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Universidad de Zaragoza, Maŕıa de Luna 1, E-50018 Zaragoza, Spain

{cmahulea,lrecalde,silva}@unizar.es
2 CINVESTAV-IPN Unidad Guadalajara, 45090 Guadalajara, Mexico

art@gdl.cinvestav.mx

Abstract. The control problem for continuous Petri nets under infinite
server semantics is approached in this paper. First, some characteriza-
tions of equilibrium points in steady-state are given. Being piecewise
linear systems, for every linear system we present results that will charac-
terize the possible steady-states. Second, optimal control for steady-state
is studied, a problem that surprisingly can be computed in polynomial
time, when all transitions are control-feasible. Third, an interpretation
of controllability aspects in the framework of linear dynamic system is
presented.

1 Introduction

Continuous Petri Nets (contPNs) [1] [2] [3] appear as a promising approach
to model, analyze and deal with some synthesis problems in a relaxed setting.
The goal of the relaxation is to obtain more efficient algorithms, but the price
to be paid is the lost of analyzability of certain properties, or the impossibil-
ity to proceed according to some synthesis procedures. On the positive side, for
example, reachability is characterized under very general conditions in polyno-
mial time for untimed systems [4]. On the negative part, properties like mutual
exclusions or home states are not analyzable due to the essential fact of the
continuization. Moreover it is well known from some years ago that for basic
properties like boundedness, the continuous version only provides sufficient con-
ditions for the original discrete case, while liveness of the continuous case is
neither necessary nor sufficient for that of the underlying discrete model [4]. Of
course, the above situation can be easily understood if we think on a different
area: in continuous models described by ordinary differential equations not all
non-linear systems allow a “reasonable” approximation by its linear relaxation.
Nevertheless, as it is also well known in the differential equations setting, certain
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subclasses of non-linearities accept reasonable linear approximations. Therefore,
some net subclasses, like equal conflicts [5], enjoy quite reasonable fluidifications.

This paper is essentially centered on timed continuous models. Assuming
that certain systems usually work close to congestion, and having evidence of
the gains that in certain cases are obtained by fluidification of discrete models,
this paper deals with some control problems under so called infinite servers se-
mantics (somehow the continuous and deterministic counter part of markovian
flows in discrete Petri Nets(PNs)). Under this firing semantics, due to the min
operators appearing in the synchronizations, the continuous model is a multi-
linear switched dynamic system. Starting with the crucial question of how to
control?, an approach based in the idea of slowing down the firing flow of tran-
sitions is considered. One question that immediately appears is: given an initial
marking, m0, and a constant control action, ud, which steady state is reached?
For linear systems the question has a classical and simple answer, but for the class
of systems we get many solutions (even infinite) may appear for basic algebraic
formulations. This paper explores first the situation for steady state (Section 3).
As usual, for particular classes of net systems, unique solutions are obtained.
This means that the algebraic characterization is complete. In many cases, even
if several steady state markings appear, a single flow is reached. In other words,
computationally it may be easy (polynomial time) to deal with the (maximal)
flow vector, while several (even infinite) marking conditions may appear. The
computation of the steady state of a continuous net system under infinite servers
semantics asks for some search procedures like Branch & Bound [6], so even if a
relatively efficient algorithm is available, it is not polynomial time. Surprisingly,
the computation of an optimal steady state control (maximizing a linear profit
function taking into account the throughput, the initial marking and the steady
state marking) is polynomial (see Section 4).

In section 5, a bridge between classical linear theory based approach to study
controllability and some Petri nets concepts is undertaken. The simplifying idea
is to keep the fact that the dynamic model is multilinear, but not considering
the constraints that must be respected by the action: non-negativity and up-
per bounded by the enabling degree of the transitions. It is evidenced that net
systems generate different token conservation laws some of those leading to un-
controllabilities. Some of those invariances are generated by the P-flows, leading
to zero valued uncontrollable poles. Others are zero valued controllable poles that
depend on the net structure, the firing rates and the token load of P-(semi)flows.
Finally, some controllable non zero poles may generate token conservation laws
for particular values of m0 in 〈N , λ〉.

2 Continuous Petri nets basics

2.1 Untimed continuous Petri nets

We assume that the reader is familiar with discrete PNs. The PNs that will
be considered in this paper are continuous, relaxation of discrete ones. Unlike
discrete PN , the amount in which a transition can be fired in contPN is not



restricted to a natural number. A PN system is a pair 〈N ,m0〉, where N =
〈P, T,Pre,Post〉 is a P/T net (P and T are disjoint (finite) sets of places and
transitions, and Pre and Post are |P | × |T | sized incidence matrices) and m0

is the initial marking. In contPNs, m0 is a vector of positive real numbers. For
every node v ∈ P ∪ T , the sets of its input and output nodes are denoted as •v
and v•, respectively.

A transition t is enabled at m iff ∀p ∈ •t,m[p] > 0. The enabling degree of t
is enab(t,m)= minp∈•t m[p]/Pre[p, t], and t can fire in a certain amount α ∈

�
,

0 ≤ α ≤ enab(t,m) leading to a new marking m′ = m + α · C[P, t], where
C = Post − Pre is the incidence matrix. If m is reachable from m0 through
a sequence σ, a fundamental equation can be written: m = m0 + C · σ, where
σ ∈ (

� + ∪ {0})|T | is the firing count vector.
A contPN is bounded when every place is bounded (∀p ∈ P, ∃bp ∈

�
with

m[p] ≤ bp at every reachable marking m). It is live when every transition is
live (it can ultimately occur from every reachable marking). Liveness may be
extended to lim-live assuming that infinitely long sequence can be fired. A tran-
sition t is non lim-live iff a sequence of successively reachable markings exists
which converge to a marking such that none of its successors enables a transition
t [4].

A net N is structurally bounded when 〈N ,m0〉 is bounded for every initial
marking m0 and is structurally live when a m0 exists such that 〈N ,m0〉 is live.
Left and right natural annulers of the incidence matrix C are called T- and
P-semiflows, respectively. The net N is conservative iff ∃y > 0,y ·C = 0 and it
is consistent iff ∃x > 0,C · x = 0. Left and right real annulers of matrix C are
T- and P-flows, respectively.

If a contPN is consistent and all transitions are fireable, then the (lim)reachable
markings are the solutions of the fundamental equation (m = m0+C ·σ, m ≥ 0,
σ ≥ 0) [4] [7]. Because of consistency, σ ≥ 0 can be relaxed to σ ∈

� |T |, that
is equivalent to BT · m = BT · m0, m ≥ 0 with BT a basis of P-flows. The set
of all reachable markings at the limit is denoted by lim − RS. Like in discrete
case, nets can be classified according to their structure.

A place p is Choice-Free (CF) iff |p•| ≤ 1 (i.e. there is no routing, choice is
structurally defined). A transition t is Join-Free (JF) iff |•t| ≤ 1 (i.e. there is no
synchronization on it). Two transitions, t and t′, are said to be in Equal Conflict
(EQ) relation when Pre[P, t] = Pre[P, t′] 6= 0. This is an equivalence relation
and the set of all the equal conflict sets is denoted by SEQS. In Equal Conflict
nets, all outcomes of conflicts have identical precondition, thus choice is local.

Definition 1. Let N be a PN .

1. N is a weighted T-graph iff ∀p ∈ P : |p•| = |•p| = 1.
2. N is Choice-Free iff ∀p ∈ P : |p•| ≤ 1.
3. N is Join-Free iff ∀t ∈ T : |•t| ≤ 1.
4. N is Equal Conflict iff •t ∩ •t′ 6= 0 ⇒ Pre[P, t] = Pre[P, t′].

In this paper we will mainly focus on bounded and lim-live net systems.
A bounded and lim-live contPN is consistent, conservative and rank(C) ≤



|SEQS| − 1 (this is the so called rank theorem [8]). For Equal Conflict contPN ,
boundedness and lim-liveness is equivalent to consistency, conservativeness, rank(C) =
|SEQS| − 1 and the support of every P-semiflow is marked, i.e. 6 ∃y ≥ 0 such
that y · C = 0,y ·m0 = 0 [4].

2.2 Timed continuous Petri Nets and infinite server semantics

In this section, timing constraints are added to contPN . Like in the discrete case,
time can be associated to places, to transitions or to arcs. This paper assumes
time associated with the transitions. Here we consider first-order approximation
(only using the average value; i.e. noisy-free) of the fluidified models [9].

Definition 2. A timed contPN 〈N , λ〉 is the untimed contPN N together with
a vector λ ∈ (

� +)|T |, where λ[ti] = λi is the firing rate of transition ti.

Definition 3. A timed contPN system is a tuple Σ = 〈N , λ,m0〉, where 〈N , λ〉
is a timed contPN and m0 is the initial marking of the net.

Now, the fundamental equation depends on time τ : m(τ) = m0 + C · σ(τ).
Deriving this equation with respect to time we obtain: ṁ(τ) = C · σ̇(τ). Using
the notation f(τ) = σ̇(τ) to represent the flow of the transitions with respect of
time, the fundamental equation becomes: ṁ(τ) = C · f(τ). In this paper we will
use the short form: ṁ = C · f but the dependence on time is considered.

Depending on the flow definition, there are many firing semantics. Finite
server (or constant speed) and infinite server (or variable speed) [10] [1] are the
more frequently used. This paper is focused on infinite server semantics, with
the flow of each transition defined by:

fi = f [ti] = λ[ti] min
pj∈•ti

{

m[pj ]

Pre[pj , ti]

}

(1)

Observe that the flow of transition t is proportional to its enabling degree by
means of the firing rate λ[ti] = λi.

Remark 1. A timed contPN under infinite server semantics is a piecewise linear
system due to the minimum operator that appears in the flow definition.

Example 1. Let us consider the net in Figure 1. The flows of the transitions are
given by:















f1 = λ[t1] ·m[p1]
f2 = λ[t2] · min(m[p2],m[p3])
f3 = λ[t3] · min(m[p4],m[p5])
f4 = λ[t4] ·m[p6]
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Fig. 1. Timed contPN with several equilibria points.

If λ = [1, 1, 1, 1]T , for example, we can write:






























ṁ[p1] = f2 − f1 = m[p2] −m[p1]
ṁ[p2] = f1 − f2 = m[p1] − min(m[p2],m[p3])
ṁ[p3] = f3 − f2 = min(m[p4],m[p5]) − min(m[p2],m[p3])
ṁ[p4] = f2 − f3 = min(m[p2],m[p3]) − min(m[p4],m[p5])
ṁ[p5] = f4 − f3 = m[p6] − min(m[p4],m[p5])
ṁ[p6] = f3 − f4 = min(m[p4],m[p5]) −m[p6]

(2)

Thus, nonlinearity appears due to synchronizations (|•t| > 1). One linear
system is defined by the set of arcs in Pre limiting the firing of the transitions.

Definition 4. Let Σ = 〈N , λ,m0〉 be a timed contPN and m a reachable mark-
ing. It will be said that the arc (p, t) constraints the dynamic of t at m iff:

f [t] = λ[t] · m[p]
Pre[p,t] .

Definition 5. A configuration of Σ at m is a set of (p, t) arcs describing the
effective flow of all the transitions.

So, a configuration is a cover of T by its inputs arcs. One possible represen-
tation of a given configuration is a matrix form, G ∈ {0, 1}|P |×|T |:

G[pi, tj ] =

{

1 if pj is limiting the flow of ti
0 otherwise

(3)

Obviously, G ≤ Pre, even if the net is ordinary (i.e. all arcs have weight
one). Each configuration defines an associated linear system.

Example 2. Let us consider the net in Figure 1 with λ = [1, 1, 1, 1]T . As we
saw in the Example 1, this is a piecewise linear system. For the configuration
{(p1, t1), (p2, t2), (p5, t3), (p6, t6)}, m[p2] ≤ m[p3] and m[p5] ≤ m[p4]. Then the
active linear system is:































ṁ[p1] = m[p2] −m[p1]
ṁ[p2] = m[p1] −m[p2]
ṁ[p3] = m[p5] −m[p2]
ṁ[p4] = m[p2] −m[p5]
ṁ[p5] = m[p6] −m[p5]
ṁ[p6] = m[p5] −m[p6]



or in matrix form:

ṁ =

















−1 1 0 0 0 0
1 −1 0 0 0 0
0 −1 0 0 1 0
0 1 0 0 −1 0
0 0 0 0 −1 1
0 0 0 0 1 −1

















·m (4)

Let us now consider the configuration {(p1, t1), (p2, t2), (p4, t3), (p6, t6)}. Then
m[p5] ≥ m[p4] and m[p2] ≤ m[p3] and the linear system associated is:































ṁ[p1] = m[p2] −m[p1]
ṁ[p2] = m[p1] −m[p2]
ṁ[p3] = m[p4] −m[p2]
ṁ[p4] = m[p2] −m[p4]
ṁ[p5] = m[p6] −m[p4]
ṁ[p6] = m[p4] −m[p6]

or in matrix form:

ṁ =

















−1 1 0 0 0 0
1 −1 0 0 0 0
0 −1 0 1 0 0
0 1 0 −1 0 0
0 0 0 −1 0 1
0 0 0 1 0 −1

















·m (5)

Observe that, depending on the marking of the places, the evolution of the
system will be given by one or other linear system. Equations 4 and 5 describe
two of these different linear systems.

Any (reachable) marking defines a configuration. When the marking of sev-
eral places are limiting the firing of the same transition, any of the associated
linear systems can be used.

Remark 2. If N is JF then all arcs in Pre are constraining the dynamic of the
full system (i.e. all those arcs are essential covers).

Let the set of all configurations be denoted as G, were G(m) is the matrix
representing the configuration associated to m. The number of minimal config-
urations (i.e. only one constraining arc per transition is taken) is bounded by
the net structure (i.e. does not depend on the marking) and is equal to

∏

ti∈T

|•ti|.

Timed contPN systems evolve from m0 and may reach a steady state. For
unforced contPN the computation of bounds for the steady was studied in [6]
and it is based on a branch and bound technique, each node corresponding to
a linear programming problem (LPP). Usually, the system evolves to a steady
state, but for certain cases, oscillations can be maintained forever. For example
the evolution of the net system presented in Figure 2 is sketched in Figure 3 and
characterizes an oscillatory system.
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Fig. 2. Timed contPN system that
has an oscillatory behavior with
m0 = [100, 0, 100, 0, 1, 1]T and λ =
[1, 12, 10, 1].
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Fig. 3. The evolution of the timed
contPN system presented in fig. (2)

3 On how to control timed contPNs

The parameters λ associated with the transitions in timed contPNs represent
the maximum firing rate of each transition. Hence, the only action that can be
applied is to slow down their firing flow. If a transition can be controlled (its
flow reduced or even stopped), we will say that is a control-feasible transition.
The forced flow of a controlled transition ti becomes fi − ui, where fi is the
flow of the unforced system (i.e. without control) and u is the control action
0 ≤ ui ≤ fi.

In the first part of this section technical notations are presented, while in the
second one some considerations regarding the equilibrium points are developed.

3.1 Notation

Definition 6. H = [hi,j ] is |T | × |P | matrix, where

hi,j =

{ 1
Pre[j,i] , if Pre[j, i] > 0

0, otherwise

Observe that matrix H is just the transpose of the matrix Pre where the
non null elements are not Pre[p, t] but their inverses.

Definition 7. Let R, W and E be three matrices with identical dimensions. The
matrix operator � is defined as: R = W � E, where rij = wij × eij

Definition 8. The configuration operator is the function Π : RS(N ,m0) −→
� |T |×|P | such that:

Π(m) = G(m) �H (6)

where G(m) is the matrix representing the configuration associated to m.



The configuration operator associates to every marking m a matrix |T |×|P |,
such that each row i = 1..|T | has only one non null element in the position j that
corresponds to the place pj that restricts the flow of transition ti. The product
Π(m) · m(τ) is the enabling degree of each transition at time τ , e(τ).

Through this paper the notations Π(md) and Πd will be used indistinctly.
The maximum firing rate matrix is denoted by: Λ = diag(λ1, .., λm).

3.2 The state equation of controlled timed contPN

According to the above notation, the controlled flow vector is f = Λ · Π(m) ·
m − u ≥ 0, with ui = 0 if ti is not a control-feasible transition. Thus the
state equation of controlled timed contPNs (i.e. net systems in which all the
transitions are control-feasible: ∀t ∈ T , u[t] > 0 is possible at certain instant)
becomes:

{

ṁ = C · (Λ · Π(m) ·m− u)
0 ≤ u ≤ Λ · Π(m) · m

(7)

Unless otherwise stated, in the following we will assume that all transitions
are control-feasible. Controlling the set of transitions, almost all reachable mark-
ings of an untimed system can be reached in the timed system. The only problem
is at the borders when the marking of one place is zero. In this case, the marking
is reached at the limit (this is like the discharging of a capacitor in an electrical
RC-circuit: theoretical total discharging takes an infinite amount of time). For
example, in the net system in Figure 4 the marking [0, 1, 1]T is reached in the
untimed model. Considering now the timed model, stoping transitions t2 and t3
(u[t2] = f [t2] and u[t3] = f [t3]) and setting u[t1] = 0, the marking [0, 1, 1]T is

reached at the limit because ṁ[t1](τ) = −λ[t1]·m[p1](τ) → m[t1](τ) = e−λ[t1]·τ .
Note that it takes an infinite amount of time to empty p1. The following can be
stated:

Proposition 1. If all transitions are control-feasible, then all the reachable mark-
ings of the untimed contPN can be reached in the timed model, maybe at the
limit. (lim-RStimed = lim-RSuntimed).

The steady-state markings we are interested to obtain (reference markings
for the control loop) are positive (if the marking of a place is zero then the flows
of the output transitions are zero, meaning total inactivity of the machine or
processor being controlled). Defining RS+(N ,m0) = {m ∈ RS|m > 0} these
markings can be reached in finite time in the timed model. If the contPN is
consistent and all transitions can be fired at least once, then m ∈ RS+ iff
BT ·m = BT · m0,m > 0 [4].

Definition 9. Let md ∈ RS+ and 0 ≤ ud ≤ Λ · Π(md) · md. Then md is an
equilibrium point for ud if ṁd = 0.



An equilibrium point represents a state in which the system can be main-
tained using the defined action. Given an initial marking and md a desired
marking, one control problem is to reach md and then keep it. In this section
this transient control will not be considered.

Obviously, taking into account (7), md is a equilibrium marking if C · Λ ·
Π(md) · md − ud = 0. Therefore, the flow of a controlled timed contPN (f =
Λ · Π(md) ·md − ud) is a T-semiflow.

Given a marking md ∈ RS+, the control input ud ensuring that md is an
equilibrium point can be computed solving the following system:

C · (Λ · Π(md) · md − ud) = 0

0 ≤ ud ≤ Λ · Π(md) · md

(8)

. .p1 p2

p3

t1 t2

t3

2

Fig. 4. Timed continuous Join-Free system with λ = [1, 1, 1]T and unique equilibrium
point for a given ud (for example md = [0.66, 0.66, 0.66]T for ud = [0, 0, 0]T ).

Given a ud, let us denote as Mud
all the equilibrium states it could main-

tain. That is, Mud
= {m ∈ RS+|C · (Λ · Π(m) ·m− ud) = 0, 0 ≤ ud ≤

Λ · Π(m) · m}. The set Mud
can have one single element (Figure 4) or an

infinite number of equilibrium points in a single configuration (configuration
{(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5), (p7, t6)} in Figure 6), or in several con-
figurations (configurations {(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p8, t6)} and
{(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p9, t6)} in Figure 8).

Next proposition characterizes all the equilibrium points of a net system with
the same control action in steady state, ud.

Proposition 2. Let Σ = 〈N , λ,m0〉 be a consistent timed contPN system with
all transitions fireable at least once and md an equilibrium point for ud. Then
mi is also an equilibrium point for ud iff:















BT · (md −mi) = 0 (1)
C · Λ · (Πd ·md − Πi ·mi) = 0 (2)
mi ≥ 0 (3)
Λ · Πi · mi ≥ ud ≥ 0 (4)

(9)
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Fig. 5. Timed continuous Marked
Graph system with λ = [1, 1, 1, 1, 1, 1]T

and many equilibrium points in the
same configuration for a given ud.

Fig. 6. Equilibrium points of the timed
continuous Marked Graph system in
Figure 5 for ud = [0, 0, 0, 0, 0, 0]T .

Proof. =⇒ If mi is an equilibrium point it is a reachable marking. The system
is consistent so: BT · mi = BT ·md, i.e. (9.1) is necessary.

Both markings are equilibrium points: C · (Λ · Πd · md − ud) = 0 and
C · (Λ ·Πi ·mi−ud) = 0. Eliminating ud with both equations, (9.2) is obtained.

⇐= Equations (9.1) and (9.3) ensure the reachability of mi because the net
is consistent and every transition is fireable. The control input ud can be applied
(9.4) and using (9.2) mi is an equilibrium marking. ut

Lemma 1. Let 〈N , λ,m0〉 be a timed contPN system and md, mi two equilib-
rium points for ud. The flows at these markings are equal iff Πd ·md = Πi ·mi.

Proof. Flows are equal: iff Λ · Πd · md − ud = Λ · Πi · mi − ud, that is iff
Λ · (Πd · md − Πi · mi) = 0. Since Λ is a full rank matrix (by definition is a
diagonal matrix with diagonal elements greater than zero), this can happen iff
Πd ·md = Πi ·mi. ut

Example 3. For the timed contPN system depicted in Figure 9 the optimal
flow fmax = [0.2, 0.2, 0.6, 0.2]T is obtained with ud = [0, 0, 0, 0]T and marking
md = [0.2, 0.6, 0.6, 0.6]T . Marking m′ = [0.1, 0.3, 1.8, 0.3]T , is also an equilibrium
point, and the flow is different f ′ = [0.1, 0.1, 0.3, 0.1]T . Obviously, the conditions
of the lemma do not hold, Πd · md 6= Π

′ · m′.

Theorem 1. Let 〈N , λ,m0〉 be a consistent timed contPN system with all tran-
sitions fireable at least once. In one configuration Π all the equilibrium points
for a given u have the same flow if

rank

[

Π | −Λ
−1 · X1 ... −Λ

−1 · Xk

BT | 0 ... 0

]

= rank

[

Π

BT

]

+ k

where k = |T | − rank(C) and X1, ..., Xk is a T-flow basis.
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Fig. 7. Timed contPN system with
λ = [1, 1, 1, 1, 1, 1]T and many equilib-
rium points in the same configuration
for a fixed ud.

Fig. 8. Equilibrium points of the timed
contPN system in Figure 7 for ud =
[0, 0, 0, 0, 0, 0]T .

Proof. Let us assume that ma and mb are two equilibrium points under Π

for the same control u. Obviously, the flow in steady state will be a T-semiflow:
Λ ·Π ·ma−u = α1 ·X1+ ...+αk ·Xk, Λ ·Π ·mb−u = β1 ·X1+ ...+βk ·Xk. Now,
we can write: Π ·∆m−Λ

−1 · (ζ1 ·X1 − ...− ζk ·Xk) = 0 (∆m = ma −mb, ζi =
αi − βi, ∀i). Moreover, since these markings are reachable, BT · ∆m = 0.

[

Π | −Λ
−1 · X1 ... −Λ

−1 · Xk

BT | 0 ... 0

]

·









∆m

ζ1

...
ζk









= 0 (10)

Under the rank condition for every solution of this system ζi = 0 ∀i. Therefore
ma and mb have the same flow. ut

Example 4. Let us consider the contPN system in Figure 10 with λ = [2, 1, 1]T .
The configuration {(p4, t1), (p4, t2), (p3, t3)} with associated matrix Π can have
several equilibrium points with different flows because the conditions of The-

orem 1 are not satisfied. For this system, Π =





0 0 0 1
2

0 0 0 1
0 0 1 0



, BT =

[

1 1 1 0
1 0 4 1

]

,

Λ
−1 ·X =





1
2
1
1



 and rank

[

Π −Λ ·X
BT 0

]

= rank

[

Π

BT

]

= 4. If u = [0, 0, 0]T , the

equilibrium markings m1 = [15.25, 1, 0.75, 0.75]T and m2 = [15.5, 0.8, 0.7, 0.7]T

belonging to this configuration have the flows f1 = [0.75, 0.75, 0.75]T and f2 =
[0.7, 0.7, 0.7]T respectively. Thus, any intermediate value is also possible.

For the class of Equal Conflict contPN and non-controlled conflict transitions,
we can prove that all equilibrium points have the same flow under the same
configuration.



. p1

p4

t4

2

3

2 2

t2

t3

p2 p3

t1

Fig. 9. Conservative but not lim-live
continuous EQ system with several non
optimal equilibrium points for λ =
[1, 1, 1, 1]T .

t1
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t2 t3
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Fig. 10. Bounded and lim-live contPN

that has several equilibrium points
with distinct flow.

Theorem 2. Let 〈N , λ,m0〉 be a bounded and lim-live EQ timed contPN sys-
tem. Given u in which transitions in conflict are not controlled, there exists at
least one equilibrium point, and even if there are more, all of them have the same
flow.

Proof. The throughput in steady state for unforced (u = 0) continuous EQ nets
can be computed using a linear programming problem ([9]). More precisely, the
throughput is obtained looking for the slowest P-semiflow. The solution is unique
with respect to the flow, but there can exist more than one marking that respect
the P-semiflows and have the same associated flow.

Assume •t = p (i.e. non synchronizing transition) and u[t] 6= 0. If the steady-
state marking of p is m[p], we can reduce the value of m[p] and transform the
system into an equivalent one with the same steady-state flow with the marking

m′[p] = m[p]−Pre[p,t]

λ[t]
·u[t]. The flow will be: λ[t]· m

′

Pre[p,t] = λ[t]· m

Pre[p,t]−u[t], the

same as in the original system (with u[t] 6= 0). For every controlled transition
we can apply the same technique (in the case of synchronizations we remove
tokens from all input places) obtaining an equivalent system with u = 0. For
this system all the equilibrium points have the same flow. ut

This theorem ensures that all equilibrium points of the CF contPNs systems
in Figure 4, Figure 5 and Figure 7 have the same flow for any constant control
input u. The number of equilibrium points in one configuration are characterized
in the following theorem.

Theorem 3. Let 〈N , λ,m0〉 be a bounded and lim-live EQ timed contPN sys-

tem. If rank

[

Πi

BT

]

= |P | and conflict transitions are not controlled, then at

most one equilibrium point exists under Πi.



Proof. Let rank

[

Πi

BT

]

= |P | and md, mi (mi = md + ∆m) two equilibrium

points under Πi for ud. Using Theorem (2) all equilibrium points with the same
action ud have the same flow, i.e. Πi ·md = Πi ·mi or Πi ·∆m = 0. Moreover,
BT ·mi = BT · md, or BT · ∆m = 0.

Under the rank assumption, the previous system has only one solution, ∆m =
0. So md = mi. Hence, Πi has at most one equilibrium point. ut

Example 5. Let us consider the net in Figure 7 and Π =

















1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

















one configuration. One P-flow basis is : BT =









0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
1 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1









. Because

rank

[

Πi

BT

]

= 8 < 9 (the number of places) this configuration has an infinite

number of equilibrium points (configuration 1= {(p1, t1), (p4, t2), (p7, t3), (p5, t4),
(p6, t5), (p8, t6)} in Figure 8).

Corollary 1. Let N be a conservative and consistent JF contPN . Given ud,
only one equilibrium point exists in 〈N , λ,m0〉.

4 Optimal control for steady state

In production control is frequent the case that the profit function depends on
production (benefits in selling), working process and amortization of investments.
Under linear hypothesis for fixed machines (i.e. λ defined), the profit function
may have the following form: wT · f−zT ·m−qT ·m0, where f is the throughput
vector, m the average marking, wT a gain vector w.r.t. flows, zT is the cost
vector due to immobilization to maintain the production flow and qT represents
depreciations or amortization of the initial investments.

Let us consider the following linear programming problem:



















max {wT · f − zT · m− qT · m0}
C · f = 0, f ≥ 0 (a)
m = m0 + C · σ, m, σ ≥ 0 (b)

f [ti] = λi ·
(

m[pj ]
Pre[pj ,ti]

)

− v[pj , ti], ∀pj ∈ •ti, v[pj , ti] ≥ 0 (c)

(11)

where v[pj , ti] are slack variables.
The equations correspond to: (a) f is a T-semiflow; (b) fundamental equation

(m is a reachable marking); (c) firing law for infinite servers semantics. In the
case of |•ti| = 1 the corresponding slack variable is the same as the control input.



Theorem 4. Let 〈N , λ,m0〉 be a timed contPN system and 〈f ,m,v〉 be a so-
lution of LPP (11), then

1. For every transition ti, let ui = min
pj∈•ti

v[pj , ti] be its control input. Then u is

the control in steady-state for m.
2. If for every ui > 0 transition ti is control-feasible, then u is an optimal

control.

Proof. In steady state, f [ti] = λ[ti] · min
pj∈•ti

(

m[pj ]
Pre[pj ,ti]

)

− ui. Choosing ui =

min
pj∈•ti

v[pj , ti] for all transitions, the equation (11.c) is verified. If all ti with

ui 6= 0 can be controlled, the control can be applied in steady state; then the
command is optimal. ut

For mono T-semiflow nets (nets that have an unique minimal T-semiflow)
(or reducible to [6]), the equation (11a) can be replaced with the equivalent one:
f = α ·X with X the minimal T-semiflow.

If the net is consistent and every transition can be fired at least once, the
equation (11b) is equivalent to: BT · m = BT ·m0, m ≥ 0.

Example 6. The solution of LPP 11 is not necessarily unique (as we saw in the
previous section). In order to obtain the maximum throughput in steady-state
for the contPN in Figure 1 with λ = [1, 1, 1, 1]T and m0 = [1, 0, 3, 3, 1, 0]T . LPP
(11) leads to:















































































max f1

f1 = f2 = f3 = f4

m1 + m2 = 1
m3 + m4 = 6
m5 + m6 = 1
f1 = m1 − u1

f2 = m2 − v22

f2 = m3 − v23

f3 = m4 − v34

f3 = m5 − v35

f4 = m6 − u4

f ,m,v ≥ 0

(12)

One optimal solution of this LPP is: f1 = 0.5, md = [0.5 0.5 3.5 2.5 0.5 0.5]T

and v = [0, 0, 3, 2, 0, 0]T . Therefore u2 = min(v22, v23) = 0, u3 = min(v34, v35) =
0 and ud = [0 0 0 0]T is an optimal control in steady state.

For sure the solution is not unique, all the markings that satisfy (13) are also
solution of (12).







m1 = m2 = m5 = m6 = 0.5
m3 + m4 = 6
m3, m4 ≥ 0.5

(13)



Corollary 2. For JF contPN , the solution of the system in (11) is unique and
u = 0 (monotonicity).

Proof. For JF contPN we have only persistent transitions, so the solution is
unique. Maximizing the flow, u = 0 is solution of (11) and is the same as the
steady state of the unforced net. ut

5 Approaching dynamic control: on controllability and

marking invariance laws

The dynamic systems under study are described by the equations in (7). The
classical control theory for linear systems cannot be applied for our system be-
cause we are working inside a polytope (not in a vectorial space as in classical
linear system) and our control input is bounded. In this section, a relaxation
of the equations modelling the system is proposed, eliminating the restrictions
regarding the bounds for the control input. The goal is to try to interpret “clas-
sical results” in the contPN case. Therefore, the system under study is reduced
to the non-linear equations:

ṁ = C · Λ · Π(m) · m−C · u (14)

For classical linear systems controllability has been thoroughly studied (see,
for example [11], [12]). A dynamic system is said to be completely state control-
lable if for any time τ0, it is possible to construct an unconstrained control vector
u(τ) that will transfer a given initial state x(τ0) to a final state x(τ) in a finite
time interval τ0 < τ .

In system theory, a very well-known controllability criterion exists which
allows to decide whether a continuous linear system is controllable or not. Given
a linear system ẋ(τ) = A · x(τ) + S · u(τ), the controllability matrix is :

C = [S · · ·AkS · · ·A(n−1)S] (15)

Proposition 3. [11] A linear continuous-time system ẋ(τ) = A ·x(τ)+S ·u(τ)
is completely controllable iff the controllability matrix C has a full rank. If C

is not a full rank matrix then the system has only rank(C) controllable state
variables.

For contPN systems, every Π(m) leads to a linear and time-invariant dy-
namic system with controllability matrix C(m):

C(m) = −
[

C · · · (C · Λ · Π(m))n−1 · C
]

(16)

Proposition 4. If all transitions are control-feasible, ∀m, the space generated
by the columns of C(m) and C are equal. Thus rank(C(m)) = rank(C) =
|P | − dim(B).



Proof. Observe that (C·ΛΠ(m))n−1·C = C·(ΛΠ(m)·C)n−1. Thus, rank(C) =
rank([C · · ·C · (Λ · Π(m) ·C)n−1]). Given that C is included in C(m) the first
part is true. ut

Notice that C(m) depends on Π(m), but the space generated by its columns
is always the same, just that one defined by that of matrix C. This is some-
thing that can be easily expected because all transitions are have assumed to be
control-feasible.

Nets with at least one P-flow are non controllable in the classical sense of
dynamic system for any firing rate λ and any initial marking m0.P-flows based
token conservation laws make |P | − rank(C) places linearly-redundant (even if
they constraint the behaviour of the net system model).

Let us consider first a motivating example.

Example 7. Let us consider the contPN system in Figure 1 with λ = [α, β, γ, δ]T .
This net has three independent token conservation laws derived from P-(semi)flows:
m[p1] + m[p2] = 1,m[p3] + m[p4] = 6 and m[p5] + m[p6] = 1. Thus ṁ[p1] +
ṁ[p2] = ṁ[p3] + ṁ[p4] = ṁ[p5] + ṁ[p6] = 0, that means that three uncon-
trollable zero valued poles will appear. If we fix m[p2],m[p3] and m[p5] as state
variables then m[p1],m[p4] and m[p6] are redundant. The linear dynamic system
corresponding to the configuration {(p1, t1), (p2, t2), (p5, t3), (p6, t6)} is:







ṁ2 = −β · m2 + α · (1 − m2) = −(α + β) · m2 + α
ṁ3 = −β · m2 + γ · m5

ṁ5 = −γ · m5 + δ · (1 − m5) = −(γ + δ) · m5 + δ

Eliminating all variables in the right hand side:

−
β

α + β
· ṁ2 +

γ

γ + δ
· ṁ5 + ṁ3 =

γ · δ

γ + δ
−

α · β

α + β
= q

Therefore, if q = 0 an additional zero valued pole is obtained. It is not rooted in
a P-flow, but depends also on λ and BT m0 (i.e. not on a particular m0 but on
the token load of P-flows).

If q 6= 0, sooner or later the above configuration will be left. This clear
since at least one of the variables (m[p2],m[p3] or m[p5]) will grow (or decrease)
indefinitely. This can also be deduced using that the steady state flow has to be
a T-semiflow of the net. Since it has only one minimal T-semiflow [1, 1, 1, 1]T , in
steady state: f1 = f2 = f3 = f4.

f1 = f2 =⇒ α · m1 = β · (1 − m1) =⇒ f1 =
α · β

α + β

f3 = f4 =⇒ γ · m5 = δ · (1 − m5) =⇒ f3 =
γ · δ

γ + δ

f1 = f3 ⇐⇒
α · β

α + β
=

γ · δ

γ + δ
⇐⇒ q = 0

Thus, if q 6= 0 this will not be the equilibrium configuration.



The following transformation matrix is used to change the reference in which
the marking vector is expressed. This will be useful to approach the controllabil-
ity of the system. The kind of transformation matrix to be considered will have
in this context a particular structure.

p1

p2

t1

t2

Fig. 11. Join-Free timed contPN .

. p1

p2 p4

t1

t2 t4

p3 p5

t3

Fig. 12. Choice-Free timed contPN

system for example 11.

Definition 10. Let N be a contPN . A transformation matrix QN , is a full
rank matrix, where the first rows form a basis of P − flows and the remaining
rows are completed with elementary vectors in order to build a full rank matrix
QN .

Example 8. For the timed models in Figure 11 and Figure 1, P − F low basis
are:

BT
1 =

[

1 1
]

and BT
2 =





1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



 (17)

Adding elementary vectors, Q matrices can be, for example:

Q1 =

[

1 1
0 1

]

and Q2 =

















1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

















(18)

The system described by equation (14) can be rewritten in new coordinates
m̄, when matrix QN is used as a state vector transformation matrix. Let m̄ =
QN · m.

Definition 11. Let 〈N , λ,m0〉 be a timed contPN described by equation (14),
where QN is a transformation matrix of N . Then



•
m̄=QNCΛΠ(m)Q−1

N m̄− QNCu (19)

will be named a Q-canonical representation of equation (14).

Theorem 5. Let Σ = 〈N , λ,m0〉 be a contPN system, then:

1. In Π(m) the number of zero valued poles is given by the dimension of the
right annulers of C · Λ · Π(m) · v, v ∈

� |P |.
2. The number of non controllable poles is |P | − rank(C) and are zero valued.

Proof. 1. The zero eigenvalues of the matrix CΛΠ(m) are:

CΛΠ(m) · v = 0 · v = 0

Therefore, the space generated by the column of ΛΠ(m) is contained in
the kernel of C. For sure, the number of zero valued poles is given by the
dimension of the right annulers of the matrix C · Λ · Π(m) · v.

2. Making the change of variables:

m̄ = QN · m (20)

the Q-canonical representation of equation (14) is obtained:

•
m̄ = QN ·C · Λ · Π(m) · Q−1

N · m̄− QN · C · u (21)

Since QN contains a basis for the P-flows of C, then one zero row of the
matrix

QN · C

implies one zero row (in the same position) in the matrix:

QNCΛΠ(m)Q−1
N

Without loss of generality, assume that the row i of QN · C is zero, then
the row i of QNCΛΠ(m)Q−1

N is zero. Therefore the value of the state vari-
able m̄i is never affected by other state variables, or by the input, thus
m̄i is uncontrollable. Intuitively, each one of these m̄i comes from a P-
flow equation, a linear constraints among variables (i.e. token conservation
law: bi · m̄ = bi · m̄0). Thus the pole value associated to m̄i is zero and
there exists dim(B) uncontrollable zero valued poles. Using Proposition 4,
rank(C(m)) = |P | − dim(B), then there exist no more uncontrollable poles.
If there are more zero valued poles, they are controllable.

ut

Example 9. Let us consider the contPN system in Figure 11, where λ = [1, 1]T .
It has the following equation:

ṁ =

[

−1 1
1 −1

]

·m−

[

−1 1
1 −1

]

· u (22)



The controllability matrix of this net is the following:

C =

[

−1 1 2 −2
1 −1 −2 2

]

The rank of this matrix is one, then it has only one controllable pole (equal to
−2) and one non controllable pole (equal to 0). A transformation matrix is:

Q =

[

1 1
0 1

]

then, the corresponding Q-canonical representation of equation (22) is:

•
m̄ =

[

0 0
1 −2

]

m̄−

[

0 0
1 −1

]

u

Example 10. The timed contPN system shown in Figure 1 with λ = [1, 1, 1, 1]T

and the configuration defined by the marking in the figure, has the following
equation:

ṁ =

















−1 1 0 0 0 0
1 −1 0 0 0 0
0 −1 0 0 1 0
0 1 0 0 −1 0
0 0 0 0 −1 1
0 0 0 0 1 −1

















m−

















−1 1 0 0
1 −1 0 0
0 −1 1 0
0 1 −1 0
0 0 −1 1
0 0 1 −1

















u (23)

One possible transformation matrix is:

Q =

















1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

















then, the corresponding Q-canonical representation of equation (23) is:

•
m̄ =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 −2 0 0
0 0 −1 1 0 1
0 0 1 0 0 −2

















m̄−

















0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

















u

Clearly, ˙̄m1 = ˙̄m2 = ˙̄m3 = 0, or in the original settings ṁ1+ṁ2 = ṁ3+ṁ4 =
ṁ5 + ṁ6 = 0, as already mentioned. Thus, they are zero valued uncontrollable
poles (they only depend on the net structure).

Globally speaking, this new system has the following poles: (0,0,0,-2,0,-2)
and three linearly independent P-flows. The fourth zero value pole depends on
〈N , λ〉 and BT m0, not only on N as the uncontrollable ones.



Obviously, the non controllable poles appear in all the configurations. The
controllable poles can have different values. For example, if we consider the same
system and the configuration: {(p1, t1), (p3, t2), (p5, t3), (p6, t4)}, the canonical
representation is given by:

•
m̄ =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 −1 0 −1 1 0
0 1 −1 0 −1 1
0 0 1 0 0 −2

















m̄−

















0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

















u

with the poles: (0,0,0,-1,-1,-2).

But new, token-invariant laws may appear depending on 〈N , λ,m0〉 (i.e. not
depending on the net structure as these derived from P-semiflows, but from the
precise marking m0. Let us present a simple case.

Example 11. Consider now the contPN in Figure 12 with λ = [α, β, δ, γ]T . There
exist two P-semiflows: m1 + m2 + m3 = 1 and m1 + m4 + m5 = 1. Then there
are only three state variables, for example m1, m3 and m5. The dynamic linear
system associated with the configuration {(p1, t1), (p2, t2), (p3, t3), (p4, t4)} is:







ṁ1 = δ · m3 − α · m1

ṁ3 = −δ · m3 + β · (1 − m1 − m3)
ṁ5 = −δ · m3 + γ · (1 − m1 − m5)

Nevertheless, if β = γ, ṁ3−ṁ5 = −β·(m3−m5). Making a linear transformation
in order to compute: m̄35 = m3 − m5, then ˙̄m35 = −β · m35. If m0[p3] =
m0[p5] =⇒ ˙̄m35 = 0. In this case, the pole is different from 0, and depend on
m0, thus m3 = m5 is a token conservation that is not rooted in a zero valued
pole.

6 Conclusions

This work dealt with some control problems of continuous Petri nets. Necessary
conditions for the equilibrium points in steady-state are some easy algebraic
equations. For continuous EQ nets the steady-state flow is unique, even if several
steady-state markings are possible. For general contPNs, a necessary condition
of steady-state markings with different flows is presented. Optimal steady-state
flow and input control is addressed by means of a LPP, that can be solved in
polynomial time. In the last part of the paper, classical controllability theory
of linear dynamic system is used to provide a first kind of interpretation to
the class of systems that appear in our field, for the particular case in which
all transitions have been assumed to be control-feasible. Controllability in more
general framework and control schemes are currently topics under consideration.
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