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Abstract – The dynamics analysis for linear systems
described by state-space representations in max-plus
algebra is addressed within the context of the software
facilities offered by the Petri Net Toolbox (PN Toolbox)
running under MATLAB. By developing this toolbox, the
application field of the MATLAB environment (extremely
popular among control engineers) is considerably
enlarged towards covering event driven behavior. The
max-plus instruments available in PN Toolbox are
discussed from the point of view of the implemented
algorithm and their usage is illustrated by two relevant
examples.
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I. INTRODUCTION

Despite the large body of work invested in the theoretical
study of linear systems described over the max-plus
algebra, e.g. [1], [2], [3], [4], very few information is
currently available in the literature with regard to the
implementation of a simulator for the dynamics of such
systems. A software devoted to general purpose
computations in this algebra, running under Scilab [5], is
presented in [6], but it does not include ready to use
facilities for the simulation of discrete event systems.
However, the usage of this software as a start point in
developing a proper simulator was not very attractive from
our point of view, since our interest in computer
applications focuses on the popular software MATLAB
[7], [8].

For the concrete analysis of system behavior hand calculus
is rather cumbersome even for problems of small
complexity, fact that fully motivates our work in
developing a max-plus simulator. Taking advantage of our
experience gained in exploiting MATLAB capabilities in
the framework of discrete event systems, such a simulator
has been designed and implemented as an instrument under
Petri Net Toolbox (PN Toolbox) [9], [10], [11], [12]. The
main characteristics of this simulator do not depend on the
general philosophy of PN Toolbox; it can be used directly

under MATLAB and its integration with PN Toolbox
offers the advantage of the automatic calculation of the
max-plus state-space representation from a Petri net model.

The current paper is structured as follows. Section 2 points
out the specific requirements in developing a max-plus
based simulator, formulated in broader terms, independent
of the MATLAB context. A brief presentation of the PN
Toolbox is achieved in Section 3, so that to allow the
discussion in Section 4 of the particular aspects involved in
the MATLAB implementation. Section 5 illustrates the
effectiveness of our simulator by two case studies
representative for dynamics driven by discrete events.
Some concluding remarks are formulated in Section 6.

II. SPECIFIC REQUIREMENTS IN DEVELOPING A
MAX-PLUS BASED SIMULATOR

The usage of max-plus state space models for discrete
event systems rely on a non-standard algebraic structure
(dioid) [1] which rises a series of technical problems when
implementing simulation facilities within usual software
environments. Such problems originate in:
(i) The basic set of elements ( { }∪ −∞¡ ) of the dioid

represents the left closure of the real axis. Therefore,
the special symbol ε = −∞  should have the full status
of an operand.

(ii) The two operators in the dioid need to be represented
by two special characters. In order to use the regular
symbols for addition (+) and multiplication (*) in
accordance with the new meanings (i.e. max and plus
in classical notation), a reassignment of their modus
operandi is requested. This reassignment should be
valid only when operating with max-plus entities and
for any other context the operators preserve their
classical significance.

(iii) Matrix addition and multiplication (defined by
generalizing the new meaning already discussed at (ii))
necessitates proper software tools.

(iv) For starting the simulation of a max-plus model
associated with a Petri net, a set of initial conditions is
requested. Although all these conditions are
theoretically cognizable, in most cases just part of
them can be a priori formulated, whereas the



remaining ones have to be calculated adequately. An
automatic approach to such calculations cannot rely on
ad-hoc solutions, but demands a systematic procedure.

(v) Generally speaking, the construction of the max-plus
state-space models results in implicit equations that
cannot be directly used for the progress of simulation.
To automatically derive the corresponding explicit
form an algorithm should be implemented for solving
linear systems x Ax b= +  in the Kleene sense [1].

For handling all these aspects (i)-(v), a versatile and
powerful software environment should be chosen to host
such a simulation application.

III. MATLAB-EMBEDDED PETRI NET TOOLBOX

Petri Net Toolbox is a software tool embedded in the
MATLAB environment for discrete-event systems
simulation and analysis, designed and implemented at the
Department of Automatic Control and Industrial
Informatics of the Technical University “Gh. Asachi” of
Iasi.

The skeleton and functionality of version 1.0 of this
toolbox were briefly presented in [10]. Version 2.0, which
has just been released, brings a new technology in the
implementation of the Graphical User Interface, allows
links to other software, upgrades several algorithms and
simulation statistics [12], offers specific tools to address
structural properties [11] and incorporates facilities for
coloured Petri nets [9]. In the same time, this second
version differs from the previous one by substantial
improvements with regard to the max-plus simulation and
analysis of timed event graphs.

The integration with the MATLAB philosophy ensures
generous computational resources for various types of
applications due to the high quality routines provided by
MATLAB and some of its toolboxes, such as Statistics
Toolbox, Optimization Toolbox etc. On the other hand, the
PN Toolbox has the incontestable merit of broadening the
MATLAB's utilization domain towards the area of discrete-
event systems, which is now covered only by the State-
Flow package. Generally speaking, the MATLAB
orientation of the PN Toolbox is able to confer the
necessary flexibility for further improvement of this
software, by upgrading the already existing tools and by
adding new ones.

IV. MAX-PLUS BASED SIMULATION IN PN
TOOLBOX VERSION 2

The MATLAB implementation of PN Toolbox permits to
develop elegant programming solutions to the problems (i)-
(v) discussed in section 2. Within this context, the response
to (i) is given by the existence of built-in MATLAB
function Inf, which returns the IEEE arithmetic
representation for positive infinity. The reassignment of
the regular symbols for addition and multiplication

requested at (ii) and (iii) can be achieved by constructing a
new class of MATLAB objects defined as matrices over
the max-plus dioid. Thus, when operating with objects
belonging to this class, the regular methods for addition
and multiplication are overloaded.

With regard to (iv), PN Toolbox is able to directly derive
the max-plus state representation from the topology and
initial marking of a timed event graph, in an implicit form:
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i ii
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= − ⊕ −⊕x A x B u , (1)
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where M denotes the maximal number of tokens in the
initial marking. The components of the input vector

[ ]T
1 2( ) ( ) ( ) ( )mk u k u k u k=u …  and those of the output vector

T

1 2( ) ( ) ( ) ( )pk y k y k y k =  y …  represent the moments of

the k-th firing instances of the m source and, respectively,
of the p sink transitions of the net. In a similar manner, the

state vector [ ]T
1 2( ) ( ) ( ) ( )nk x k x k x k=x …  corresponds to

the n transitions that are connected to both predecessor and
successor places.

Equation (1) may be written in the equivalent form
0( ) ( ) ( )k k k= ⊕x A x v , (3)

where

1 0
( ) ( ) ( )

M M

i ii i
k k i k i

= =
= − ⊕ −⊕ ⊕v A x B u . (4)

The programming techniques employed to overload the
regular methods for addition and multiplication are
extended in the case of Kleene-star operator such that
addressing problem (v) becomes a straightforward task and
equation (1) turns into the explicit form:

0( ) ( )k k∗=x A v , (5)

where 2 1
0 0 0 0

n∗ −= ⊕ ⊕ ⊕ ⊕A E A A A…  and E stands for the
identity matrix.

In order to preserve the original meaning of the state
variables, the simulation performed by PN Toolbox does
not appeal to the standard method [2] founded on the
augmentation of the state-vector, but it exploits directly
equations (5) and (2).

This technique leads to the following problem: for
1 k M≤ ≤  both the state vector ( )kx  and the output vector

( )ky  depend on (0)x , ( 1)−x , …, ( )k M−x  and (0)u ,
( 1)−u , …, ( )k M−u . It seems natural to assume that all

the components of these vectors are null, i.e. equal to
ε = −∞ , since the counting of the firing instances of every
transition in the net starts at the initial moment 0 0τ =  with

1k = . In order to compensate the loss of information from
equations (5) and (2) that appears by making this
assumption, on the one hand, and to take into account the
role of those transitions that are initially q-enabled from the



very beginning of the simulation procedure, on the other
hand, for 1 k M≤ ≤  it is necessary to modify equations (5)
and (2) according to

[ ]0( ) ( ) ( )k k k∗= ⊗ ⊕x A x v , (6)

( ) ( ) ( )k k k= ⊕y y w , (7)
where ( )kv  is given by (4) and

[ ]
0

( ) ( ) ( )
M

i ii
k k i k i

=
= − ⊕ −⊕ C x D uw . (8)

The auxiliary vectors ( )kx  and ( )ky  introduced in (6)
and (7) are computed as follows:
• if transition ti, corresponding to the i-th component of

( )kx , 1,2, ,i n= … , is iq -enabled in the initial
marking, then ( ) 0ix k =  for 1, , ik q= … , and

( )ix k ε=  for ik q> ;
• if sink transition ts, corresponding to the s-th

component of ( )ky , 1,2, ,s p= … , is sq -enabled in
the initial marking, then ( ) 0sy k =  for 1, , sk q= … ,
and ( )sy k ε=  for sk q> .

This way, vectors ( )kx  and ( )ky  influence only the first

max max{ , 1, , }iq q i n= =x …  iterations of ( )kx  and,
respectively, the first max max{ , 1, , }sq q s p= =y …
iterations of ( )ky . For maxk q> x  equation (6) is equivalent
to (5) and for maxk q> y  equation (7) is equivalent to (2).

Once k becomes greater than M ( k M> ), all the vectors in
the right hand sides of (5) and (2) are cognizable, because

the previous iterations of the algorithm provide the state
vector whereas the values of the input vector are a priori
known. Hence, these two equations may be directly
implemented in simulation.

For strongly connected timed event graphs, PN Toolbox is
equipped with an analysis procedure for the eigenstructure
of the net, which explores the periodicity exhibited by the
steady-state behaviour.

V. CASE STUDIES

In order to illustrate the effectiveness of the new max-plus
tools incorporated in PN Toolbox, two relevant examples
are considered.

Example 1 (a communications protocol – adapted from
[13]). The place timed Petri net model is presented in the
main window of PN Toolbox captured in figure 1. The
significance of each place p in the model and the numerical
value of the time duration allocated to it, generically
denoted by (p)d , are as follows:

• ready to send message to lower level: (p1) 6d = ;
• message sent: (p2) 3d = ;
• ready to receive message from upper level:

(p3) 5d = ;
• wait for ACK: (p4) 4d = ;

Fig. 1. Screen capture of the main window of PN Toolbox with the event graph in Example 1



• message received: (p5) 7d = ;
• transfer completed (upper level): (p6) 1d = ;
• ACK signal sent: (p7) 8d = ;
• transfer completed (lower level): (p8) 2d = .

The transitions in the PN model correspond to the
occurrences of the subsequent events: t1: send message; t2:
receive message; t3: continue (upper level); t4: send ACK;
t5: continue (lower level); t6: receive ACK.

Let us denote by [ ]T
1 6( ) ( ) ( )k x k x k=x L  the vector

having as components the time moments ( )ix k  of the k-th
firing of transition ti, for 1, ,6i = … . The max-plus state-
space representation in implicit form (1) is given by

0 1( ) ( ) ( 1)k k k= ⊗ ⊕ ⊗ −x A x A x , (9)
where the numerical values of matrices 0A  and 1A ,
automatically derived by the PN Toolbox, are presented in
figure 2.

Fig. 2. Screen capture of the window opened by PN Toolbox for the max-
plus state-space representation in Example 1

Introducing matrix 0 1
∗= ⊗A A A , equation (9) turns into the

explicit form
( ) ( 1)k k= ⊗ −x A x . (10)

The analytical study of the behavior of this autonomous
timed event graph begins with the derivation of the initial
conditions corresponding to equation (10). The only
transition that is 1-validated and has to be executed once at

the initial moment 0 0τ =  is t1; therefore, according to the
algorithm presented in Section IV, vector

[ ]T(1) 0 ε ε ε ε ε=x  is constructed. The time
moments of the first execution of all the transitions in the
model are given by

0(1) (1)∗= ⊗x A x , (11)
while vectors ( )kx , for 2k ≥ , may be successively
computed by means of equation (10).The results obtained
through simulation matched up the ones derived via the
analytical method. Figure 3 presents the graphical plot of
firing time vs. firing count for transition t1 associated with
the occurrence of the “send message” event. Furthermore,
the firing instants are available for all the transitions of the
net in a numerical format (see the window located at the
lower left corner of figure 3). The period of 25 time units
exhibited by the numerical and graphical information has
been confirmed via the direct computation of the largest
eigenvalue of A in explicit equation (11).

Example 2 (adapted from [1]) represents a manufacturing
system consisting of three machines, denoted by Mi,

1,2,3i = . It is supposed to produce three kinds of parts,
namely Pi, 1,2,3i = , according to a certain product mix.
The routes to be followed by each part and each machine
are depicted in Figure 4 and the corresponding processing
times are given in Table 1.

Fig. 4. Routing of parts along machines in Example 2

TABLE 1. Processing times of parts on machines in Example 2

P1 P2 P3
M1 - 1 5
M2 3 2 3
M3 4 3 -

Note that this manufacturing system has a flow-shop
structure, i.e. all parts follow the same sequence on the
machines (although they may skip some) and every
machine is visited at most once by each part.

Fig. 3. Screen capture of the graphical plot of firing time vs. firing count for transition t1 in Example 1



Fig. 5. Screen capture of the main window of PN Toolbox with the event graph in Example 2

We assume that there are no set-up times on machines
when they switch from one part type to another and also no
traveling times for parts between the machines. Parts are
carried on a limited number of pallets; only one pallet is
available for each part type. The sequencing of part types
on the machines is known and it is (P2, P3) on M1, (P1,
P2, P3) on M2 and (P1, P2) on M3. The final product mix
can be obtained by means of a given input of parts.

The place timed Petri net model is presented in the main
window of PN Toolbox captured in figure 5. The initial
marking complies with the sequencing of parts on
machines, so that machine M1 starts working on product
P2 and M2 on P1. The following numerical values have
been used for the time duration allocated to a place p,
generically denoted by ( )d p :

• input of type i part: (d1) (d2) (d3) 0d d d= = = ;
• processing of P1 on M2: (p1m2) (p1) 3d d= = ;
• processing of P1 on M3: (p1m3) (p4) 4d d= = ;
• processing of P2 on M1: (p2m1) (p6) 1d d= = ;
• processing of P2 on M2: (p2m2) (p2) 2d d= = ;
• processing of P2 on M3: (p2m3) (p5) 3d d= = ;
• processing of P3 on M1: (p3m1) (p7) 5d d= = ;
• processing of P3 on M2: (p3m2) (p3) 3d d= = .

This timed event graph has three source transitions (u1, u2
and u3) whose firing instants (considered a priori known)

make up input vector [ ]T
1 2 3( ) ( ) ( ) ( )k u k u k u k=u . Output

vector [ ]T
1 2 3( ) ( ) ( ) ( )k y k y k y k=y , that corresponds to

the sink transitions y1, y2 and y3, is constructed in a
similar manner. The components of the state vector ( )kx
represent the k-th firing moments of transitions t1, …, t7.

The implicit form of the max-plus state-space
representation is given by

0 1 0( ) ( ) ( 1) ( )k k k k= ⊗ ⊕ ⊗ − ⊕ ⊗x A x A x B u , (12)

0( ) ( )k k= ⊗y C x . (13)
The numerical values of the matrices involved in the
previous equations, automatically derived by the PN
Toolbox, are presented in figure 6. The explicit for of
equation (12) is

( ) ( 1) ( )k k k= ⊗ − ⊕ ⊗x A x B u . (14)

where 0 1
∗= ⊗A A A  and 0 0

∗= ⊗B A B .
Since none of the transitions in the PN model is validated
at the initial moment 0 0τ = , the state vector (1)x  depends
only on the first firing instances of the input transitions
represented by (1)u . According to the algorithm presented
in Section IV, it is necessary to first compute vector

0(1) (1)= ⊗v B u , (15)
and next:

0(1) (1)∗= ⊗x A v . (16)
Equation (13) gives for 1k =  the first epochs at which the
parts are ready and the machines have finished their jobs
(for one cycle). For 2k ≥ , ( )kx  and ( )ky  may be
successively computed by means of equations (12) and (13).



Fig. 6. Screen capture of the window opened by PN Toolbox for the max-
plus state-space representation in Example 2

Figure 7 presents the graphical plot of firing time vs. firing
count for transitions u1, t1 and y1, associated to the
occurrences of “input part type P1”, “begin processing part
type P1” and “output part type P1” events, obtained
through simulation for the following numerical values of
the input vector T(1) [0, 0, 0]=u , T(2) [4, 5, 4]=u ,

T(3) [10,12,12]=u , T(4) [19,20,18]=u , T(5) [27,28,26]=u ,
T(6) [37,30,34]=u  and T(7) [50,41,42]=u .

VI. CONCLUSIONS

The MATLAB environment provides a large number of
computational resources and programming facilities, which
allowed us to develop a simulator for discrete event

systems whose dynamics is described by max-plus linear
models. This paper presents the simulator within the
context of PN Toolbox applications, but it can also be used
as a separate tool embedded in MATLAB. The purpose of
our work was twofold, namely to enlarge the functionality
of MATLAB in the case of discrete event systems and to
provide a software instrument for easy handling this special
class of system descriptions.
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Fig. 7. Screen capture of the graphical plot of firing time vs. firing count for transitions t1, u1 and y1 in Example 2


