem of deadlock prevention in
robot planning. In the robot planning, multiple robots move in an
area, which is partitioned into regions. Some regions have limited
capacities. Deadlock may appear when some robots cannot move for-
ward forever. In order to solve the problem, we use S3PR , a widely
used subclass of PN in resource allocation problems, to represent
robots’ plans. Based on well developed theories on siphon analysis,
we propose a decentralized control policy using inhibitor arcs to pre-
vent the system from going into deadlock states. We will first intro-
duce our problem by using an example, and then quickly recall some
concepts on PN that will be used in this chapter. Then we introduce
S3PR and theoretical results on it. Finally, decentralized control policy
is addressed.

109

[September 6, 2016 at 9:07 – classicthesis version 4]

110 decentralized deadlock prevention

10.1 introduction

In this chapter we consider the design of a deadlock prevention con-
trol policy for a team of mobile robots that should follow some trajec-
tories in order to accomplish a given task. The set of possible trajec-
tories are assumed to be known and are computed by using a robot-
planning algorithm on a partitioned environment containing some re-
gions of interest. The capacities of regions (i.e., the number of robots
that can be simultaneously in that regions is limited) can be seen as
limited available resources in a resource allocation system (RAS). We
assume that the capacities of some regions are lower than the number
of robots. It implies not all robots cannot enter into these regions at
the same time.

In [38], we proposed a modeling methodology for this kind of sys-
tems and it is proved that the obtained Petri net (PN) model belongs
to the well-known class of S3PR. In the case of manufacturing sys-
tems modeled by S3PR there exist many results for deadlock preven-
tion [43]. However, as we will show in this chapter, many of them
imply a centralized implementation. We propose a different method,
based on inhibitor arcs that can be applied in a decentralized way.
This is an alternative to the deadlock prevention strategy based on
monitor places that could be used in several applications since the
implementation cost could be smaller. In Chapter 11, we consider the
robot planning problem without any real time controller.

10.2 motivating example

Let us consider a team of three mobile robots evolving in the parti-
tioned environment given in Figure 10.1(a). Initially, the robots are
located in a depot D from which they can directly enter any region
of the environment. However, once they leave the depot, they are not
allowed to return to the depot before completing their tasks. Inside
the depot there is no possibility of collisions between the robots. Let
us assume that the robots should execute one of the following trajec-
tories previously computed by a path-planning algorithm in order to
achieve the task:

• robot R1: D → u18 → u17 → u18 → D, meaning that R1 enters
from D to the region u18, then moves to u17, then back to u18
and finally exits to D.

• robot R2 should follow one of the next two trajectories D →
u19 → u23 → u18 → u17 → u22 → D and D → u19 → u20 →
u18 → u21 → u22 → D.

• robot R3: D→ u22 → u21 → u18 → u20 → u19 → D.

By applying the methodology in [38], the S3PR model of the sys-
tem is obtained and it is shown in Figure 10.1(b). The approach is
to represent every task as a process and capacities as resources. As-
suming that each region can contain maximum one robot at any time

[September 6, 2016 at 9:07 – classicthesis version 4]

10.2 motivating example 111

p1

p2

p3

p5

p6

p7

p8

p9

p10

p16

p12

p13

p14

p15

p11

p4

p10

p20
p30

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t20

t19

t18

t17

t16

t15

u23

u17

u18

u19

u20

u21

u22

u23
u19

u20

u18

u17

u22
u21

R1

R2

R3

(a)

(b)

D

Figure 10.1: (a) A map in which three robots evolve (R2 has two possible
paths). (b) The S3PR corresponding to the trajectories of the
robots.

[September 6, 2016 at 9:07 – classicthesis version 4]

112 decentralized deadlock prevention

Table
1

0.
1:Bad

siphons
in

the
S
3PR

in
Figure

1
0.

1.

i
S
i

T
(S
i)

|T
(S
i)|

m
0

control

1
u
2
1 ,u

2
2 ,p

1
1 ,p

1
3

p
1
0 ,p

1
2

2
2

true

2
u
1
8 ,u

2
0 ,p

1 ,p
3 ,p

6 ,p
9 ,p

1
5

p
8 ,p

1
4

2
2

true

3
u
1
8 ,u

1
9 ,u

2
0 ,u

2
3 ,p

1 ,p
3 ,p

6 ,p
9 ,p

1
6

p
4 ,p

5 ,p
8 ,p

1
4 ,p

1
5

2
4

false

4
u
1
7 ,u

1
8 ,p

3 ,p
7 ,p

9 ,p
1
4

p
1 ,p

2 ,p
6

2
2

true

5
u
1
7 ,u

1
8 ,u

2
0 ,p

3 ,p
7 ,p

9 ,p
1
5

p
1 ,p

2 ,p
6 ,p

8 ,p
1
4

3
3

true

6
u
1
7 ,u

1
8 ,u

1
9 ,u

2
0 ,u

2
3 ,p

3 ,p
7 ,p

9 ,p
1
6

p
1 ,p

2 ,p
4 ,p

5 ,p
6 ,p

8 ,p
1
4 ,p

1
5

3
5

false

7
u
1
8 ,u

2
1 ,p

1 ,p
3 ,p

6 ,p
1
0 ,p

1
4

p
9 ,p

1
3

2
2

true

8
u
1
8 ,u

2
0 ,u

2
1 ,p

1 ,p
3 ,p

6 ,p
1
0 ,p

1
5

p
8 ,p

9 ,p
1
3 ,p

1
4

2
3

false

9
u
1
8 ,u

1
9 ,u

2
0 ,u

2
1 ,u

2
3 ,p

1 ,p
3 ,p

6 ,p
1
0 ,p

1
6

p
4 ,p

5 ,p
8 ,p

9 ,p
1
3 ,p

1
4 ,p

1
5

3
5

false

1
0

u
1
7 ,u

1
8 ,u

2
1 ,p

3 ,p
7 ,p

1
0 ,p

1
4

p
1 ,p

2 ,p
6 ,p

9 ,p
1
3

3
3

true

1
1

u
1
7 ,u

1
8 ,u

2
0 ,u

2
1 ,p

3 ,p
7 ,p

1
0 ,p

1
5

p
1 ,p

2 ,p
6 ,p

8 ,p
9 ,p

1
3 ,p

1
4

3
4

false

1
2

u
1
7 ,u

1
8 ,u

1
9 ,u

2
0 ,u

2
1 ,u

2
3 ,p

3 ,p
7 ,p

1
0 ,p

1
6

p
1 ,p

2 ,p
4 ,p

5 ,p
6 ,p

8 ,p
9 ,p

1
3 ,p

1
4 ,p

1
5

3
6

false

1
3

u
1
8 ,u

2
1 ,u

2
2 ,p

1 ,p
3 ,p

6 ,p
1
1 ,p

1
4

p
9 ,p

1
0 ,p

1
2 ,p

1
3

2
3

false

1
4

u
1
8 ,u

2
0 ,u

2
1 ,u

2
2 ,p

1 ,p
3 ,p

6 ,p
1
1 ,p

1
5

p
8 ,p

9 ,p
1
0 ,p

1
2 ,p

1
3 ,p

1
4

2
4

false

1
5

u
1
8 ,u

1
9 ,u

2
0 ,u

2
1 ,u

2
2 ,u

2
3 ,p

1 ,p
3 ,p

6 ,p
1
1 ,p

1
6

p
4 ,p

5 ,p
6 ,p

7 ,p
8 ,p

9 ,p
1
0 ,p

1
2 ,p

1
3 ,p

1
4 ,p

1
5

2
6

false

1
6

u
1
7 ,u

1
8 ,u

2
1 ,u

2
2 ,p

3 ,p
1
1 ,p

1
4

p
1 ,p

2 ,p
6 ,p

7 ,p
9 ,p

1
0 ,p

1
2 ,p

1
3

3
4

false

1
7

u
1
7 ,u

1
8 ,u

2
0 ,u

2
1 ,u

2
2 ,p

3 ,p
1
1 ,p

1
5

p
1 ,p

2 ,p
6 ,p

7 ,p
8 ,p

9 ,p
1
0 ,p

1
2 ,p

1
3 ,p

1
4

3
5

false

1
8

u
1
7 ,u

1
8 ,u

1
9 ,u

2
0 ,u

2
1 ,u

2
2 ,u

2
3 ,p

3 ,p
1
1 ,p

1
6

p
1 ,p

2 ,p
4 ,p

5 ,p
6 ,p

7 ,p
8 ,p

9 ,p
1
0 ,p

1
2 ,p

1
3 ,p

1
4 ,p

1
5

3
7

false

[September 6, 2016 at 9:07 – classicthesis version 4]

10.2 motivating example 113

moment, the seven resource places {ur|r = 17, . . . , 23} are modeling
the limited capacities of the corresponding regions. Notice that for
simplicity we use the same notations for the regions of the environ-
ment and for the resource places, i.e., ur. Assuming the capacity of
each region is one, the resource places contain one token in the initial
marking since the robots are initially in the depot.

The process representing the trajectory of R1 is modeled by four
places, {p10, p1, p2, p3}, and four transitions, {t1, t2, t3, t4}. Place p10
has initially one token since the robot R1 is waiting in the depot. The
other places p1, p2 and p3 are modeling the intermediate regions
that should be traveled by R1. In particular, places p1 is modeling the
presence of R1 in region u18, p2 is modeling that the robot is in u17
while p3 is modeling that the robot is again in u18. The firing of the
transitions implies that R1 leaves a region and enters in other region.

It is obvious that the net belongs to S3PR class since each process
place (p1, p2 and p3) is using only one resource at any given time.
Thus, we can apply the structural results already existing for this class
of nets to obtain a deadlock prevention policy. One of such technique
is based on the computation of the set of bad siphons (a siphon is a set
of places such that its set of input transitions is included in its set of
output transitions; a siphon is bad if is not containing the support of
any P-semiflow, hence it may be emptied) since the existence of such
siphons could imply a deadlock state∗. In order to ensure a deadlock
prevention controller, a new place can be added to the net to prevent
the emptiness of the siphon.

The S3PR in Figure 10.1(b) has 18 bad siphons given in Table 10.1.
Some of these siphons can be emptied and some not, depending on
the initial marking. Notice that a bad siphon is a structural element of
the net. The column “control” indicates whatever the siphon needs to
be controlled or not. If a siphon can be emptied, the tokens modeling
the resource places initially in the siphon are allocated to a set of thieves
places. The column “T(Si)” in Table 10.1 is giving the set of thieves
places for each bad siphon; while column “m0” is showing the initial
number of tokens in the bad siphons. Column “|T(Si)|” is giving the
maximum number of tokens in the thieves and if this number is equal
to (or greater than) the initial number of markings of the siphon, the
siphon should be controlled because it may be emptied.

In order to prevent the emptiness of the bad siphon S1, a monitor
place called c can be introduced to ensure that the thieves places of S1
can take at most 1 token. Therefore, the initial marking of c will be
one and the following arcs will be introduced: (c, t12), (t13, c), (c, t15)
and (t16, c). In this case, the place c is necessary for the control and
it implies a centralized controller for its implementation such that
if R2 wants to enter in u21 it should consult the central unit for an
authorization. Moreover, if R3 will want to enter in u22 it should also
ask for an authorization from the central unit.

In this chapter we will propose a different approach to control the
bad siphons based on inhibitor arcs. In order to control S1, two in-

∗ In general, finding all siphons is a complex problem. Some papers (e.g., [42]) discuss
siphon computation on some subclasses of PN.

[September 6, 2016 at 9:07 – classicthesis version 4]

114 decentralized deadlock prevention

hibitor arcs are introduced: (p10, t15) which allow the firing of t15
only if p10 is empty and (p12, t12) allowing the firing of t12 only
if p12 is empty. Notice that these two inhibitor arcs implement the
mutual exclusion condition m[p10] +m[p12] 6 1. The inhibitor arcs
take the replacement of c, meaning no centralized unit is needed. The
main advantage of the inhibitor arcs is the fact that they are easier to
be implemented. They are simply a checking condition. In the case
that the plan of robots may change, the checking condition is the
only part needed to be adjusted. Because no control unit is used, the
adjustment of checking condition does not introduce cost. In our ex-
ample, robot R2 will enter in u21 (firing t12) only if there is no robot
in u22 while R3 will start entering in u22 only if there is no robot in
u21.

In Table 10.2 are given all inhibitor arcs to control (thieves of) bad
siphons listed in Table 10.1. Due to the introduction of the inhibitor
arcs to control the bad siphons, new siphons may be generated. Since
these new bad siphons are related to the inhibitor arcs we will call
them virtual siphons. In this chapter we will characterize these new
siphons showing that are very easy to be computed. In Table 10.4 are
given the virtual siphons that appear after introducing the inhibitor
arcs to control the initial bad siphons.

Finally, all bad siphons and virtual siphons generated by the in-
troduction of the inhibitor arcs are controlled, and then the resulted
net which we call S3PR2 (an S3PR with control inhibitor arcs) is live.
In the S3PR2, no place or arc is added to prevent the system from
deadlock states.

10.3 deadlock prevention in s
3

pr

10.3.1 Liveness of S3PR

In order to address the decentralized deadlock prevention problem
in the robot planning, we recall some results from [24] on liveness
characterization of S3PR.

Assumption 10.1. Let 〈P , T , F〉 be an S3PR and i ∈ IN be an index.
The set of places in i-th process is PiS ∪ {pi0 }. In the rest of this chapter,
we assume that each process is 1-safe (binary), i.e., let 〈N,m0〉 be a marked
S3PR, and then for allm ∈ R(N,m0) and ∀i ∈ IN,

∑
p∈PiS∪{pi0}

m[p] = 1.

If a resource token is not in its resource place, then it is held (allo-
cated) by a process. We denote the set of holders of resource r (states
that use r) by H(r) = (••r)∩ PS.

Example 10.2. In the S3PR in Figure 10.2(a), the process places are par-
titioned into two subsets: P1S = {p1,p2,p3,p4,p5} and P2S = {p6,p7,p8}.
The set of idle places is P0 = {p10,p20}. There are five resource places {ri|i =
1, . . . , 5}. Their holders are H(r1) = {p1}, H(r2) = {p2,p8}, H(r3) =

{p3,p7}, H(r4) = {p4,p6} and H(r5) = {p5}, respectively.

The characterization of liveness of S3PR uses P-semiflows. In gen-
eral PNs, the computation of all minimal P-semiflows is NP-hard [16].

[September 6, 2016 at 9:07 – classicthesis version 4]

10.3 deadlock prevention in s
3

pr 115

Ta
bl

e
1

0
.2

:C
on

tr
ol

ar
cs

of
th

e
S3

PR
in

Fi
gu

re
1

0
.1

S
|V

in
eq

ua
lit

y
in

hi
bi

to
r

ar
cs

S
1

m
[p
1
0
]+
m
[p
1
2
]
6
1

(p
1
0

,t
1
5
),
(p
1
2

,t
1
2
)

S
2

m
[p
8
]+
m
[p
1
4
]
6
1

(p
8

,t
1
7
),
(p
1
4

,t
1
0
)

S
4

m
[p
1
]+
m
[p
2
]+
m
[p
6
]
6
1

(p
1

,t
7
),
(p
2

,t
7
),
(p
6

,t
1
),
(p
6

,t
2
)

S
5

m
[p
1
]+
m
[p
2
]+
m
[p
6
]+
m
[p
8
]+
m
[p
1
4
]
6
2

–

S
7

m
[p
9
]+
m
[p
1
3
]
6
1

(p
9

,t
1
6
),
(p
1
3

,t
1
1
)

S
1
0
m
[p
1
]+
m
[p
2
]+
m
[p
6
]+
m
[p
9
]+
m
[p
1
3
]
6
2

–

V
1

m
[p
8
]+
m
[p
1
3
]
6
1

(p
8

,t
1
6
),
(p
1
3

,t
1
0
)

V
2

m
[p
9
]+
m
[p
1
2
]
6
1

(p
9

,t
1
6
),
(p
1
2

,t
1
1
)

V
3

m
[p
8
]+
m
[p
1
2
]
6
1

(p
8

,t
1
5
),
(p
1
2

,t
1
0
)

[September 6, 2016 at 9:07 – classicthesis version 4]

116 decentralized deadlock prevention

t1

t6 t2

t7
t3

t4

t5 t8

t9

t10

t11

p1

p5 p2

p3

p4 p6

p7

p8

p10

p20

r1

r2

r3

r4

r5

t8

t9

t10

t11

p6

p7

p8

p20

r1

r2

r3

r4

t1

t6 t2

t7
t3

t4

t5

p1

p5 p2

p3

p4

p10

r5

(b)

t8

t9

t10

t11

p6

p7

p8

p20

r1

r2

r3

r4

t1

t6 t2

t7
t3

t4

t5

p1

p5 p2

p3

p4

p10

r5

(c)

pc

(a)

Figure 10.2: (a) An S3PR with two processes and five resources[24]. (b) The
siphon S2 is controlled using a monitor place pc. (c) S is con-
trolled with two inhibitor arcs.

[September 6, 2016 at 9:07 – classicthesis version 4]

10.3 deadlock prevention in s
3

pr 117

Table 10.3: Set of bad siphons of the S3PR in Figure 10.2(a)

i Si Si ∩ PR T(S) |T(S)| m0

1 r2, r3,p3,p8 r2, r3 p2,p7 2 2

2 r3, r4,p4,p7 r3, r4 p3,p6 2 2

3 r2, r3, r4,p4,p8 r2, r3, r4 p2,p3,p6,p7 2 3

An improved way to compute all minimal P-semiflow is to use the
structural properties of S3PR. Given a set X ⊆ PS ∪ P0 ∪ PR, by eX we
denote the (PS ∪ P0 ∪ PR)-indexed vector so that

eX[p] =

{
1, if p ∈ X,

0, if p 6∈ X.

Proposition 10.3 (Proposition IV.1 in [24]). Let N = 〈PS ∪P0 ∪PR, T , F〉
be an S3PR. The set of minimal P-semiflows of N is {ePi∪P0 |i ∈ IN} ∪
{eH(r)∪{r}|r ∈ PR}.

Proposition 10.3 indicates that in S3PR, a minimal P-semiflow con-
taining resource places are composed of the resource places and their
holders. The number of minimal P-semiflows in an S3PR is |IN|+ |PR|.

Remark 10.4. In an S3PR, for each p ∈ PR, there exists a unique minimal
P-semiflow yp such that ||yp||∩ PR = {p} and yp[p] = 1.

Definition 10.5. A siphon S is called bad if there does not exist any P-
semiflow y such that ||y|| ⊆ S.

A bad siphon can be emptied. Obviously, when it is emptied, all
transitions in its input and output sets are dead.

Definition 10.6. Let N be an S3PR and S be a siphon. The thieves of S are
T(S) = (∪r∈S∩PR ||yr||) \ S, where yr is a P-semiflow containing only one
resource place r.

The thieves of a siphon consist of the places where tokens can go
if they leave the siphon†. According to processes, we partition the
thieves T(S) of a siphon S into several subsets: Ti(S) = T(S) ∩ PiS,
i ∈ IN. We use |T(S)| to denote the number non-empty subsets in the
partition. Since each process is binary, each subset of the thieves can
hold at most one token. The maximal number of tokens that can be
held by the thieves is |T(S)|.

Example 10.7. Let us consider the PN in Figure 10.2(a) whose bad siphons
are shown in Table 10.3. The thieves of S2 are p3 and p6. Because they are
distributed in two processes, the maximal number of tokens that can be held
is 2.

† A place in the set of thieves is called a thief.

[September 6, 2016 at 9:07 – classicthesis version 4]

118 decentralized deadlock prevention

10.3.2 Decentralized Control of Siphons

Depending on m0, not every bad siphon can be emptied. Before con-
trolling a bad siphon, we first verify whether it needs to be con-
trolled or not. When a siphon is emptied, all the resource tokens
are in its thieves. The number of resource tokens in a siphon S is∑
p∈S∩PRm0[p] and the maximal number of tokens that the thieves

can hold is |T(S)|. If
∑
p∈S∩PRm0[p] > |T(S)|, then there will always

be tokens in the siphon (the siphon cannot be emptied). In this case,
the siphon needs not to be controlled.

Otherwise, the thieves must be controlled to reduce the number of
tokens that can be held. In order to do this, at most

∑
p∈S∩PRm0[p] −

1 tokens can be held by the thieves, while the maximum number of
tokens that can be held by the thieves is |T(S)|. To control the siphon,
we reduce the maximum number of tokens that can go to the thieves
from |T(S)| to

∑
p∈S∩PRm0[p] − 1 by applying the mutual exclusion

condition to k 6 |T(S)| subsets of thieves. Therefore, for every reach-
able marking, the k subsets of thieves can hold at most one token,
and the other subsets can hold |T(S)|− k tokens. The number of to-
kens that can be held by the thieves becomes |T(S)|− k+ 1. It implies
the condition that |T(S)|− k+ 1 6

∑
p∈S∩PRm0[p] − 1, and then the

minimal number of subsets of thieves that should be in mutual exclu-
sion is:

k > |T(S)|−
∑

p∈S∩PR

m0[p] + 2. (10.6)

It means that if we apply the mutual exclusion condition to k sub-
sets of thieves, where k is the minimal number computed by (10.6),
then the siphon will never be emptied. In order to control k subsets
T1(S), . . . ,Tk(S) of T(S), we add inhibitor arcs from p ∈ Ti(S) to •p ′,
p ′ ∈ Tj(S), where i 6= j, i, j = 1, . . . ,k.

Example 10.8. Continuing Example 10.7, we compute the inhibitor arcs to
control S2. The initial number of resource tokens in S2 is 2 and there are
|T(S)| = 2 and

∑
p∈S∩PRm0[p] = 2. The mutual exclusive condition has

to be implied among 2− 2+ 2 = 2 thieves. Because the thieves of S2 are {p3}
and {p6}, then both p3 and p6 have to be controlled. In order to apply mutual
exclusion to p3 and p6, we add two inhibitor arcs from p3 to t8 and from
p6 to t3, respectively, and the resulted net is shown in Figure 10.2(c). After
that, the thieves of S1 and S3 are controlled and the net in Figure 10.3(a) is
obtained.

Two siphons S and S ′ may share some thieves, i.e.T(S) ∩ T(S ′) 6=
∅. In this case, the inhibitor arcs applied on the thieves of one of
them also control the other one. Consider the siphons and inhibitor
arcs in Example 10.8. The siphon S3 shares thieves with the other
two siphons, while the other siphons do not share thieve with each
other. For example, p2 is a thief of both S2 and S3. The inhibitor arcs
controlling S1 and S2 also control S3. The inhibitor arcs of S1 and
S2 implies that for every reachable marking m, m[p2] +m[p7] 6 1

and m[p3] +m[p6] 6 1. Due to the inhibitor arcs, the minimal the

[September 6, 2016 at 9:07 – classicthesis version 4]

10.3 deadlock prevention in s
3

pr 119

t8

t9

t10

t11

p6

p7

p8

p20

r1

r2

r3

r4

t1

t6 t2

t7
t3

t4

t5

p1

p5 p2

p3

p4

p10

r5

t8

t9

t10

t11

p6

p7

p8

p20

r1

r2

r3

r4

t1

t6 t2

t7
t3

t4

t5

p1

p5 p2

p3

p4

p10

r5

t8

t9

t10

t11

p6

p7

p8

p20

r1

r2

r3

r4

t1

t6 t2

t7
t3

t4

t5

p1

p5 p2

p3

p4

p10

r5

(a)

(b)

(c)

Figure 10.3: (a) All siphons are controlled. (b) Two inhibitor arcs introduce
a virtual siphon. (c) All siphons and the only virtual siphon is
controlled.

[September 6, 2016 at 9:07 – classicthesis version 4]

120 decentralized deadlock prevention

p1

p2

t1

t2

t3

t4

p4

t6

p3

t5

r

qs

Figure 10.4: Because the two dashed inhibitor arcs are not used to control
siphons, the PN is not an S3PR2.

number of tokens in S3 is 1. It implies that S3 cannot be emptied and
no control will be applied to S3.

10.4 deadlock prevention in s
3

pr
2

10.4.1 The Class of S3PR2

In the previous section, we proposed a decentralized control policy on
S3PR for the robot planning problem: using this policy, no centralized
controller is needed. Nevertheless, the controlled net (an S3PR with
inhibitor arcs) does not belong to the class of S3PR. In order to discuss
the liveness of the controlled net, we extend the definition of S3PR.

Definition 10.9. An S3PR with Reading arcs (S3PR2) is a PN N =

〈P = PS ∪ PR ∪ P0 , T , F ∪ Fr〉 obtained from an S3PR by adding inhibitor
arcs to control bad siphons, where:

1. 〈P , T , F〉 is a S3PR;

2. Fr ⊆ PS × T are inhibitor arcs (they can be transformed to reading
arcs using complementary places) such that if ∃(p , t) ∈ Fr, then
∀t ′ ∈ •(t•), there is (p , t ′) ∈ Fr;

3. ∀(p , t) ∈ Fr, if (p , t) is removed from N, then ∃m ∈ R(N,m0),
m0 6∈ R(N,m).

Let us consider the PN in Figure 10.4. The two inhibitor arcs (p2, t1)
and (p1, t4) do not control any bad siphon. Therefore, it is not an
S3PR2. In fact, due to the two inhibitor arcs, a new deadlock is created
comparing with the original net without the inhibitor arcs. Observe
that by firing the sequence t4t5, the system reaches a deadlock.

Note that by applying the control policy proposed in Section 10.3.2,
if there is an inhibitor arc from a place p to one input transition of
another place p ′, then there are inhibitor arcs from p to all input
transitions of p ′.

[September 6, 2016 at 9:07 – classicthesis version 4]

10.4 deadlock prevention in s
3

pr
2

121

Definition 10.10. Let Nr be an S3PR2 and N be the underlying S3PR. A
marking m0 is an acceptable initial marking of Nr if m0 is an acceptable
initial marking of the underlying S3PR.

Lemma 10.11. Let Nr be an S3PR2 and N be the underlying S3PR. A set
of places is a siphon in Nr iff it is a siphon in N.

Proof. Let a set S ⊆ PS, where PS is the set of process places in both Nr

and N. The pre and post matrices of Nr are the same as the ones of N. If in
N there is •S ⊆ S•, then •S ⊆ S• holds also in Nr and vice versa.

10.4.2 Virtual Siphon

As discussed in Section 10.3.1, the deadlocks in S3PR appear when
a bad siphon is emptied. In S3PR2, because inhibitor arcs are added,
another kind of “siphon” appears, which can be seen if we introduce
the complementary places.

Let us consider the PN in Figure 2.11(a), which is a subnet of an
S3PR whose processes are binary. Because the upper bounds of the
numbers of tokens in p1 and p2 are 1, two implicit places are added
in the PN to represent the usable capacities of them (Figure 2.11(b)).
Those implicit places are called the complementary places of p1 and p2,
respectively. By adding the complementary places, the resulted PN
has the same behavior as the original one. Let P = {p1,p2} and P ′ =
{p ′1,p ′2}. There are •P ′ = {t2, t3} and P ′• = {t1, t4}. At this moment,
P ′ is not a siphon. Let us add two inhibitor arcs from p1 and p2 to
t3 and t2, respectively, so that the net in Figure 2.11(c) is obtained
and it is a subnet of an S3PR2. Using the complementary places, we
can transform it into the one in Figure 2.11(d), in which the arcs from
p ′1 to t3 and p ′2 to t2 are reading arcs. The two reading arcs make
t2 and t3 become output transitions of the places in P ′, i.e., P ′• =

{t1, t2, t3, t4}. Due to the reading arcs, P ′ becomes a siphon, i.e., •P ′ ⊂
P ′•. In the nets in Figure 2.11(c) and 2.11(d), we can reach a deadlock
by firing the sequences t1t4 or t4t1. The deadlock is caused, because
the siphon P ′ composed of the complementary places of P is emptied.
Due to the fact that the places in P ′ does not exist in the S3PR2, we
call it the set of complementary places of P. Since the set P ′ is also
siphon, we call the set P a virtual siphon.

Definition 10.12. Let Nr be an S3PR2. A virtual siphon is a set of places
such that the set of their complementary places is a siphon. We call a virtual
siphon V as a minimal virtual siphon, if @p such that V \ {p} is a virtual
siphon.

Definition 10.13. Let Nr be an S3PR2. Considering set of places P ′ =

{p ′1,p ′2, . . . ,p ′k}, a virtual cycle composed of the places in P ′ is p ′1
e1→ p ′2

e ′1→

· · · ei−1→ p ′i
e ′i→ p ′i+1

ei+1· · · p ′k
e ′k→ p ′1, where p ′j

ej→ p ′j+1 means there is one arc
(p ′j, tj) ∈ F and one inhibitor arc (p ′j+1, tj) ∈ Fr.

We denote the virtual cycle in Definition 10.13 as p ′1p
′
2 . . . p

′
k. With

virtual cycle, next proposition is used to find a minimal virtual siphon

[September 6, 2016 at 9:07 – classicthesis version 4]

122 decentralized deadlock prevention

by computing a minimal cyclic path, which does not contain any other
cyclic path, such that the places in it construct the minimal virtual
siphon.

Proposition 10.14. Let N be an S3PR2. A set of places V = {pV1 , pV2 , . . . ,
pVk } ∈ PS is a minimal virtual siphon iff there exists a minimal cyclic path
p1p2 . . . pk (pi ∈ V, i = 1, . . . ,k, pi 6= pj, if i 6= j, i, j = 1, . . . ,k) such
that for all i ∈ {1, . . . ,k− 1}, there are inhibitor arcs from pi to all pi+1•

and from pk to all p1•.

Proof. We can see that ||p1p2 . . . pk|| = V.
⇐) Let V ′ = {p ′i|i = 1, . . . ,k} be the set of complementary places of the

ones in V such that p ′i is the complementary place of pi. Therefore, pi• ⊆
•p ′i and •pi ⊆ p ′i

• for all pi ∈ V and p ′i ∈ V ′.
On the other hand, the inhibitor arcs from pi ∈ V to all transitions pi+1•

are equivalent to reading arcs from p ′i to all pi+1• for all i = 1, . . . ,k− 1. If
i = k, then the inhibitor arcs from pk to all transitions p1• are equivalent to
reading arcs from p ′k to all p1•. Therefore, pi+1• ⊆ p ′i

• and pi+1• ⊆ •p ′i
for all i = 1, . . . ,k− 1 and p1• ⊆ p ′k

• and p1• ⊆ •p ′k.
Summing up, •p ′i = pi

• ∪pi+1•, i = 1, . . . ,k− 1 and •p ′k = pk
• ∪p1•

implying •V ′ = V•. On the other hand, p ′i
• = •pi∪pi+1•, i = 1, . . . ,k−1

and p ′k
• = •pk ∪p1• implying V ′• = •V∪V•. It means that V ′ is a siphon

and V is a virtual siphon.
⇒) Assume V is a virtual siphon but there exists a place pi ∈ V such

that there exists no inhibitor arc from pi to a transition t ∈ pi+1•. Let us
consider i 6 k− 1 in this proof and it can be easily extended to the case when
i = k. Let p ′i+1 ∈ V ′ be the complementary place of pi+1, hence t ∈ •p ′i+1
which implies that t ∈ •V ′. Because there is no inhibitor arc from pi to t,
then there is no reading arc from p ′i to t. Therefore, t ∈ •V ′ and t 6∈ V ′•

implying that •V ′ 6⊆ V ′•. Hence V ′ is not a siphon and V is not a virtual
siphon.

If V is a minimal virtual siphon and it corresponds to a non-minimal
cyclic path, which contains another cyclic path, then the contained cyclic
path corresponds to a virtual siphon instead V. It means that V is not a
minimal virtual siphon. Therefore, if V is a minimal virtual siphon, then it
corresponds to a minimal cyclic path, and vice versa.

10.4.3 Liveness of S3PR2

In order to characterize the liveness of S3PR2 (following Definition 10.9),
we use complementary places to transform an S3PR2 to an S4PR and
use the results of S4PR in [16].

Let Nr = 〈P0∪PS∪PR, T , F∪Fr〉 be an S3PR2. The S4PR net Nc with
the same behavior as Nr is obtained by applying Algorithm 10.1.

Note that this is the iterative application of the procedure of remov-
ing inhibitor arcs in a bounded PN.

Remark 10.15. Let Nr be an S3PR2 and Nc be corresponding transformed
S4PR. An initial marking m0 is acceptable for Nc if it is acceptable for Nr.

The S4PR is a superclass of S3PR. The liveness of S4PR has been
studied [16] and the following result has been proposed.

[September 6, 2016 at 9:07 – classicthesis version 4]

10.4 deadlock prevention in s
3

pr
2

123

Algorithm 10.1 Transform an S3PR2 to a S4PR

1: Let Nc = 〈P0 ∪ PS ∪ PR, T , F〉 be the underlying S3PR of Nr =

〈P0 ∪ PS ∪ PR, T , F∪ Fr〉.
2: Let PC = ∅, Fc = ∅
3: for each (p, t) ∈ Fr do

. for each inhibitor arc, add the complementary place p ′ of p
4: PC = PC ∪ {p ′}
5: ∀t ′ ∈ p•, let Fc = Fc ∪ {(t ′,p ′)}
6: ∀t ′ ∈ •p, let Fc = Fc ∪ {(p ′, t)}
7: Fc = Fc ∪ {(p ′, t), (t,p ′)} . add the reading arc
8: end for
9: Nc = 〈P0 ∪ PS ∪ PR ∪ PC, T , F∪ Fc〉

Theorem 10.16 (Theorem 3 in [16]). Let 〈N,m0〉 be a marked S4PR with
N = 〈P0 ∪ PS ∪ PR, T , F〉. The net is non-live iff there exists a siphon D and
a marking m ∈ R(N,m0) such that:

C1) ||m||∩ PS 6= ∅;

C2) ||m||∩ (PS \ T(D)) = ∅;

C3) ∀p ∈ T(D) such that ||m|| ∩ p 6= ∅, the firing of each t ∈ p• is
prevented by a set of resource places belonging to D.

Theorem 10.16 indicates that, in the liveness of S4PR, siphons con-
taining resource places play an important role. An S4PR system is
non-live if there is a reachable marking m satisfying that exists a
siphon D and:

(C1 and C2) if a resource token is not in the resource place, then it is
in a thief of D;

(C3) if a token is in a thief p of D, then it cannot leave the thief
(to move to its resource place) by firing any transition t ∈ •p,
because t is not enabled forever due to an input resource place
of t which is empty.

Lemma 10.17 (Lemma 2 in [16]). Let N be an S4PR and D ⊆ P be a non-
empty minimal siphon of N. If D ∩ PR 6= ∅, then D is the unique minimal
siphon of N containing exactly the set of resources D∩ PR.

The time complexity to compute all minimal siphons in an S4PR
is exponential with the number of resource places [16, 20, 41, 64].
However, we do not have to control all of them and only a subset
(called basic minimal siphons) has to be controlled.

Definition 10.18. Let Nr = 〈P0 ∪ PS ∪ PR, T , F〉 be an S3PR2 and Nc =

〈P0 ∪ PS ∪ PR ∪ PC, T , F ∪ Fc〉 be its transformed S4PR net by applying
Algorithm 10.1. The set of basic minimal siphons S∪ V contains:

1. the set of minimal siphons S containing resource places in PR and
processes places in PS;

[September 6, 2016 at 9:07 – classicthesis version 4]

124 decentralized deadlock prevention

p1 p2

t1

t2

t3

t4

p ′1

p ′2

p4

t6

p3

t5

r

q

sp1 p2

t1

t2

t3

t4

p ′1

p ′2

p4

t6

p3

t5

r

q

sp1

p2

t1

t2

t3

t4

p ′1

p ′2

p4

t6

r

q

p5

t7

t8

p ′5

(a) (b) (c)

ta

tb

p ′4

Figure 10.5: (a) Possibilities of transforming t3 to be an output transition of
S. (b) Possibilities of transforming t1 to be an output transition
of S. (c) p1 and p2 are in mutual exclusive condition.

2. the set of siphons V such that for any V ′ ∈ V , V ′ corresponds to a
virtual siphon in Nr.

Let Nr = 〈P0 ∪ PS ∪ PR, T , F〉 be an S3PR2 and Nc = 〈P0 ∪ PS ∪ PR ∪
PC, T , F∪ Fc〉 be its transformed S4PR net by applying Algorithm 10.1.
A virtual siphon V in Nr corresponds to a siphon in Nc composed
only by places in PC. If all basic minimal siphons are controlled then
the other siphons of Nc which contain places from PR and from PC
are already controlled.

Lemma 10.19. Let Nr = 〈P0 ∪ PS ∪ PR, T , F〉 be an S3PR2 and Nc =

〈P0 ∪ PS ∪ PR ∪ PC, T , F ∪ Fc〉 be its transformed S4PR net by applying
Algorithm 10.1. If all basic minimal siphons of Nr are controlled (using
inhibitor/reading arcs) then all minimal bad siphons are controlled.

Proof. Let S be a minimal bad siphon containing places from both sets PR
and PC and we will show that S has been controlled by inhibitor arcs. From
hypothesis, ∃p ′2 ∈ PC such that p ′2 ∈ S. Assume, without loss of generality
that p ′2 has only one single input and one single output transition, e.g.,
•p ′2 = {t3}, p ′2

• = {t4}. The following steps will be performed to obtain all
places are in S:

1. Because S is a siphon, the input transition t3 of p ′2 should be also
an output transition. Hence, an input place in t3 should belong to S.
There are three different possibilities (see Figure 10.5(a)): (1a) place
p2 ∈ PS, such that p ′2 is the complementary place of p2. However,
p2 cannot belong to S, because the siphon will not be bad including
the p-semiflow p2 + p

′
2; (1b) a place from the set PC. If this is the

case, step 1 is re-iterated starting with the input transition in this
new complementary place. Since the number of complementary places
is finite, the number of iteration is finite. On the other hand, since S

is not containing only complementary places at the end other type of
place (not of type (b)) should be found; (1c) a resource place r ∈ PR. Let
p4 ∈ PS be a holder place of r belonging to the same process as place
p2 (Figure 10.5(a)). Now, the input transition of r, e.g., t6, should be
also an output transition of S. A new resource or complementary place
could be considered but in this case step 1 is reiterated until a process
place will be considered. Assume, without loss of generality that p4 ∈

[September 6, 2016 at 9:07 – classicthesis version 4]

10.4 deadlock prevention in s
3

pr
2

125

S. Resource r cannot be private and used only in p4, otherwise S will
contain a p-semiflow r+ p4.

2. Now, we have {p ′2,p4, r} ⊆ S. An input transition t1 6= t6 of r
must be an output transition of S. There are five possibilities (see Fig-
ure 10.5(b)). (2a) if a reading arc exists between p ′4 and t1, then one
output transition of p ′4 is t1. But S will have a p-semiflow containing
p4 and p ′4. (2b), a reading arc exists between p ′5 and t1, where p ′5
the a complementary place. But we face the same problem as we had
in the previous step that the input transition of p ′5 must be an output
transition of S, and eventually S must have a place belonging to other
types. (2c), a resource place s, which has t1 as one output transition,
can belong to S. However, with s, we repeat the problem in this step
that other input transitions of s must be output transitions of S, and
eventually S contains places in other types. (2d), p ′1 can belong to S,
because its output transition is t1, but its input transition t2 must be
an output transition of S and we repeat the problem in the previous
step. (2e), p ′2 belongs to S if a reading arc exists between p ′2 and t1.
From the fact that S contains p ′2 and the control policy that no mutual
exclusive condition is implied between places in the same process, we
obtain that t1 belongs to other process than the one containing p2.

Until now, we have S = {p ′2,p4, r} ∪ P ′. The set of places {p ′2,p4, r} is
a minimal siphon and any additional place to this set makes it to be non-
minimal. Therefore, P ′ = ∅ and S = {p ′2,p4, r} (otherwise S is not minimal).
The set of thieves of S is T(S) = {p2,p3}. The reading arc between p ′2 and
t1 implies that p1 and p2 are in mutual exclusion and another reading arc
exists between p ′1 and t4. These reading arcs may be used to control thieves
of a siphon in the S3PR (e.g., p1 and p2 are thieves of S ′), or to control a
virtual siphon. In both uses, p1 and p2 are thieves of one or two siphons.

First, consider the inhibitor arcs used to control a siphon in the S3PR
such that {p1,p2} ⊆ T(S ′). We can see that p2 is a holder of q. Because a
thief of S ′ is a holder of a resource in S ′ and p2 is a thief of S ′, so q ∈ S ′.
The transition t3 is an output transition of S ′ and the only possibility (in
the S3PR) is that r ∈ S ′. It means that p3 ∈ T(S ′). Second, consider the
inhibitor arcs control a virtual siphon such that p1 ∈ T(S ′) and p2 ∈ T(S ′′).
We have r ∈ S ′ and p3 ∈ T(S ′). Because p3 ∈ T(S ′), so s ∈ T(S ′) meaning
that as in the previous case, a siphon S ′ contains s,q, r and {p1,p2,p3} ⊆
T(S ′). In both cases, in order to control S ′, we add inhibitor arcs (p2, t5)
and (p3, t4). Hence, by our control policy, we have inhibitor arcs (p2, t5)
and (p3, t4) to control S ′′. These inhibitor arcs also control p3 and p2 for S.
Finally, S has been controlled when we control S ′.

Now, we give Theorem 10.20 to characterize the liveness of S3PR2

such that the system is non-live if, for a reachable marking, there
exists an emptied siphon or a fully marked virtual siphon.

Theorem 10.20. Let 〈Nr,m0〉 be an S3PR2 where Nr = 〈P0 ∪ PS ∪
PR, T , F ∪ Fr〉, and the basic minimal siphons are S ∪ V . The net is non-
live iff ∃m ∈ R(Nr,m0), ∃ a minimal siphon S ∈ S such that S∩ ||m|| = ∅
or ∃ a virtual siphon V ∈ V such that V∩ ||m|| = V.

[September 6, 2016 at 9:07 – classicthesis version 4]

126 decentralized deadlock prevention

Proof. Let Nc = 〈P0 ∪ PS ∪ PR ∪ PC, T , F ∪ Fc〉 be the transformed S4PR
net of Nr, where ∀p ′ ∈ PC, p ′ is the complementary place of p ∈ PS
obtained by applying Algorithm 10.1. We prove the theorem in Nc. The two
conditions are:

C1) ∃S such that S is emptied;

C2) ∃V such that V is fully marked.

By transforming V to the set of its complementary places V ′, the condition
C2 can be converted to ∃V ′ such that V ′ is emptied. As both S and V ′ are
siphons in Nc, then the theorem is rewritten as follows: the net is non-live
iff ∃m ∈ R(Nc,m0) such that ∃ an empty siphon D in Nc. According
to Theorem 10.16 and Lemma 10.19, it holds that if there is a reachable
marking at which there exists an emptied siphon in Nc, and then Nc is
non-live. Finally, the theorem holds.

10.4.4 Control of Virtual Siphons

A fully marked virtual siphon leads the system into deadlock states.
Therefore, control a virtual siphon is to ensure that there is always
one empty place in it (cannot be fully marked forever). The control
policy is implemented by inhibitor arcs such that, by synthesizing the
inhibitor arcs, the resulted model still remains in the class of S3PR2.
When an inhibitor arc is added into an S3PR2, new virtual siphons
may be introduced. Therefore, iterative searching and controlling for
virtual siphons are needed.

Before discussing how to control virtual siphons, let us first con-
sider whether a virtual siphon needs to be controlled or not. Some
virtual siphons do not need to be controlled, if they can never be fully
marked, i.e., for any reachable marking at least one place is empty.
These virtual siphons can be characterized using the PN structure.

Remark 10.21. Let Nr be an S3PR2. Since every process is binary, a virtual
siphon V does not need to be controlled if ∃i ∈ INr such that |V ∩ PiS| > 2,
i.e., there exists two places in V belonging to the same process (they are
mutual exclusive to each other).

In order to find virtual siphons, the cycles containing inhibitor
arcs are computed. The complexity of computing all cyclic paths is
exponential. Lemma 10.22 indicates the maximal lengths of virtual
siphons, which need to be controlled, and it decreases the complexity
for the computation for virtual siphons in an S3PR2.

Lemma 10.22. Let 〈Nr,m0〉 be a marked S3PR2 and INr be the set of
indices. The virtual siphon V does not needs to be controlled if |V| > |INr |.

Proof. If |V| > |INr |, then ∃i ∈ INr , |V ∩ PiS| > 2 and V do not need to be
controlled.

The number of places in a virtual siphon V satisfies 2 6 |V| 6 |INr |.
In order to prevent a virtual siphon from being fully marked, we
apply the mutual exclusive condition by using inhibitor arcs to two

[September 6, 2016 at 9:07 – classicthesis version 4]

10.4 deadlock prevention in s
3

pr
2

127

Table 10.4: Virtual siphons in the controlled S3PR in Figure 10.1

i Vi

1 p8,p13
2 p9,p12
3 p8,p12

places in the virtual siphon. New virtual siphons may be constructed
due to the newly introduced inhibitor arcs. The computation of con-
trol of virtual siphons has to be performed iteratively until no new
virtual siphon rises. Moreover, some inhibitor arcs do not raise any
virtual siphon, and then we do not consider them in the computation
of virtual siphons.

Lemma 10.23. Let 〈Nr,m0〉 be a marked S3PR2 and t be a transition. The
inhibitor arcs pointing to t do not introduce any virtual siphon, if there is
no inhibitor arc starting from all •t.

Proof. Let t be an output transition of pi+1 and exists an inhibitor (pi, t)
from pi to t. According to Proposition 10.14, in order to construct a virtual
siphon, there must be inhibitor arcs starting from pi+1. Hence, if there is no
inhibitor arc starting from pi+1, the inhibitor arc (pi, t) cannot raise any
virtual siphon.

Because all inhibitor arcs in S3PR2 start from process places and no
inhibitor arc starting from idle places, the inhibitor arcs pointing to
the first transition of each process, which is the output transition of
idle place, can be removed in the computation of virtual siphons.

Example 10.24. Let us continue Example 10.7, in which siphons are con-
trolled and the resulted PN is shown in Figure 10.3(a). We first remove the
inhibitor arcs, which do not raise any virtual siphon, and the resulted net
is shown in Figure 10.3(b). To control all siphons, four inhibitor arcs are
applied, and two of them may introduce virtual siphons. There is only one
virtual siphon V = {p2,p6}. To control V, we add two inhibitor arcs from p2
to t8 and from p6 to t2, respectively, to the net in Figure 10.3(c). Because
the newly added inhibitor arcs do not raise any virtual siphon, the controlled
system is live.

10.4.5 Comparison

We compare the S3PR2 with related works using the benchmark S3PR
shown in Figure 10.1(b) with a new initial marking m0 = 3p10 +

11p20 + 7p
3
0 + 2u17 + u18 + u19 + u20 + u21 + u22 + u23. In order to

apply inhibitor arcs, we convert the non-safe S3PR to a safe one. It
is made by duplicating processes. For example, the process with p10
is duplicated to three processes, because there are three tokens in it.
The generated three processes contain one token each. Comparison
results are shown in Table 10.5, where the columns in the table are:

1. “marking” contains the numbers of markings can be reached in
the live system;

[September 6, 2016 at 9:07 – classicthesis version 4]

128 decentralized deadlock prevention

Table 10.5: Comparison with related works

markings monitors arcs inhibitor arcs complexity

[24] 6287 18 106 0 Exponential

[40] 6287 6 32 0 Exponential

[61] 14850 8 40 0 NP

[18] 21562 19 112 0 Exponential

S3PR2 6287 0 0 6896+ Exponential

2. “monitors”composes of the numbers of additional control places;

3. the numbers of arcs used to attach the control places with the
original system are in “arc”;

4. “inhibitor arcs” consists the numbers of additional inhibitor arcs
controlling the original system;

5. the complexity of the corresponding approaches are listed in
“complexity”.

It is illustrated that the numbers of markings in the live systems pro-
duced by [24], [40] and ours are the same. The approach in [18] has
the maximal permission among the five approaches. The live system
generated by applying [18] has the largest number of monitor places
and arcs, followed by the system in [24]. In monitor based approaches,
[40] proposed the best result in the number of places and arcs. Be-
cause we propose a monitor place-free approach, the numbers of con-
trol places and arcs are zero. As a trade-off, we use a large number of
inhibitor arcs. As we illustrated, when a robot wants to enter a region,
it sends inquiries according to the inhibitor arcs. It means that:

1. the original system is not modified;

2. because there is no monitor place, no monitor state will be main-
tained.

[September 6, 2016 at 9:07 – classicthesis version 4]

11
R O B O T P L A N V E R I F I C AT I O N

In the case where real time control is not applied, we introduce some
algorithms to verify robots’ plans before they are executed. Our tar-
get is to avoid some forbidden states and our solution is to introduce
initial delays to robot plans. The initial delays mean, first, each robot
must wait for a given time delay before starting to move, and second,
when it is moving ,it follows its plan, while no additional control
will be introduced. We use three different approaches to determine
the delays. Each approach is represented using a mixed integer lin-
ear programming problem. We also introduce statistical analysis on
experimental results of the three approaches.

129

[September 6, 2016 at 9:07 – classicthesis version 4]

130 robot plan verification

11.1 introduction

This chapter addresses a collision avoidance problem in a multi-robot
system. Each robot has a set of possible trajectories, each trajectory
fulfilling its individual task. The trajectories consist of sequences of
regions to be followed, and the time for moving inside each region
is known. We considered the problem of imposing initial time delays
for trajectories of mobile robots, such that a collision-free movement
results in a shared environment. Each robot has a set of possible Two
solutions are developed, depending on the possibility of imposing a
certain trajectory from the available set of paths for each robot. The
solutions have the form of mixed integer linear programming opti-
mizations that return the initial time delays and, when necessary, the
chosen trajectory for each robot. Finally, we perform a statistical study
on the proposed solutions and we conclude that one formulation is
preferable to the others.

11.2 problem description

Some preliminary ideas and notations to be used are given in subsec-
tion 11.2.1, while the problems to be solved are formulated in subsec-
tion 11.2.2.

11.2.1 Preliminaries

A set of |R| robots moving in a static and known environment is con-
sidered. Based on partitioning techniques [21] and control results for
classes of dynamical systems [32, 6], the environment and the control
capabilities of each robot can be modeled by various types of discrete
event systems. Details on such abstraction procedures go beyond the
scope of this section, and the interested reader is referred to works as
[19, 7, 37] for more details.

The set of robots is denoted by R = {r1, r2, . . . , r|R|}, and the map of
the environment is represented by the graph G = (M∪ {D},E), where:

• nodes from set M correspond to regions (places) from the par-
titioned environment, where the robots move in order to com-
plete their tasks;

• node D correspond to a depot where the robots are initially
placed and where they will return after moving through nodes
from M;

• edges from E ⊆ {M ∪ {D}}× {M ∪ {D}} correspond to possible
movement of robots between adjacent regions, i.e., (p1,p2) ∈ E,
with p1,p2 ∈ M ∪ {D}, means that a robot starting from region
denoted by p1 can arrive in finite time to place p2, without
crossing through any other places.

The depot D should be regarded as an area where the robots are
handled (e.g.stored, charged, programmed) by a central unit. While

[September 6, 2016 at 9:07 – classicthesis version 4]

11.2 problem description 131

the robots are in depot D, they cannot collide. However, once the
robots leave D and evolve in regions from M, they move indepen-
dently, without communicating with other robots or with the central
unit. Therefore, it is possible that robots collide in nodes from M, and
this work is devoted to avoiding such collisions by imposing some ini-
tial delays in robot movements.

Each robot ri, i = 1, 2, . . . , |R|, has a set of trajectories Ti = {si,1,
si,2, . . . , si,|Ti|}. Each trajectory si,j is a sequence of nodes such that
si,j = Dp

1
i,j p

2
i,j · · · p

ni,j
i,j D and ∀k = 1, . . . ,ni,j, pki,j ∈M. Each robot ri

should follow any trajectory from Ti in order to accomplish its task:
it leaves the depot by accessing the map nodes M, moves through
regions from M and returns to D.

Let pki,j be the k-th place (excluding depot) in the j-th trajectory of
robot ri. A crossing time τki,j is associated with pki,j to describe the
time needed by ri from entering region pki,j until leaving it.

Note that if the same place from M belongs to multiple trajectories,
its associated crossing times may be different, fact in accordance with
a model build by partitioning the robotic environment. For example,
assume that place p ∈ M appears in trajectories j and j ′ of robot ri:
p = pki,j = pk

′

i,j ′ . In j-th trajectory, p is crossed by entering the region
from a previous region pk−1i,j and by moving towards next region
pk+1i,j , e.g. by following a line segment or by applying a specific control
law. The moving time τki,j is therefore related to this local continuous
trajectory, and it may be different from τk

′

i,j ′ , since in j ′-th trajectory
region p may be reached (left) from (to) other region by different
local control laws and trajectories. On the same ideas, if robots have
different speeds, this information is also encapsuled by the crossing
times related to each tuple robot-trajectory-place.

There is no crossing time associated with D, meaning that any
robot ri can immediately access M. If all robots start to move at the
initial time 0, it is possible that some robots collide, because their tra-
jectories may intersect. Let us assume that two robots collide if they
are in the same region from M at the same time, or if they swap two
adjacent regions (one moves from p to p ′ while the other moves from
p ′ to p). Clearly, collisions depend on the intersections of trajectories
of different robots and on the crossing times for regions along these
trajectories.

Recall that the robots independently move, and therefore they can-
not pause their movement in order to avoid collisions and yield cross-
ing priorities to other robots. Even if such pauses were possible, dead-
locks may appear in the case of circular waits of some robots [38].
However, since the robots are initially in the depot, where they are
handled by a central unit, it is possible to delay the starting time for
moving along each possible trajectory, such that no collisions appear.
If robot ri follows trajectory si,j, let us denote by δi,j the time delay
when ri starts to move.

Example 11.1. Consider the graph environment from Figure 11.1, in which
M includes nine places and the depot that surrounds these regions. There
are two robots r1 and r2, each having a single trajectory:

[September 6, 2016 at 9:07 – classicthesis version 4]

132 robot plan verification

p1
p2 p3

p6

p9

p5p4

p7 p8

r1

r2

D

Figure 11.1: Map for example 11.1.

• T1 = {s1,1}, s1,1 = Dp
1
1,1p

2
1,1p

3
1,1D = Dp2p5p8D;

• T2 = {s2,1}, s2,1 = Dp
1
2,1p

2
2,1p

3
2,1D = Dp4p5p6D.

The following crossing times are assumed:

• for s1,1: τ11,1 = 1, τ
2
1,1 = 2, τ

3
1,1 = 1;

• for s2,1: τ12,1 = 2, τ
2
2,1 = 1, τ

3
2,1 = 1.

If the initial delays of two trajectories are zero (δ1,1 = δ2,1 = 0), then the
arrival and departure times of r1 in p21,1 (region p5 in the map) are 1 and 3,
respectively, while the arrival and departure times of r2 in p22,1 (same region
p5) are 2 and 3, respectively. Because both robots are in the place p5 in the
time interval [2, 3], they collide.

11.2.2 Problem statement

Our goal is to find initial time delays δi,j such that there are no robot
collisions and the robots finish their tasks in minimum possible time.
A trivial solution for enforcing these delays would be to sequentially
move the robots, i.e.first move only robot r1, when it finishes its trajec-
tory start moving r2, and so on. Clearly, such an approach forbids si-
multaneous movements and it implies a long time until each robot fin-
ishes its chosen trajectory. In a resource allocation framework, nodes
M can be regarded as a shared resource for the |R| robots, while the
trivial solution implies a mutual exclusion for accessing the set M.

Two different problems are formulated depending on the ability of
the central unit to impose the trajectory of each robot ri from set Ti.

Problem 11.2 (Decentralized). Each robot ri chooses its trajectory from
set Ti without informing the cental unit. Find initial time delays δi,j, i =
1, . . . , |R|, j = 1, . . . , |Ti|, such that there are no collisions and all robots
finish the movement in shortest time.

Problem 11.3 (Centralized). The central unit can impose a trajectory for
each robot ri from set Ti. For each robot ri, i = 1, . . . , |R|, find the trajectory

[September 6, 2016 at 9:07 – classicthesis version 4]

11.3 solution 133

si,j ∈ Ti it should follow and its initial time delay δi,j, such that there are
no collisions and all robots finish the movement in shortest time.

The common hypothesis for both problems are the sets of trajec-
tories Ti and the crossing times of robots through regions τki,j, i =
1, . . . , |R|, j = 1, . . . , |Ti|, k = 1, . . . ,ni,j.

Problem 11.2 will have as outcomes a number of
∑|R|
i=1 |Ti| ini-

tial time delays. Once these are available, each robot ri (randomly)
chooses a trajectory si,j from Ti, waits for time δi,j and then it starts
to evolve along si,j.

Problem 11.3 will have a total of 2|R| outcomes: the index j for tra-
jectory and the initial time delay δi,j, for each robot ri, i = 1, . . . , |R|.
The trajectories and initial delays imply a minimum completion time
(until all robots return to depot D). Of course, the completion time
yielded by solution of Problem 11.2 may be longer, since it is mini-
mized by accounting any possible robot-trajectory choice.

Remark 11.4. The above problems can be formulated by ignoring depot D
and by assuming that each robot is initially deployed in a place from mapM.
The same procedure can be followed for finding initial time delays. However,
in such a scenario it is possible that the above problems become infeasible
(e.g., assume two robots each with a single trajectory, the trajectories consist
of the same regions from M, but are followed in opposite directions by the
robots). If depot D is assumed, the problems always have solutions (see for
example the trivial solution from the beginning of this subsection).

As possible real scenarios mimicked by the above formulation, one
can imagine non-communicating exploring robots, air transportation
systems, automated railway systems where specific track segments
and intersections correspond to nodes from M. Initial delays rather
than pausing motions may be desirable in certain situations (e.g., in
air transportation it is cheaper to let planes wait in their departure
airport than wait in air, while in railway systems paused trains may
perturb other traffic participants).

Example 11.5. In Example 11.1, a possible solution for avoiding collisions
can be δ1,1 = 2+ ε (with ε a very small value) and δ2,1 = 0, case in which
r1 finishes its trajectory at time 6+ ε (and r2 at time 4). A better solution
would be δ1,1 = 0 and δ2,1 = 1+ ε, such that the robots are back in depot
at time 5+ ε.

11.3 solution

This section proposes some algorithmic solutions for Problems 11.2
and 11.3 based on MILP (Mixed Integer Linear Programming) opti-
mization.

[September 6, 2016 at 9:07 – classicthesis version 4]

134 robot plan verification

11.3.1 A solution for Problem 11.2

If a robot ri follows trajectory si,j, its arrival time in region pki,j is

TA(p
k
i,j) = δi,j +

k−1∑
l=1

τli,j; (11.7)

where δi,j is the initial delay (unknown). The departure time from pki,j
is

TD(p
k
i,j) = TA(p

k
i,j) + τ

k
i,j. (11.8)

Consider two trajectories si,j and sα,β of two robots ri and rα, respec-
tively. Assume that the two trajectories intersect in a place p ∈ M,
p = pki,j = p

γ
α,β (k-th region from trajectory of robot ri is identical

with γ-th region from trajectory of robot rα). The robots do not col-
lide in this place if either inequality Equation 11.9a or Equation 11.9b
is true.

TD(p
k
i,j) 6 TA(p

γ
α,β) − ε

TD(p
γ
α,β) 6 TA(p

k
i,j) − ε

(11.9a)

(11.9b)

In inequalities Equation 11.9, ε is a very small number. It ensures
that robots ri and rα will never be on the same border of a region at
the same time, such that they cannot collide by swapping places (if
pk+1i,j = pγ−1α,β , or pk−1i,j = pγ+1α,β). The above inequalities mean that the
robots do not collide in place p = pki,j = p

γ
α,β if either ri departs p

before rα arrives there Equation 11.9a, or viceversa Equation 11.9b.
The satisfaction of one inequality from Equation 11.9 will be en-

forced by appropriate values for delays δi,j and δα,β. The disjunction
from Equation 11.9 can be transformed into a conjunction of inequal-
ities Equation 11.10, by a so-called big number method [31]. Let N
be a large number, and define a binary variable bijk,αβγ such that
bijk,αβγ = 0 if Equation 11.9a holds, and bijk,αβγ = 1 if Equa-
tion 11.9b is true. There is no collision in p = pki,j = p

γ
α,β if inequalities

from Equation 11.10 simultaneously hold.

{
TD(p

k
i,j) − TA(p

γ
α,β) 6 N · bijk,αβγ − ε

TD(p
γ
α,β) − TA(p

k
i,j) 6 N · (1− bijk,αβγ) − ε

(11.10)

Recall that in scenario of Problem 11.2, every robot ri will choose a
trajectory to follow from its set of trajectories Ti. Since it cannot be de-
termined in advance which trajectory will be followed by each robot,
it is necessary to compute initial time delays of all trajectories so that
no matter which ones are chosen, the system will be collision free.

[September 6, 2016 at 9:07 – classicthesis version 4]

11.3 solution 135

By using in Equation 11.10 the expressions of arrival and departure
times, the constraints are obtained from Equation 11.11.

TD(p
k
i,j) − TA(p

γ
α,β) 6 N · bijk,αβγ − ε

TD(p
γ
α,β) − TA(p

k
i,j) 6 N · (1− bijk,αβγ) − ε

∀i,α ∈ {i = 1, . . . , |R|}, i 6= α, j ∈ {1, . . . , |Ti|},

β ∈ {1, . . . , |Tα|}, k ∈ {1, . . . ,ni,j},

γ ∈ {1, . . . ,nα,β}, s.t. pki,j = p
γ
α,β.

(11.11)

In order to solve Problem 11.2, the completion time when all robots
are returned to depot is minimized, i.e.,

min
(

max
i,j

TA(p
ni,j
i,j)

)
(11.12)

The min-max problem Equation 11.12 with constraints Equation 11.11

can be transformed into the standard MILP formulation Equation 11.13

by introducing an auxiliary variable y for the completion time.

min(y)

s.t.

{
TA(p

ni,j
i,j) 6 y

constraints Equation 11.11

(11.13)

MILP Equation 11.13 can be solved by using optimization software
packages [45]. It has 1 +

∑|R|
i=1 |Ti| free (real) variables (completion

time and initial time delays) and some binary variables bijk,αβγ (their
number depending on how many intersections exist between trajecto-
ries of different robots).

Example 11.6. The MILP Equation 11.13 corresponding to the system in
Ex. 11.1 is:

min(y)

s.t.

δ1,1 + 4 6 y

δ2,1 + 4 6 y

(δ1,1 + 3) − (δ2,1 + 2) 6 Nb112,212 − ε

(δ2,1 + 3) − (δ1,1 + 1) 6 N(1− b112,212) − ε

0 6 δ1,1, δ2,1

b112,212 ∈ {0, 1}.

(11.14)

The solution of the MILP is: δ1,1 = 0, δ2,1 = 1, b112,121 = 1 and y = 5.

11.3.2 A solution for Problem 11.3

Let us extend the solution from subsection 11.3.1 to the case when the
trajectory of each robot is chosen by a central unit, not by the robot.
In order to implement this policy, binary variables xi,j are introduced
for the j-th trajectory of the i-th robot. If xi,j = 1, then ri will follow

[September 6, 2016 at 9:07 – classicthesis version 4]

136 robot plan verification

si,j; otherwise, si,j will not be followed by ri. Therefore,
∑|Ti|
j=1 xi,j = 1,

∀i = 1, . . . , |R|. Constraints from optimization Equation 11.13 become
Equation 11.15, where the constraints (Equation 11.15a) consider only
completion time for the chosen trajectories.

TA(p
ni,j
i,j) − y 6 N · (1− xi,j) (a)∑|Ti|
j=1 xi,j = 1 (b)

TD(p
k
i,j) − TA(p

γ
α,β) 6 N · bijk,αβγ − ε (c)

TD(p
γ
α,β) − TA(p

k
i,j) 6 N · (1− bijk,αβγ) − ε (d)

∀i,α ∈ {i = 1, . . . , |R|}, i 6= α, j ∈ {1, . . . , |Ti|},

β ∈ {1, . . . , |Tα|}, k ∈ {1, . . . ,ni,j},

γ ∈ {1, . . . ,nα,β}, s.t. pki,j = p
γ
α,β.

(11.15)

Constraints Equation 11.15 basically mean:

1. central unit chooses one trajectory for each robot by controller,
via variables xi,j;

2. all possible trajectories are conflict free (as in Equation 11.13),
not only the chosen ones.

The second item can be relaxed by guaranteeing conflict free move-
ments only for the chosen trajectories. The constraints (Equation 11.15c)
and (Equation 11.15d) are modified based on variables xi,j and Equa-
tion 11.16 is obtained.

TA(p
ni,j
i,j) − y 6 N · (1− xi,j) (a)∑|Ti|
j=1 xi,j = 1 (b)

TD(p
k
i,j) − TA(p

γ
α,β) 6 N · bijk,αβγ+

+N · (1− xi,j)+
+N · (1− xα,β) − ε · xi,j (c)

TD(p
γ
α,β) − TA(p

k
i,j) 6 N · (1− bijk,αβγ)+

+N · (1− xi,j)+
+N · (1− xα,β) − ε · xα,β (d)

∀i,α ∈ {i = 1, . . . , |R|}, i 6= α, j ∈ {1, . . . , |Ti|},

β ∈ {1, . . . , |Tα|}, k ∈ {1, . . . ,ni,j},

γ ∈ {1, . . . ,nα,β}, s.t. pki,j = p
γ
α,β.

(11.16)

Under minimization of y, each set of constraints Equation 11.15 or
Equation 11.16 yield a MILP optimization that solves Problem 11.3.
Notice that the number of constraints of MILP Equation 11.16 is big-
ger than the number of constraints of MILP Equation 11.15. However,
according to the statistical analysis in the next section, the computa-
tional time is smaller.

Remark 11.7. The solutions of both problems use MILP. It is NP-hard to
solve MILP. However, the time delays can be obtained by solving the MILP
off-line.

[September 6, 2016 at 9:07 – classicthesis version 4]

11.4 example and statistical study 137

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

D

r1

r5

r3

r2

r4

Figure 11.2: A 10× 10 map with five robots.

11.4 example and statistical study

The solutions from Section 11.3 are compared using five robots mov-
ing in a map sketched in Figure 11.2, which includes 100 regions and
a depot D. Robots can move from one region to another one follow-
ing directions up, down, left and right. For example, a robot can move
from (3, 4) to (3, 5), but never to (4, 5). Each robot should enter in the
environment from the external depot D in a specific region, should
reach a final region and then leave to D. Let us assume the following
requirements for the robots:

• r1: enters in (1, 1) and reaches (10, 10),

• r2: enters in (9, 1) and reaches (1, 10),

• r3: enters in (5, 1) and reaches (5, 10),

• r4: enters in (1, 5) and reaches (10, 5),

• r5: enters in (3, 1) and reaches (7, 10).

Let us consider first only one trajectory for each robot, trajectories
which are shown in Figure 11.2. Assume that the time of crossing a
region is 1 time unit if the robot enters in the region from left (right)
and leaves to right (left) or enters from top (bottom) and leaves to
bottom (top). Otherwise, a smaller duration equals to

√
2
2 time unit is

applied. MILP Equation 11.13 has been solved in 0.0088 seconds on
a computer with Intel 2.3GHz CPU and the following delays for the
robot trajectories are obtained: δ1,1 = 0, δ2,1 = 0.2959, δ3,1 = 5.7111,
δ4,1 = 4.7081 and δ5,1 = 4.2949, respectively. Notice that, if r3 and r5

[September 6, 2016 at 9:07 – classicthesis version 4]

138 robot plan verification

do not wait and start moving at time 0 then they will meet in region
p4,5 and could collide during the time interval [4.4707, 5.4142]. With-
out delay, r3 goes through regions p5,1p5,2p5,3p5,4p5,5 and reaches
p4,5 in 1 + 1 + 1 + 1 +

√
2
2 = 4.7071 time units. It will leave p4,5 at

time 4.7071 +
√
2
2 = 5.4142. The robot r5 would arrive at p4,5 at

4.4142 and would leave at 5.4142. Therefore, during the time inter-
val [4.4707, 5.4142] both r3 and r5 are in p4,5 and they could collide.
If both robots are delayed according to the solution of MILP Equa-
tion 11.13 the collision will not be possible anymore.

Let us now consider other trajectories for the robots but assuming
the same requirements (the same initial and final regions as before).
In particular, three trajectories per robot are randomly chosen from
a number of 30 trajectories obtained by applying K-shortest paths
algorithm [70]. Moreover, with the assumption that the crossing time
of regions is randomly generated in the interval [1, 5], 100 replicas of
the experiment have been conducted to analyze the the computation
time to find the optimal solution.

The summary of experiment results is shown in Table 11.1 where
the mean and the standard deviation are given. The last three columns
correspond to the optimal cost. However, for the same set of trajecto-
ries and environment, the optimal cost of MILP Equation 11.16 is
always smaller or equal to the optimal cost of MILP Equation 11.15

which is smaller than equal to the optimal cost of MILP Equation 11.13.
MILP Equation 11.13 gives a solution for Problem 11.2. For solving

Problem 11.3, one can use MILP Equation 11.15 or Equation 11.16,
but the user can also use the solution for Problem 11.2 (MILP Equa-
tion 11.13) where the trajectory for each robot is chosen to be the
one finishing in shortest time. Thus, the three cases for solving Prob-
lem 11.3 in the comparison are further denoted by: case 1 (MILP
Equation 11.13), case 2 (MILP Equation 11.15), case 3 (MILP Equa-
tion 11.16)). The comparisons are with respect to the computational
time using paired one sided t-test∗ on the following hypothesis:

• Hi,j0 : Case i is not better than case j w.r.t. the computation time,
(i, j) ∈ {(3, 1), (2, 1), (3, 2)};

• Hi,jA : Case i is better than case j w.r.t. the computation time,
(i, j) ∈ {(3, 1), (2, 1), (3, 2)}.

Hence, three tests are performed and denoted as testi,j.
Using the data obtained by the experiments in Table 11.1 and the

values from Student’s t-distribution corresponding to a significant in-
terval of 95%, for each test, a p-value is computed [26]. For example, in
the case of the hypothesis H3,1

0 and H3,1
A , Two groups of data d1 and

d2 represent the computation time of the 100 simulations of case 1

and case 3, respectively. The p-values are computed using the means
and standard deviations of d1 and d2. If the p-value is greater than
1− 0.95 = 0.05, where 0.95 is the significant interval, then the alterna-

∗ A t-test is a statistical hypothesis test to determine if two sets of data are significantly
different from each other [26].

[September 6, 2016 at 9:07 – classicthesis version 4]

11.4 example and statistical study 139

Ta
bl

e
1

1
.1

:S
um

m
ar

y
of

ex
pe

ri
m

en
t

re
su

lt
s

C
om

pu
ta

ti
on

ti
m

e
(u

ni
t:

se
co

nd
)

C
os

t

C
as

e
1

C
as

e
2

C
as

e
2

w
it

ho
ut

ou
tl

ie
rs

C
as

e
3

C
as

e
3

w
it

ho
ut

ou
tl

ie
rs

C
as

e
1

C
as

e
2

C
as

e
3

m
ea

n
0
.9

2
8
0

4
4
.3

7
5
5

1
.6

8
1
9

4
3
.3

9
6
3

0
.1

5
6
4

6
4
.6

4
1
0

5
6
.0

1
1
3

5
3

.2
2
0
3

st
an

da
rd

de
vi

at
io

n
0
.3

2
1
4

1
7
0
.3

7
9
6

2
.7

3
1
5

1
7
2
.7

7
2
8

0
.1

2
4
0

5
.7

7
7
6

5
.3

2
6
7

5
.7

6
9
1

Ta
bl

e
1

1
.2

:T
-t

es
ts

re
su

lt
s

w
it

h
9

5
%

si
gn

ifi
ca

nt
le

ve
l

te
st

p-
va

lu
e

ac
ce

pt
ed

re
je

ct
ed

co
nc

lu
si

on

te
st
3

,1
0

.9
9
3

H
3

,1
0

H
3

,1
A

C
as

e
3

is
no

t
be

tt
er

th
an

ca
se

1
w

.r.
t.

co
m

pu
ta

ti
on

ti
m

e.

te
st
3

,1
(w

it
ho

ut
ou

tl
ie

rs
)
2
.2
×
1
0
−
1
6

H
3

,1
A

H
3

,1
0

C
as

e
3

is
be

tt
er

th
an

ca
se

1
w

.r.
t.

co
m

pu
ta

ti
on

ti
m

e.

te
st
2

,1
0

.9
9
4

H
2

,1
0

H
3

,1
A

C
as

e
2

is
no

t
be

tt
er

th
an

ca
se

1
w

.r.
t.

th
e

co
m

pu
ta

ti
on

ti
m

e.

te
st
2

,1
(w

it
ho

ut
ou

tl
ie

rs
)

0
.9

9
8

H
3

,1
0

H
3

,1
A

C
as

e
2

is
no

t
be

tt
er

th
an

ca
se

1
w

.r.
t.

th
e

co
m

pu
ta

ti
on

ti
m

e.

te
st
3

,2
0

.0
3
4

H
3

,2
A

H
3

,2
0

C
as

e
3

is
be

tt
er

th
an

ca
se

2
w

.r.
t.

th
e

co
m

pu
ta

ti
on

ti
m

e.

te
st
3

,2
(w

it
ho

ut
ou

tl
ie

rs
)

2
.1
×
1
0
−
7

H
3

,1
A

H
3

,2
0

C
as

e
3

is
be

tt
er

th
an

ca
se

2
w

.r.
t.

th
e

co
m

pu
ta

ti
on

ti
m

e.

[September 6, 2016 at 9:07 – classicthesis version 4]

140 robot plan verification

tive hypothesis H3,1
A is rejected and there is no difference on d1 and

d2.
The p-values for all tests are shown in Table 11.2. Let us first con-

sider the first test on computation time (H3,1
0 and H3,1

A). The p-value is
0.993, which means the null hypothesis H3,1

0 (case 3 is not better than
case 1 w.r.t. the computation time) is accepted. In the computational
time of case 3, some outliers† exist and by removing these outliers and
conduction the test again, the newly obtained p-value is 2.2× 10−16,
and the null hypothesis is rejected. Hence, H3,1

A is accepted (meaning
that case 3 is better than case 1 regarding the computation time, but
there may exist extreme cases (the outliers) in case 3).

From the results in Table 11.2, it can be inferred that, in general, the
performance w.r.t. the computation time of case 3 is the best among
all three cases.

† In statistics, an outlier is an observation point that is distant from other observa-
tions [26].

[September 6, 2016 at 9:07 – classicthesis version 4]

12
C O N C L U S I O N S A N D F U T U R E W O R K S O N R O B O T
P L A N N I N G

We proposed a decentralized control policy for deadlock prevention
problem in robot planning. The robot planning problem contains a
static map partitioned into regions. Some regions have limited capac-
ities. Multiple robots move in the map following predefined trajecto-
ries to accomplish their tasks. Among all representations of this robot
planning scheme, we choose a subclass of Petri Net (PN) to model
robot trajectories and capacities of regions. The subclass is the so-
called S3PR (Systems of Simple Sequential Processes with Resources),
and it is widely used in resource allocation and deadlock prevention
studies [24]. An S3PR consists of processes and resources. A process
means a sequence of activities (events). Each activity requires a re-
source. The execution of an activity equals the firing of a transition
in the S3PR. The firing of the transition consumes two tokens from
two places, one is the resource place and the other one is a process
place. This constraint is relaxed to the case that one activity can re-
quire more than one resources in S4PR (e.g., [16]). It means that the
firing of the transition can consume tokens from more than one re-
source places. In robot planning, an activity means a robot enters
into a region and the resources are the capacities of regions.

Many deadlock prevention policies have been developed, based
on centralized monitor places. First, they find siphons, which lead
the S3PR into deadlock, and second, they use monitor places to con-
trol these siphons. We propose a different control policy by using
inhibitor arcs to control siphons, instead of monitor places. The moni-
tor places maintain the numbers of usable resources in siphons. When
a robot wants to enter in a region, it must get the permission from
the corresponding controller. Our approach waives the cost of build-
ing and maintaining of the controllers. It requires that when a robot
wants to enter into a region, it reads sensors’ states of some regions,
where the regions are specified by the inhibitor arcs. In the case when
robots’ tasks change, monitor places have to be rebuilt, which means
extra costs. In our approach, no such extra costs are introduced. Mon-
itor places create new siphons with places in the original S3PR. These
new siphons must be controlled. In our case, virtual siphons are in-
troduced by inhibitor arcs, and virtual siphons may lead the system
into deadlock. However, virtual siphons can also be controlled using
inhibitor arcs.

In some environments, real time control laws are not applicable,
e.g., lack of efficient communication. In order to implement a collision-
free movement for robots, we imposed initial time delays for trajec-
tories of each mobile robots, assuming once robots start to move, no
control can be applied, robots will not fail and no other perturbation
exists. Here, multiple robots move in a shared map and the map is

141

[September 6, 2016 at 9:07 – classicthesis version 4]

142 conclusions and future works on robot planning

partitioned into regions. We assumed the capacities of all regions are
one and define collision as that one robot wants to enter a region
being occupied by another robot. Our goal was to ensure collision-
free movement. Each robot has a set of trajectories and will follow
one of them. All of these trajectories let the robot accomplish its task,
meaning that they are equivalent in the aspect of completing its task.
For example, a task can be that the robot moves a piece of produce
from one region to another one. All possible paths between the two
regions can be trajectories of the robot. We also assumed that time for
crossing each region is known.

Two versions of the problem were considered. In the first, each
robot can choose which trajectory to follow by itself, while in the
second version, the trajectory followed by each robot is chosen by
an external computing unit. In the first version, it must be ensured
that the movement is collision-free regardless to which trajectories
are chosen by robots. In the second, the computing unit can evaluate
all possible combinations of trajectories to choose optimal ones and
ensure that only chosen ones are collision-free. Once the initial time
delays are obtained, the robot movements are performed and no inter-
mediate motion pauses are allowed. We formulated the two versions
using Mixed Integer Linear Programming problems (MILP) and provided
numerical simulations and statistical analysis.

Open topics as future works can be:

• Maximal permissive deadlock prevention policy could be inves-
tigated. Current control policies are not maximal permissive.
Some markings are eliminated from the state space to ensure
liveness, but system performance may become lower.

• For verification of robots’ trajectories, in future, it can be dis-
cussed that how to select better trajectories before verify them.
Some MILP are complex for current solvers. Hence, it is impor-
tant to choose better trajectories to reduce the computation time
of solving these MILP.

[September 6, 2016 at 9:07 – classicthesis version 4]

B I B L I O G R A P H Y

[1] What is a model? URL http://serc.carleton.edu/introgeo/

models/WhatIsAModel.html.

[2] Srinivas Akella and Seth Hutchinson. Coordinating the motions
of multiple robots with specified trajectories. In Proceedings of
IEEE International Conference on Robotics and Automation, 2002, vol-
ume 1, pages 624–631. IEEE, 2002.

[3] Francesco Basile, Pasquale Chiacchio, and Gianmaria De Tom-
masi. Improving on-line fault diagnosis for discrete event sys-
tems using time. In IEEE International Conference on Automation
Science and Engineering, pages 26–32, 2007.

[4] Francesco Basile, Pasquale Chiacchio, and Gianmaria De Tom-
masi. An efficient approach for online diagnosis of discrete event
systems. IEEE Transactions on Automatic Control, 54(4):748–759,
2009.

[5] Francesco Basile, Maria Paola Cabasino, and Carla Seatzu. State
estimation and fault diagnosis of labeled time Petri net systems
with unobservable transitions. IEEE Transactions on Automatic
Control, 60(4):997–1009, 2015.

[6] Calin Belta and Luc C.G.J.M. Habets. Controlling a class of non-
linear systems on rectangles. IEEE Transactions on Automatic Con-
trol, 51(11):1749–1759, 2006.

[7] Calin Belta, Volkan Isler, and George J Pappas. Discrete abstrac-
tions for robot motion planning and control in polygonal envi-
ronments. IEEE Transactions on Robotics, 21(5):864–874, 2005.

[8] Albert Benveniste, Eric Fabre, Stefan Haar, and Claude Jard. Di-
agnosis of asynchronous discrete-event systems: a net unfolding
approach. IEEE Transactions on Automatic Control, 48(5):714–727,
2003.

[9] Gérard Berthelot, Gérard Roucairol, and Rüdiger Valk. Reduc-
tions of nets and parallel programs. In Net theory and Applications,
pages 277–290. Springer, 1980.

[10] Bernard Berthomieu and Michel Diaz. Modeling and verification
of time dependent systems using time Petri nets. IEEE Transac-
tions on Software Engineering, 17(3):259 –273, 1991.

[11] Bernard Berthomieu and Miguel Menasche. An enumerative ap-
proach for analyzing time Petri nets. In IFIP Congress Series, vol-
ume 9, pages 41–46, 1983.

143

[September 6, 2016 at 9:07 – classicthesis version 4]

http://serc.carleton.edu/introgeo/models/WhatIsAModel.html
http://serc.carleton.edu/introgeo/models/WhatIsAModel.html

144 bibliography

[12] Hanifa Boucheneb, Guillaume Gardey, and Olivier H. Roux.
TCTL model checking of time Petri nets. Journal of Logic and
Computation, 19(6):1509–1540, 2009.

[13] Maria Paola Cabasino, Alessandro Giua, Cristian Mahulea,
Laura Recalde, Carla Seatzu, and Manuel Silva. State estimation
of Petri nets by transformation. In IEEE International Conference
on Automation Science and Engineering, pages 194–199. IEEE, 2007.

[14] Maria Paola Cabasino, Alessandro Giua, Andrea Paoli, and
Carla Seatzu. Decentralized diagnosis of Petri nets. In Ameri-
can Control Conference, pages 3371–3377. IEEE, 2010.

[15] Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. Fault
detection for discrete event systems using Petri nets with unob-
servable transitions. Automatica, 46(9):1531 – 1539, 2010.

[16] Elia Cano, Carlos Rovetto, and José Manuel Colom. An algo-
rithm to compute the minimal siphons in S4PR nets. Discrete
Event Dynamic Systems, 22(4):403–428, 2012.

[17] Christos Cassandras and Stéphane Lafortune. Introduction to dis-
crete event systems. Springer Science & Business Media, 2008.

[18] YuFeng Chen, ZhiWu Li, Mohamed Khalgui, and Olfa Mosbahi.
Design of a maximally permissive liveness-enforcing Petri net
supervisor for flexible manufacturing systems. IEEE Transactions
on Automation Science and Engineering, 8(2):374–393, 2011.

[19] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A.
Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian
Thrun. Principles of Robot Motion: Theory, Algorithms, and Imple-
mentations. MIT Press, Boston, 2005.

[20] Roberto Cordone, Luca Ferrarini, and Luigi Piroddi. Enumera-
tion algorithms for minimal siphons in Petri nets based on place
constraints. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 35(6):844–854, 2005.

[21] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars. Computational Geometry: Algorithms and Applications.
Springer, 3rd edition, 2008.

[22] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis.
Coordinated decentralized protocols for failure diagnosis of dis-
crete event systems. Discrete Event Dynamic Systems, 10(1):33–86,
2000.

[23] Mariagrazia Dotoli, Maria Pia Fanti, Agostino Marcello Mangini,
and Walter Ukovich. On-line fault detection in discrete event sys-
tems by Petri nets and integer linear programming. Automatica,
45(11):2665–2672, 2009.

[September 6, 2016 at 9:07 – classicthesis version 4]

bibliography 145

[24] Joaquin Ezpeleta, José Manuel Colom, and Javier Martinez. A
Petri net based deadlock prevention policy for flexible manufac-
turing systems. IEEE Transactions on Robotics and Automation, 11

(2):173–184, 1995.

[25] Maria Pia Fanti, Agostino Marcello Mangini, and Walter
Ukovich. Fault detection by labeled Petri nets and time con-
straints. In 2011 3rd International Workshop on Dependable Control
of Discrete Systems (DCDS), pages 168–173, 2011.

[26] David Freedman, Robert Pisani, and Roger Purves. Statistics.
WW Norton & Co, 2007.

[27] Sahika Genc and Stéphane Lafortune. Distributed diagnosis of
place-bordered Petri nets. IEEE Transactions on Automation Sci-
ence and Engineering, 4(2):206–219, 2007.

[28] A. Giua, D. Corona, and C. Seatzu. State estimation of λ-free
labeled Petri nets with contact-free nondeterministic transitions*.
Discrete Event Dynamic Systems, 15(1):85–108, 2005.

[29] Alessandro Giua and Carla Seatzu. Fault detection for discrete
event systems using petri nets with unobservable transitions. In
44th IEEE Conference on Decision and Control, 2005 and 2005 Eu-
ropean Control Conference. CDC-ECC’05., pages 6323–6328. IEEE,
2005.

[30] Alessandro Giua, Carla Seatzu, and Francesco Basile. Petri net
control using event observers and timing information. In Proceed-
ings of the 41st IEEE Conference on Decision and Control, volume 1,
pages 787–792, 2002.

[31] Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlin-
ear Optimization. Society for Industrial Mathematics, 2008. 2nd
ed.

[32] Luc C.G.J.M Habets, Pieter J Collins, and Jan H van Schuppen.
Reachability and control synthesis for piecewise-affine hybrid
systems on simplices. IEEE Transactions on Automatic Control, 51

(6):938–948, 2006.

[33] Rachid Hadjidj and Hanifa Boucheneb. Efficient Reachability
Analysis for Time Petri Nets. IEEE Transactions on Computers, 60

(8):1085 –1099, August 2011.

[34] Yisheng Huang, MuDer Jeng, Xiaolan Xie, and Shengluen
Chung. Deadlock prevention policy based on Petri nets and
siphons. International Journal of Production Research, 39(2):283–305,
2001.

[35] George Jiroveanu and René K Boel. A distributed approach for
fault detection and diagnosis based on time Petri nets. Mathe-
matics and Computers in Simulation, 70(5):287–313, 2006.

[September 6, 2016 at 9:07 – classicthesis version 4]

146 bibliography

[36] Jorge Júlvez and René K Boel. A continuous Petri net approach
for model predictive control of traffic systems. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 40

(4):686–697, 2010.

[37] Marius Kloetzer and Cristian Mahulea. A Petri net based ap-
proach for multi-robot path planning. Discrete Event Dynamic
Systems, 24(4):417–445, 2014.

[38] Marius Kloetzer, Cristian Mahulea, and José Manuel Colom.
Petri net approach for deadlock prevention in robot planning.
In IEEE 18th Conference on Emerging Technologies & Factory Au-
tomation, pages 1–4. IEEE, 2013.

[39] Steven M. LaValle. Planning Algorithms. Cambridge, 2006. Avail-
able at http://planning.cs.uiuc.edu.

[40] ZhiWu Li and MengChu Zhou. Elementary siphons of Petri nets
and their application to deadlock prevention in flexible manufac-
turing systems. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 34(1):38–51, 2004.

[41] ZhiWu Li and MengChu Zhou. On siphon computation for dead-
lock control in a class of Petri nets. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, 38(3):667–679,
2008.

[42] ZhiWu Li and MengChu Zhou. On siphon computation for dead-
lock control in a class of petri nets. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 38(3):667–679,
2008.

[43] ZhiWu Li, NaiQi Wu, and MengChu Zhou. Deadlock control of
automated manufacturing systems based on Petri nets - a liter-
ature review. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 42(4):437–462, July 2012. ISSN
1094-6977.

[44] Cristian Mahulea, Carla Seatzu, Maria Paola Cabasino, and
Manuel Silva. Fault diagnosis of discrete-event systems using
continuous Petri nets. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A: Systems and Humans, 42 (4):970 – 983, 2012.

[45] Andrew Makhorin. GNU linear programming kit, june 2012.
http://www.gnu.org/software/glpk/, 2012.

[46] Philip M. Merlin. A study of the recoverability of communication
protocols. PhD thesis, PhD thesis, University of California, Com-
puter Science Dept., Irvine, 1974.

[47] Jordi Meseguer, Vicenç Puig, and Teresa Escobet. Fault diag-
nosis using a timed discrete-event approach based on interval
observers: application to sewer networks. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, 40(5):
900–916, 2010.

[September 6, 2016 at 9:07 – classicthesis version 4]

bibliography 147

[48] Tadao Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[49] Jufeng Peng and Srinivas Akella. Coordinating multiple robots
with kinodynamic constraints along specified paths. The Interna-
tional Journal of Robotics Research, 24(4):295–310, 2005.

[50] Carl Adam Petri. Kommunikation Mit Automaten. PhD thesis,
Darmstadt University of Technology, Bonn, Germany, 1962.

[51] Marco Pocci. Matlab toolbox for the diagnosis of discrete PNs,
2009. URL http://www.diee.unica.it/giua/TESI/09_Marco.

Pocci/.

[52] Laura Recalde, Manuel Silva, Joaquín Ezpeleta, and Enrique
Teruel. Petri nets and manufacturing systems: An examples-
driven tour. In Lectures on Concurrency and Petri Nets, pages 742–
788. Springer, 2004.

[53] Yu Ru and Christoforos N Hadjicostis. Bounds on the number of
markings consistent with label observations in Petri nets. IEEE
Transactions on Automation Science and Engineering, 6(2):334–344,
2009.

[54] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sin-
namohideen, and Demosthenis Teneketzis. Diagnosability of
discrete-event systems. IEEE Transactions on Automatic Control,
40(9):1555–1575, 1995.

[55] Carla Seatzu, Manuel Silva, and Jan H. van Schuppen, editors.
Control of Discrete-Event Systems, volume 433 of Lecture Notes in
Control and Information Sciences. Springer London, 2013. ISBN
978-1-4471-4275-1.

[56] Manuel Silva. Introducing Petri nets. In Practice of Petri Nets in
manufacturing, pages 1–62. Springer, 1993.

[57] Manuel Silva and Robert Valette. Petri nets and flexible manu-
facturing. In Advances in Petri nets 1989, pages 374–417. Springer,
1990.

[58] Manuel Silva, Enrique Teruel, and José Manuel Colom. Linear
algebraic and linear programming techniques for the analysis
of place/transition net systems. In Lectures on Petri Nets I: Basic
Models, pages 309–373. Springer, 1998.

[59] Zineb Simeu-Abazi, Maria di Mascolo, and Michal Knotek. Fault
diagnosis for discrete event systems: Modelling and verification.
Reliability Engineering & System Safety, 95(4):369–378, 2010.

[60] Robert H. Sloan and Ugo Buy. Reduction rules for time Petri
nets. Acta Informatica, 33(7):687–706, 1996.

[September 6, 2016 at 9:07 – classicthesis version 4]

http://www.diee.unica.it/giua/TESI/09_Marco.Pocci/
http://www.diee.unica.it/giua/TESI/09_Marco.Pocci/

148 bibliography

[61] Fernando Tricas, Fernando Garcia-Valles, José Manuel Colom,
and Joaquin Ezpeleta. A Petri net structure-based deadlock pre-
vention solution for sequential resource allocation systems. In
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, pages 271–277. IEEE, 2005.

[62] WMP Van der Aalst and KM Van Hee. Business process redesign:
a Petri-net-based approach. Computers in industry, 29(1):15–26,
1996.

[63] Jiacun Wang, Yi Deng, and Gang Xu. Reachability analysis of
real-time systems using time Petri nets. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 30(5):725–736,
2000.

[64] ShouGuang Wang, ChengYing Wang, MengChu Zhou, and
ZhiWu Li. A method to compute strict minimal siphons in a
class of Petri nets based on loop resource subsets. IEEE Transac-
tions on Systems, Man and Cybernetics, Part A: Systems and Humans,
42(1):226–237, 2012.

[65] Xu Wang, Cristian Mahulea, Jorge Jùlvez, and Manuel Silva. On
state estimation of timed choice-free Petri nets. In Proceedings of
the 18th IFAC World Congress, 2011.

[66] Xu Wang, Cristian Mahulea, and Manuel Silva. Decentralized
diagnosis based on fault diagnosis graph. In 2013 IEEE 18th Con-
ference on Emerging Technologies Factory Automation (ETFA), pages
1–8, September 2013.

[67] Xu Wang, Cristian Mahulea, and Manuel Silva. Model check-
ing on fault diagnosis graph. In 12th International Workshop on
Discrete Event Systems, pages 434–439, May 2014.

[68] Xu Wang, Cristian Mahulea, and Manuel Silva. Diagnosis of
Time Petri Nets Using Fault Diagnosis Graph. IEEE Transactions
on Automatic Control, 60:2321–2335, 2015.

[69] Ke-Yi Xing, Bao-Sheng Hu, and Hao-Xun Chen. Deadlock avoid-
ance policy for Petri-net modeling of flexible manufacturing sys-
tems with shared resources. IEEE Transactions on Automatic Con-
trol, 41(2):289–295, 1996.

[70] Jin Y Yen. Finding the k shortest loopless paths in a network.
Management Science, 17(11):712–716, 1971.

[71] Janan Zaytoon and Stéphane Lafortune. Overview of fault di-
agnosis methods for discrete event systems. Annual Reviews in
Control, 37(2):308 – 320, 2013.

[72] MengChu Zhou and Mu Der Jeng. Modeling, analysis, simula-
tion, scheduling, and control of semiconductor manufacturing
systems: A Petri net approach. IEEE Transactions on Semiconduc-
tor Manufacturing, 11(3):333 –357, aug 1998. ISSN 0894-6507.

[September 6, 2016 at 9:07 – classicthesis version 4]

	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Algorithm
	Introduction and Petri nets
	1 Brief introduction
	2 Time Petri net and state class graph
	2.1 Introduction
	2.2 (Untimed) Petri net
	2.2.1 Basic concepts
	2.2.2 Structural concepts
	2.2.3 Subclasses of PN
	2.2.4 Reachability and behavioral concepts

	2.3 Petri net with time
	2.3.1 Motivation
	2.3.2 Time Petri net
	2.3.3 TPN with unobservable transitions

	2.4 State estimation of timed Petri nets
	2.4.1 Basis marking in timed Petri nets
	2.4.2 Time Duration of Firing Sequence
	2.4.3 State estimation of choice-free nets
	2.4.4 Algorithm for estimating the state
	2.4.5 Discussion

	2.5 State class graph
	2.5.1 State class graph and its construction
	2.5.2 Reduction rules of TPN

	2.6 PN in resource allocation systems
	2.6.1 Alternative notations of PN
	2.6.2 The Class of S3PR

	Fault diagnosis on time Petri nets
	3 Introduction to Fault Diagnosis on Petri Net
	3.1 Introduction
	3.2 Literature review
	3.3 Problem statement
	3.3.1 Fault classes
	3.3.2 Diagnoser

	4 Fault diagnosis graph and algorithms
	4.1 Introduction
	4.2 Firing domain of a given firing sequence
	4.3 Fault Diagnosis Graph
	4.3.1 Motivation
	4.3.2 Construction of an FDG
	4.3.3 Reduction of an FDG

	5 Centralized diagnosis algorithms
	5.1 Introduction
	5.2 General algorithm
	5.3 Centralized diagnosis on FDG
	5.4 Example
	5.5 Boundedness
	5.6 Time Complexity
	5.7 Upper Bound on the Number of Consistent States

	6 Decentralized diagnosis algorithms
	6.1 Introduction
	6.1.1 Decentralized diagnosis architecture
	6.1.2 Adaptation of FDG to decentralized diagnosis

	6.2 General algorithm
	6.3 Update the FDG in the subsystems
	6.4 The coordinator
	6.4.1 Coordinator design
	6.4.2 Algorithms

	6.5 Example

	7 Case study
	7.1 Introduction
	7.2 Centralized diagnosis
	7.2.1 A flexible manufacturing system
	7.2.2 An IC Wafer Fabrication System

	7.3 Decentralized diagnosis

	8 Conclusions and future works on fault diagnosis

	Petri net in robot planning
	9 Introduction to Petri net in robot planning
	9.1 Introduction
	9.2 Literature review

	10 Decentralized deadlock prevention
	10.1 Introduction
	10.2 Motivating example
	10.3 Deadlock Prevention in S3PR
	10.3.1 Liveness of S3PR
	10.3.2 Decentralized Control of Siphons

	10.4 Deadlock Prevention in S3PR2
	10.4.1 The Class of S3PR2
	10.4.2 Virtual Siphon
	10.4.3 Liveness of S3PR2
	10.4.4 Control of Virtual Siphons
	10.4.5 Comparison

	11 Robot plan verification
	11.1 Introduction
	11.2 Problem Description
	11.2.1 Preliminaries
	11.2.2 Problem statement

	11.3 Solution
	11.3.1 A solution for Problem 11.2
	11.3.2 A solution for Problem 11.3

	11.4 Example and statistical study

	12 Conclusions and future works on robot planning
	Bibliography

