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Abstract

This research proposes a centralized method for planning and moni-
toring the motion of one or a few mobile robots in an environment where
regions of interest appear and disappear based on exponential probability
density functions. The motion task is given as a linear temporal logic for-
mula over the set of regions of interest. The solution determines robotic
trajectories and updates them whenever necessary, such that the task is
most likely to be satisfied with respect to probabilistic information on
regions. The robots’ movement capabilities are abstracted to finite state
descriptions, and operations as product automata and graph searches are
used in the provided solution. The approach builds up on temporal logic
control strategies for static environments, by incorporating probabilistic
information and by designing an execution monitoring strategy that re-
acts to actual region observations yielded by robots. Several simulations
are included, and a software implementation of the solution is available.
The computational complexity of our approach increases exponentially
when more robots are considered and we mention a possible solution to
reduce the computational complexity by fusing regions with identical ob-
servations.
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1 Introduction

Recent researches on mobile robots proposed different methods for extending
the motion tasks to rich and human-like specifications [1, 2, 3, 4]. Thus, it is now
possible for some classes of robots to automatically perform missions as “visit
region A or B, and if A is visited go to C, otherwise visit infinitely often B and
C while avoiding A” rather than classic problems as “go to A while avoiding
obstacles” [5, 6]. An important challenge in enabling rich tasks was the proper
choice of a language that allows expressive specifications and intuitive trans-
lation from human language to syntactically correct formulas. Solutions were
found in a variety of formal languages [7, 8]. After choosing a specification class,
another challenge was the development of algorithms that actually control the
robot movement such that the desired mission is accomplished. Again, inspira-
tion was drawn from formal analysis [7, 8, 9], and solutions were developed by
appropriately adjusting and extending the available algorithms. Furthermore,
another challenge lies in the the extension of solutions available for a single
robot to multi-robot scenarios [10, 4, 1, 11].

In this paper, we formulate robotic missions for a team of cooperating robots
by Linear Temporal Logic (LTL) formulae, which is, together with its fragments,
e.g., GR(1), among common choices for allowing expressive control objectives
[10, 3, 2, 12]. Tasks given in this logic usually imply visits to some regions
of interest from the environment in a specific or arbitrary order, avoidance of
other regions, and various logical and temporal connectives among regions. The
results of the mentioned works are extended in the current research by assuming
environments with dynamic observations rather than static ones. Specifically,
we consider that the regions of interest have fixed and known locations, but they
appear and disappear based on exponential probabilistic density functions with
known rates. This framework does not directly link our problem to research
areas as probabilistic model checking [13, 14], where the probabilistic nature
arises from actions with uncertain outcome.

Similar to multiple approaches for this type of problems, our solution begins
with the abstraction of the movement capabilities of each robot into a finite-state
description. Different abstractions are possible, as models specific to Resource
Allocation Systems based on automata [15] or Petri nets [16], and in this work
we consider transition system models [3]. Based on individual robot models we
construct a finite transition system that models the whole team of robots and
embeds probabilistic information of observing the regions of interest in specific
locations. The problem is solved by developing an execution monitoring strategy
for the obtained model, and to this goal we adapt tools used in LTL-based
control approaches, as product automata and graph searches. The monitoring
strategy reacts whenever necessary to the regions of interest observed by the
robots during the evolution. When choosing or updating the trajectory for
the team of robots, our solution solves a multi-criterion optimization problem
that maximizes the probability of satisfying the LTL formula while minimizing
the number of robots’ movements. The focus of this work is on automatically
constructing a monitoring strategy for the robots discrete event driven models,
and therefore we make some simplifying assumptions as simple point robots and
a centralized architecture that coordinates the team. Similar to the case of many
methods developed for related problems, the main drawback of our approach is
its computational complexity, fact that prevents feasible applicability for large
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teams and/or complex environments and formulas. We mention a method for
reducing the number of states of the robotic model in order to alleviate this
drawback.

Related works that address the problem of planning mobile robots based
on high level specifications and different probabilistic information include [17,
18, 19, 20, 21]. All these works focus on single systems, while the current one
deploys a team of cooperating robots. In [17], the specifications are restricted
to another formalism, namely probabilistic computation tree logic, while the
probabilistic information is induced by uncertainties in robot sensing and con-
trol rather than by environment evolution. Works [18, 19, 20] assume a similar
scenario with the one we consider, but the underlying system model and formal
methods are entirely different, as follows. The robotic model in [18, 20] is given
in the form of a Markov decision process (MDP), where probabilities arise from
events in the environment and from possible outcomes of system control actions.
We construct a system model in form of a transition system with probabilistic
outputs and fixed topology, while a probabilistic output map is modified based
on environment events. The system requirements from [18, 19, 20] belong to a
subclass of LTL formulae that include persistent tasks, and the solution takes
the form of an a priori computed control policy for MDPs, based on optimiza-
tion procedures inspired from probabilistic model checking [9, 22, 23] and more
complex deterministic Rabin automata. The requirements in this work include
any LTL task, and the solution is inspired by model checking techniques that use
transition system models and nondeterministic Büchi automata. Rather than
obtaining a control policy that includes all possible outcomes from probabilistic
information, we obtain a system trajectory that has the maximum probability
of satisfying the task and whenever necessary we update this trajectory via an
online algorithm. Under this notes, in case of a single robot, we consider our
approach as an alternative to the MDP-based ones. In some cases the offline
computation of a control policy may be preferable, while in other situations it
may be better to iterate a priori unknown number of online trajectory gener-
ations. For multiple robots, the complexity of our centralized method rapidly
increases, and future works may search solutions by drawing inspiration from
decentralized or task decomposition approaches that use specific MDP or au-
tomata models [24, 25, 26, 27]. Works as [28, 29, 30] combine surveillance LTL
tasks over non-varying regions with additional tasks of collecting dynamically-
changing rewards, thus differentiating in the main goal from our research. We
devise a solution to a cooperative team of robots, at the cost of an exponen-
tial increase in the model dependent only on the team size. Thus, our work
extends the strategy from [21], which was applicable for a single mobile agent,
to a team of identical robots. Another difference from mentioned related works
and the current research is that our execution monitoring strategy includes a
witness for situations in which the environment events lead to the violation of
the system task. We provide a downloadable Matlab implementation for our
procedure [31] that start directly with the continuous environment and pos-
sible appearing/disappearing events on regions of interest. Also, we report a
simplified real-time experiment that mimics the tackled problem.

The remainder of the paper is structured as follows. Sec. 2 briefly introduces
some necessary preliminaries and states the problem we solve. The solution’s
steps are presented in Sec. 3, and some conservativeness and complexity aspects
are discussed in Sec. 4. Simulations and a simple experiment are included in
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Sec. 5, and Sec. 6 formulates some concluding remarks.

2 Problem Formulation

Subsection 2.1 briefly introduces the formalism that will be used for specifying
motion tasks and its connections with a finite transition system. Subsection
2.2 outlines the assumptions we make for solving the problem formulated in
subsection 2.3.

2.1 Preliminaries

Linear Temporal Logic
In this work, we consider motion tasks given as formulae of LTL−X , which

is a fragment of Linear Temporal Logic (LTL) [7]. With respect to standard
LTL, LTL−X lacks the “next” operator, which is meaningless for continuous
trajectories (as are those generated by a moving mobile robot). An LTL−X
formula is recursively defined over a set of atomic propositions Π, by using the
standard Boolean operators (¬ - negation, ∨ - disjunction, ∧ - conjunction, ⇒
- implication, and ⇔ - equivalence) and the temporal operators (� - always, ♦
- eventually, and U - until). By interconnecting these operators one can obtain
rich specifications, which we will use as motion specifications for mobile robots.
Examples include tasks as navigation, surveillance, reachability of more regions
in arbitrary or specific order, convergence into regions. A formal definition of
the syntax and semantics of LTL−X formulas can be found in [7, 9], while
examples will be provided in Sec. 5.

LTL−X formulas are interpreted over infinite strings with elements from 2Π

(the set of all subsets of Π, including the empty set ∅). Any LTL−X formula
over set Π can be transformed into a nondeterministic Büchi automaton (see
Def. 1) that accepts all and only the input strings satisfying the formula [32].
Available software tools allow such conversions [33, 34].

Definition 1 The nondeterministic Büchi automaton corresponding to an LTL−X
formula over the set Π has the structure B = (S, S0,ΣB ,→B , F ), where:

• S is a finite set of states;

• S0 ⊆ S is the set of initial states;

• ΣB = 2Π is the set of inputs;

• →B⊆ S × ΣB × S is the transition relation;

• F ⊆ S is the set of final states.

The transitions in B can be non-deterministic, meaning that from a given
state there may be multiple outgoing transitions enabled by the same input.
Thus, an input sequence can produce more than one sequence of states (called
run).

An infinite input word (sequence with elements from ΣB) is accepted by B
if the word produces at least one run of B that visits set F infinitely often.

Transition systems
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For a partitioned environment cluttered with possibly overlapping and static
regions of interest from set Π, the movement capabilities of a mobile robot can
be abstracted into a finite state transition system as in Def. 2. Environment
partitions can be obtained with cell decomposition algorithms [35, 36], while
details on abstractions suitable for different robot dynamics and cell shapes can
be found in [37, 38]. The idea is that every cell from the partition corresponds
to a single state in the finite state description, and transitions between states
correspond to movement capabilities. A satisfaction map shows the regions of
interest that are satisfied when the robot is inside a particular cell (under the
note that each region is equal with a union of partition cells).

Definition 2 A finite state transition system is a tuple T =
(
Q, q0, δT ,Π

T , γ
)
,

where:

• Q is the finite number of states (cells from partition);

• q0 is the initial state (cell containing the initial deployment of robot);

• δT ⊆ Q × Q is the transition relation, where (q, q′) ∈ δT , with q 6= q′, if
and only if the robot can be steered from any initial condition in q to the
adjacent cell q′ without visiting any other neighboring cells in finite time,
and (q, q) ∈ δT if the robot can be kept inside cell q for an indefinite time;

• ΠT = 2Π is the set of possible observations (outputs of states of T ) yielded
by a robot (the power set is used because the regions of interest can over-
lap);

• γ : Q → ΠT is a satisfaction map, where γ(q) is the set of all regions
from Π that contain cell labeled by q, and γ(q) = ∅ if cell q belongs to the
left-over space (q is not included in any region of interest).

Transition systems that we use are deterministic, fact which implies that any
feasible transition in the current state can be chosen by imposing a specific robot
control law. A run (or path) of T is an infinite sequence r = q0 q1 q2..., with the
property that (qi, qi+1) ∈ δT , ∀i ≥ 0. A run corresponds to a robot movement
through cells from partition, and it induces (through map γ) an output word,
which is the observed sequence of elements from ΠT . Since ΠT = ΣB , an output
word of T is an input word for B, and thus one can make the connection between
robot trajectories and satisfaction of LTL specifications.

Researches as [39, 3] proposed algorithms that abstract a robot motion into
a transition system T and use model-checking inspired algorithms for control-
ling T such that it satisfies a given LTL formula. Unlike such works, in the
scenario accounted here, the regions of interest appear and disappear based on
probability density functions. These probabilistic information will be handled
by modifying the finite state representation T and the path finding strategies
from cases with static observations, and by developing an automated monitoring
strategy for mobile robots.

2.2 Assumptions on environment and robots

We assume a bounded environment where a team of n identical mobile robots
evolve. Some polygonal regions of interest with fixed and known positions are

5



defined in the environment, labeled with elements of set Π = {π1, . . . , π|Π|}.
Each region randomly alternates between being visible (appeared or active) and
invisible (disappeared or inactive) on a time basis. Specifically, each region πi ∈
Π disappears and appears after random delays given by negative exponential
probability density functions with rates λdi and λai , respectively. Thus, the
probability of having the region πi visible at a random time moment is denoted
by pπi

and it is computed as the steady-state probability of a Markov process:

pπi
=

λai
λai + λdi

(1)

The current state of a region is not known unless one robot visits the region.
Regardless of the fact that a region is visible or invisible, its area can be accessed
by a robot. However, in the case the region is disappeared and a robot is located
over it, the robot does not sense the observation of the corresponding region.
We mention that regions’ appearance/dissapearance and robot movements are
uncorrelated events, so it is possible that a region changes its state while a robot
is visiting it.

As plausible real scenarios mimicked by such assumptions, one can imagine
that the regions of interest are areas where fires can randomly ignite. With-
out exterior influence, a burning fire extinguishes after some time, and then it
may reignite again. Other scenario may correspond to autonomous taxi agents,
where the regions of interest are the pick-up stations and the region appear-
ance/disappearance corresponds to passengers arrival/departure. Alternatively,
consider regions of interest as areas where some goods appear, and they disap-
pearance would be induced by becoming expired or by being picked by some-
body else. In some scenarios, if the appearance and disappearance rates are
not known, one can assume memoryless events and approximate the values pπi ,
∀πi ∈ Π based on recordings made by sensors from the environment over time
periods.

The environment is partitioned with respect to regions from Π, thus ob-
taining a finite set of convex and polyhedral cells. Each robot is assumed to
have a negligible size and a simple kinematic model. Such models include fully-
actuated robots (ẋ(τ) = u(τ), where x is the position and u the control), affine
or multi-affine dynamics in specific partitioned environments whose evolution
can be abstracted to finite state representations [40, 37, 38, 41]. We require
that each robot can be kept inside each partition region when needed (by ap-
plying a control law under which the region becomes invariant for the system
model). Results from [42] can be further used for adapting control laws to real
differential-wheel driven robots (as illustrated in the attached video).

The environment partition and the robot assumptions enable us to model the
motion of each robot ri, i = 1, . . . , n by a transition system Ti =

(
Q, q0i, δi, 2

Π, γ
)

as detailed in Def. 2. The relation δi is reflexive due to above robot requirement,
and the robots are able to wait by following the self-loop in each state. Since
any two robots ri and rj are identical, δi ≡ δj , and the only difference between
models Ti and Tj is given by their initial states. For actually moving a robot
between adjacent cells, one has to apply a sequence of control laws specifically
designed for the robot model in the corresponding partition. For example, if
the robot if fully-actuated, one can use the simple strategy from [5]: the current
robot position is linked by a line segment to the middle point of the common
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facet of the current and the next cell; thus, a run of Ti corresponds to a robot
trajectory formed by connected line segments, and it can be easily followed by
a fully-actuated point robot.

A centralized architecture is assumed, in the sense that the whole team of
robots is controlled by a central unit that handles the necessary computations
and communicates with all robots at any given time. The central unit knows
the position of each robot at any given time, but it does not know which regions
of interest are appeared and which are disappeared. More specifically, when a
robot is inside the region πi it informs the central unit “I observe πi” in the
case that πi is currently visible, and it informs that “I do not see πi” otherwise.
The centralized architecture allows synchronization among robot motions, fact
that enables the construction of a model for the whole team evolving in the
environment with probabilistic information (Sec. 3.1). Thus, the team move-
ment is entirely guided by a control strategy (execution and monitoring) that
is implemented on the central unit, with the process feedback corresponding to
robot observations. Due to probabilistic regions, we can assign to a team move-
ment a probability of observing a desired sequence of regions by multiplying the
observation probabilities along runs. We are interested in computing a team
run with maximum probability for observing a sequence of visible regions.

The assumptions presented here induce conservativeness on the developed
method. The conservativeness and computational complexity of the solution
presented in Sec. 3 will be discussed in Sec. 4.

2.3 Problem statement

We aim to provide an algorithmic solution to the following problem:
Problem: Given a team of n robots as assumed in subsection 2.2, a task as

an LTL−X formula over the set Π, and the probabilities pπi
for each region

from Π, find a control strategy for the robotic team that yields the maximum
probability of satisfying the task.

Note that the LTL−X formula expresses a global mission for the whole team,
rather than specifying individual tasks for each agent. In order to simplify the
further exposition, we consider that the evolution of each robot is modeled by a
transition system as in Def. 2, in accordance with the assumptions from subsec-
tion 2.2. This is accomplished by using a triangular decomposition algorithm
[36].

The main steps of the solution we provide are presented in Sec. 3. A
discrete model for the whole team is constructed and combined with the Büchi
automaton corresponding to the LTL−X formula, and an optimization problem
is formulated and solved on the resulted automaton. The solution is projected
to robotic trajectories and a run of the Büchi automaton is used for tracking
the correctness of the execution. Based on the actual appearance of the visited
regions of interest, an execution monitoring strategy decides whether the robot
motion is continued, paused, or the solution is updated.
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3 Solution

3.1 Probabilistic abstraction of the robotic team

Definition 3 The transition system modeling the movement capabilities of the
whole team of robots and the probability of satisfying specific regions is TT =
(QT , q0T , δT ,OT , γT , ρT , ωmT ), where:

• QT = Qn is the set of states (Qn is the n-times cartesian product of Q
with itself);

• q0T = (q01, q02, . . . , q0n) ∈ QT is the initial state;

• δT ⊆ QT×QT is the transition relation, with ((q1, q2, . . . , qn), (q′1, q
′
2, . . . , q

′
n)) ∈

δT if and only if (qi, q
′
i) ∈ δi, ∀i = 1, . . . , n;

• OT = 2Π is the set of possible observations;

• γT : QT → OT is the satisfaction map, with γT ((q1, q2, . . . , qn)) =
⋃n
i=1 γ(qi);

• ρT : QT ×OT → [0, 1] is a probabilistic observation function that measures
the probability of observing certain regions at a given state, i.e., ρT (q,p) is
the probability of observing (satisfying) all and only regions from p ∈ OT
when the current state of TT is q ∈ QT . Computation of ρ is described
below (equation (2));

• ωmT : δT → N is a weighting function yielding the number of robots that
move (change their cell) during a given transition, i.e., ∀(q, q′) ∈ δT , with
q = (q1, q2, . . . , qn), q′ = (q′1, q

′
2, . . . , q

′
n), then ωmT ((q, q′)) =

∑n
i=1 |{qi} \

{q′i}|.

Informally, TT captures the possible behaviors of the whole team of n robots.
Thus, states of TT are n-tuples in which the ith element shows the location of
robot ri, i = 1, . . . , n. Transitions between states correspond to one or more
robots changing their current cell from Q. When a transition implies that more
robots change their cells, these changes are assumed to be synchronous, meaning
that the moving robots cross the borders between cells at the same time. Such a
behavior can be enforced by waiting modes enabled for robots that arrive faster
at the border of the next cell they should visit.

So far, the construction of TT corresponds to a synchronous product of n
transition systems Ti, i = 1, . . . , n, as the one used in [43]. Note that here we
do not restrict states of TT such that at most one robot can be in a cell at a
given state, nor we restrict transitions such that two robots swap their cells.
Such behaviors could lead to collisions in the case of robots with non-negligible
size, but in such situations one can assume that local rules are used for avoiding
collisions. Otherwise, restricting QT and δT such that collisions are avoided
during the planning level would add additional conservatism to the solution,
since TT would be more restrictive. In the actual situation of point robots,
collisions can be simply ignored for the sake of clarity of the high level solution.

The set of observations obviously contains any possible subset of regions
from Π that are currently appeared and visited by at least one robot. For a
given state q ∈ QT , γT (q) gives the largest set of regions of interest that can be
observed when the team is in configuration corresponding to tuple q. However,
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not all regions from γT (q) may be appeared at a given time instant, and therefore
we include map ρT for having a probabilistic measure of the actual subset of
regions from γT (q) that may be currently observed. Under these explanations
and using the probabilities (1) of regions from Π to be visible, ρT is computed
as follows, for any q ∈ QT and p ∈ OT :

ρT (q,p) =


(∏

π∈p pπ

)
·
(∏

π∈γT (q)\p(1− pπ)
)
,

if p ⊆ γT (q)
0, otherwise.

(2)

In words, the first case of (2) corresponds to the probability of observing
exactly the regions from a specific subset p of γT (q) (including case p = ∅), and
the overall probability is a product between individual probabilities of having
some regions visible and others invisible. The last case corresponds to observing
one or more regions of interest that are currently not occupied by the robots,
hence the probability is zero.

The weighting function ωmT will be used for finding - among all possible
trajectories that yield the maximum probability of satisfying the LTL−X spec-
ification - one with a minimum number of robotic movements. This will be
accomplished in subsection 3.2, and here we mention that the current definition
of ωmT can be replaced with different weighting maps, e.g. based on the expected
traveled distance when robots move between adjacent cells, or based on energy
consumed on a transition of TT .

3.2 Multi-criterion optimal solution

This subsection proposes a procedure for finding a run of TT that optimizes two
criteria: (1) it has the greatest chance of producing a word over 2Π satisfying
the LTL−X formula and (2) it minimizes the total number of robot movements
among all runs yielding the same optimum cost for criterion (1). The chance
from criterion (1) of satisfying the specification comes from the fact that ob-
servations of TT are probabilistic. Thus, optimization on criterion (1) means
maximizing the product of probabilities of observing certain sets of regions along
the run, such that the sequence of these observations satisfies the formula. Since
there may be multiple runs of TT that imply the same optimal value of crite-
rion (1), we are interested in finding one that minimizes the total number of
movements (or any other cost that can be embedded in weighting map ωmT from
subsection 3.1).

We begin by converting the imposed LTL−X specification into a Büchi au-
tomaton B =

(
S, S0, 2

Π,→B , F
)

as in Def. 1, by using an available software
tool [34]. Then, we construct a special type of product automaton between TT
and B, in which we search for an optimal run.

Let us denote by P(s→Bs′) ⊆ 2Π the set of all inputs of B that enable a
transition from s to s′, i.e. P(s→Bs′) = {p ∈ 2Π | (s,p, s′) ∈→B}.

Definition 4 The product automaton A = TT × B is constructed as follows:
A = (SA, SA0, δA, ω

p
A, ω

m
A , FA), where:

• SA = QT × S is the set of states;

• SA0 = {q0T } × S0 is the set of initial states;
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• δA ⊆ SA × SA is the transition relation, defined by: ((q, s), (q′, s′)) ∈ δA
if and only if (q, q′) ∈ δT and ∃p ∈ OT such that ρT (q,p) > 0 and
(s,p, s′) ∈→B;

• ωpA : δA → [0,∞), is a probability-based weighting function for transi-

tions of A, defined by: ωpA ((q, s), (q′, s′)) = − log
(∑

p∈P(s→Bs′)
ρT (q,p)

)
,

∀ ((q, s), (q′, s′)) ∈ δA;

• ωmA : δA → N is a movement-based weighting function for transitions of
A, defined by: ωmA ((q, s), (q′, s′)) = ωmT ((q, q′)), ∀ ((q, s), (q′, s′)) ∈ δA;

• FA = QT × F is the set of final states.

Product automaton A extends the model-checking inspired algorithms from
[3, 43] by including the available probabilistic information on region visibility
in relation δA and map ωpA. Construction of automaton A mimics the one from
[21], but adds the number of moving robots for each transition of TT in map
ωmA .

A transition in A represents a matching condition between a transition of TT
and a transition of B caused by a possible current observation of TT , as shown by
relation δA

1. Since observations of TT are probabilistic, transitions of A inherit
a probabilistic nature, in the sense that a certain transition of A is feasible (i.e.
it can be taken at the current time) if the current state of TT yields certain
observations (p from definition 4). The probability of existence for a transition
of A is captured by its cost assigned by map ωpA, which represents the chance
of being able to follow a transition in A at a certain moment, without priori
knowing the actual observation of TT at that moment. Therefore, the sum of
observation probabilities from computation of ωpA encapsulates all observations
of TT that can produce the same transition in B. A negation of logarithms of
the probability-based weights in A is performed because of the following aspect:
for a given start and goal state of A, when one finds a path that minimizes
the sum of transition costs along it (by standard graph search algorithms, e.g.
Dijkstra [44, 45]), she basically finds the path whose product of probabilities is
maximum2. The movement-based weighting function ωmA simply inherits the one
from TT , and it can be viewed as a measure of the energy spent by robots when
the team follows transitions of A. Cost function ωmA will be used for choosing a
path that minimizes the total number of movements among all possible paths
that optimize the probability-based measure, as next described.

The acceptance condition of A is formulated similar to the one of B, in
the sense that an infinite run is accepted by A if and only if it visits infinitely
often the set of final states FA. If A has at least one accepted run, than it has
an accepted run in a prefix-suffix form, consisting of a finite sequence of states
(called prefix) followed by infinite repetitions of another finite sequence (called
suffix) [32, 9].

By using graph searches, we can find in A an accepted path that has a
minimum sum of costs given by map ωpA along prefix and suffix. As noted

1An alternative (and probably more intuitive) definition of δA can use the next observation
of TT instead of the current one, while adding an initial dummy state to TT for accounting
observation of q0T .

2Multiplication is equivalent to sum of logarithms, thus minimization of
∑

i=1,2,...−log(pi)
implies the maximization of

∏
i=1,2,... pi, for any values pi ∈ (0, 1].
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above, this guarantees the maximum probability of having correct observations
in TT (observations that keep feasible the followed transitions of A). Note
that more than one graph searches are needed for finding an accepted path of
A: first, an optimum path from each initial state to each final state should
be found and stored; second, for each reachable final state an optimum path
returning to this state should be found (some final states may not have self-
loops); finally, a pair of paths from first and second steps is chosen such that
the overall cost on this prefix-suffix run is optimized. Of course, one can simply
impose different weights on prefix and suffix, for example by considering that
the suffix is infinitely repeated.

Under this optimization guided by costs from map ωpA, there may exist multi-
ple paths of A yielding the same optimal cost. By projection to states of TT , each
such path would correspond to a team movement that maximizes the chance
of yielding a sequence of observations satisfying the LTL−X formula. There-
fore, we are interested in choosing a path that minimizes the total number of
movements, i.e. that minimizes sum of costs given by ωmA while maintaining the
optimal cost given by ωpA.

Thus, we are facing the following multi-criterion optimization problem on
automaton A: “find an accepted run of A that: (1) minimizes the costs given
by ωpA and (2) among the set of all path yielding the same optimum cost from
condition (1), it minimizes the costs given by ωmA ”. We mention that it may
not be possible to solve the problem by constructing a combination between ωpA
and ωmA and using a single optimization (graph search).

Several possible solutions for solving the above problem would be:

(i) Find all paths that satisfy condition (1), and from these choose one that
satisfies condition (2);

(ii) Use a graph search to find the optimum cost from condition (1) (without
storing an optimal path), and then solve an linear programming (LP)
problem equivalent to a graph search, with cost function given by ωmA , and
with an equality condition imposing that the obtained solution has cost
with respect to ωpA equal to the optimum one from condition (1).

Both solutions are untractable due to several reasons: the first optimization
of solution (i) can yield an infinite number of paths. Although formally correct,
the implementation of the second optimization from (ii) generally fails because
the mentioned LP equality constraint yields a narrow feasible set (or even empty
due to numerical round-off errors) and the LP solvers from [46] usually return
errors on overly stringent constraints that prevent finding a starting point, or
on stalled residuals or relative error. Moreover, solutions are computationally
complex (because of the first optimization from (i) and second one from (ii),
respectively), and thus their iteration for finding prefix and suffix of a run of A
may be unfeasible.

We developed a solution by modifying the Dijkstra’s graph search [45] in
Algorithm 1. The main idea is to overload the “smaller” operator from reals
to vectors, based on the following rule: for w1, w2 ∈ R2 with wi = [cpi , c

m
i ]T ,

i = 1, 2, where cpi and cmi are real-valued costs based on probability (map
ωpA) and number of movements (map ωmA ), then w1 ≺ w2 (w1 contains better
costs than w2) if either cp1 < cp2 or cp1 = cp2 and cm1 < cm2 . Thus, priority is
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given to optimize cost yielded by the probability-based map ωpA, and movement-
based costs ωmA are used for deciding the best among intermediate runs with the
same probability. Computationally-wise, the algorithm is feasible, since it has
a polynomial complexity and it finds in a single run all optimum paths from
an initial node to all final nodes (this being a general property of Dijkstra’s
algorithm). Therefore, for finding an accepted run of A we iterate the algorithm
at most |SA0| + |FA| times (|SA0| for finding optimum prefix from each initial
state, |FA| for a suffix from each final state3).

Algorithm 1: Optimum paths from an initial state s0 of A to all final
states in FA

1 ∀w1, w2 ∈ R2
+ with wi = [cpi , c

m
i ]T , i = 1, 2:

w1 ≺ w2 ≡ (cp1 < cp2) ∨ ((cp1 = cp2) ∧ (cm1 < cm2 ))
2 cost : SA → R2, cost(s0) = [0, 0]T , cost(s) = [∞,∞]T , ∀s ∈ SA \ {s0}
3 let prev(s) undefined, ∀s ∈ SA
4 while SA 6= ∅ do
5 choose s ∈ SA s.t. cost(s) ≺ cost(s′), ∀s′ ∈ SA \ {s}
6 SA := SA \ {s}
7 for s′ ∈ SA s.t. (s, s′) ∈ δA do
8 if

(
cost(s) + [ωpA(s, s′), ωmA (s, s′)]T

)
≺ cost(s′) then

9 cost(s′) := cost(s) + [ωpA(s, s′), ωmA (s, s′)]T

10 prev(s′) := s

11 for s ∈ FA do
12 if cost(s) 6= [∞,∞]T then
13 find path from s0 to s by tracking back based on map prev
14 return cost(s) and path from s0 to s

15 else
16 final state s not accessible from s0

3.3 Execution monitoring strategy

Let us denote by runA = (q0T , s0) (q1T , s1) (q2T , s2) . . . (qsT, ss) . . . (qpT, sp) . . .
the optimum path of A obtained as described in subsection 3.2, where the suffix
is marked by bold font. Path runA is projected to the run of TT denoted
by runTT

= q0T q1T . . .qsT . . .qpT . . ., and the run of B denoted by runB =
s0 s1 . . . ss . . . sp . . .. From construction of automaton A, we have the guarantee
that runB is an accepted run of B, and thus the team run runTT

can produce
a sequence of observations (inputs to B) that satisfies the LTL−X formula. As
specified in subsection 3.2, optimization on runA guarantees the maximization
of the probability that TT produces an output word satisfying the LTL−X
formula, while minimizing the total number of robot movements (transitions
between environment regions).

3The suffix-finding procedure suffers another slight modification, since the standard Dijk-
stra algorithm would yield a path consisting only from the current final state, even if that
state does not have a self-loop.
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A straightforward projection of runTT
to individual runs in transition sys-

tems Ti, i = 1, . . . , n, yields the n robot trajectories (sequences of states in
Q). As mentioned in subsection 3.1, the n robots synchronize when following
the produced trajectories, i.e they change partition regions at the same time.
This is accomplished in the centralized architecture by waiting modes enabled
at the borders shared by adjacent regions: when a robot reaches such a border,
it stops and informs the central unit; when all moving robots (those changing
their current region) reach their corresponding borders, the central unit sends a
moving signal to all of them. The robots that do not change their region (they
wait in the same region for a definite of indefinite time) do not have to partic-
ipate to such synchronization; if they have to remain in the same region only
for a finite time (finite number of self-loops), they move to the border shared
with the next region and wait there; otherwise, they converge inside the current
region. Since the projection to runs of Ti and the mentioned synchronization
procedure method are easy enough to understand, we do not introduce more
formal notations for their description, and we focus on the synchronized team
run runTT

.
When TT follows its run, we have to check the current observation and

decide if that produces the desired transition in runB . If it does, then TT can
further follow its path, and if it doesn’t we have to decide if the path should be
readjusted or if the formula was violated. The current observation is the non-
probabilistic measure (observation) due to the robots visiting the corresponding
regions, and it can be viewed as an instance of a random variable generated
based on the probability measure on observations of TT . In the following we
give an algorithmic description of the method that tracks runTT

and runB and
updates them when necessary.

Let us denote by h ∈ OT the current observation of TT (the set of visible
regions of interest that contain the positions of mobile robots at the current time
instant). During team motion, B plays the role of a test tool for the satisfaction
of LTL−X formula. For accomplishing this, we store and update a set CB ⊆ S
containing the possible current states of B that can be reached due to the inputs
applied so far to automaton B (these inputs are observations of TT ). Initially,
CB is initialized with CB = {S0} and it is updated based on current h as follows:

CB := {s ∈ S | ∃s′ ∈ CB s.t. (s′, h, s) ∈→B} (3)

During the team movement, whenever TT changes its state, and at any
change in h, the monitoring strategy updates CB as in (3), checks which of the
following cases is true and performs the corresponding action. The execution
monitoring strategy begins with i = 0 (the robots are initially deployed in
partition cells corresponding to q0T = (q01, q02, . . . , q0n) ):

(i) if CB∩{si+2, si+3, . . . , sp} 6= ∅, then new runs in A, TT and B are searched:
consider q0T = qi T in TT , S0 = CB in B, and correspondingly update the
set of initial states SA0 of A. Search for a new optimum runA, find runTT

,
runB and individual robot runs, then restart the monitoring strategy ac-
cording to these paths;

(ii) if si+1 ∈ CB , then TT advances to the next state qi+1T ;

(iii) if si+1 /∈ CB , but si ∈ CB , then TT stays (self-loops) in qi T ;
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(iv) if si, si+1 /∈ CB , but CB 6= ∅, then the paths to be followed from now on
are modified exactly as in case (i);

(v) if CB = ∅, then stop the movement and report that the LTL−X formula
was just violated by the current observation h.

Informally, case (i) means that the current observation h produces a faster
advancement along runB and thus towards formula accomplishment. To opti-
mize team movement, new runs are computed by considering the current robot
positions as initial states in Ti, TT , and the current states from CB as initial set
in B. Case (ii) means that until now the desired run of B is produced by the
actual observation of TT . Case (iii) means that the desired run of B does not
advance, but the current observation h enables a self-loop in its actual state.
Thus, robots waits in their current regions for a change in observation of TT -
such a change will eventually appear, because runB can be produced by some
probabilistic observations along runTT

. In case (iv), the current observation h
prevented runB of being followed, but it did not block the entire evolution of
B. Therefore, we search for a different continuation of the evolution that sat-
isfies the formula. Case (v) can appear only when any feasible team trajectory
can produce (besides desired observations) some observations that are forbidden
by the LTL−X formula (i.e. any path of TT that can produce an observation
sequence satisfying the formula can also produce an observation sequence that
violates it). Without loss of generality, case (v) considers that automaton B
blocks for unfeasible inputs, rather than including an error sink state.

Examples that illustrate situations in which the above cases appear will be
included in Sec. 5. Case (iv) may appear only in specific situations, such an
exemplification being given in the next paragraph. Informally, replanning from
case (iv) is likely to be encountered when the current team deployment has more
possible observations, while the formula satisfaction imposes different further
evolutions of the system based on particular combinations of those observations.

Occurrence of Case (iv). For illustrating the necessity of case (iv) in the
monitoring strategy, let us consider an environment with four regions. When
appeared, regions π1 and π2 overlap, but they have different visibility proba-
bilities. Regions π3 and π4 are disjoint. For simplicity, a single robot is con-
sidered, with the LTL−X task ♦ (π1 ∨ π2) ∧ (¬π1Uπ3 ∨ ¬π2Uπ4). Thus, the
robot should eventually visit π1 or π2. The robot should also observe π3 or π4,
but π3 should be reached only without observing π1 until then, while π4 can be
reached if π2 were not observed. Assume that pπ1

> pπ2
and pπ3

< pπ4
. The

initial computed trajectory will first drive the robot towards the workspace area
corresponding to π1 and π2 (with the “hope” of observing the region with higher
visibility probability, π1), and after that towards π4. If the robot reaches the cell
corresponding to π1 and π2, but π1 is invisible and π2 happens to be appeared,
then case (iv) becomes active in the monitoring strategy: B reaches states that
are not in the current runB . Informally, the planned visit to π4 is not feasible
anymore and new paths runTT

and runB are computed (these will drive the
robot towards π3). Of course, the above formula would be violated (case (v)) if
π1 and π2 were both visible when the robot reaches their corresponding region.
As one can observe from this example, case (iv) can appear only for certain
specifications and environments, fact that supports our statement that it is a
rarely encountered case in the monitoring strategy. �
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We note that cases (i) and (iv) are related in the sense that they both modify
the expected way of evolving along runB , because TT outputs an observation
that has lower probability that the one(s) expected such that runB is properly
followed. In such a situation, case (i) is the effect of a “lucky” observation,
while cases (iv), (iii), (v) are produced by an “unlucky” one. In case (iv) it is
necessary to find new runs, since the actual ones cannot be further followed (see
the above example), while in case (i) one could continue with the actual runs
(as a trade off between saving computing time on the central unit and evolving
faster towards formula satisfaction). The latter situations means that case (i)
is simply removed from the monitoring strategy, and only the remaining cases
are tested. We mention that case (i) does not appear in the simplified strategy
from [21].

The execution strategy cannot yield livelock behaviors for the team motion,
because there is a strict advance along runB in cases (i) and (ii), while case (iii)
is certainly exited in finite time. Only replanning from case (iv) could induce
cyclic behaviors, but such cycles are eventually left due to the strictly positive
probability of observing the desired regions. Case (v) informs the user about
the deadlock in the robot motion.

The probability-based optimization from subsection 3.2 implies that along
the evolution case (ii) is most likely to appear, because runB is correlated with
the most likely observations in team positions along runTT

. Cases (i) or (iv)
rarely appear, and case (v) can appear only when there’s no way of satisfying the
formula while avoiding its possible violation. The waiting times from case (iii)
are also minimized by large probabilities of observing the desired outputs along
runTT

. The above cases underline the efficiency of choosing the probability-
based criterion as the primary optimization objective in Sec. 3.2, not only with
respect to formula satisfaction, but also with respect to computation complexity,
as in the frequently occurring case (ii) no additional computations are needed.

4 Conservatism and complexity

The solution we provide for targeted problem is conservative due to several
reasons.

Some sources of conservatism are induced by the assumptions from Sec. 2,
where robot collisions are ignored during trajectory construction. One way to
ensure collision free movements was mentioned after Def. 3, by removing states
and transitions in TT such that robots do not swap cells, and at most one robot
can be in a cell at any time. However, this would restrict the team motions and
may lead to loosing solutions. In future work, we intend to incorporate tech-
niques inspired from Resource allocation systems [15] such that the trajectories
found as in Sec. 3 are correctly followed. For this, inspiration can be taken
from [16], where specific Petri net models and monitoring rules are designed for
non-synchronized trajectories, such that the maximum number of robots in a
cell is limited by a desired capacity and collisions are avoided.

Other conservatism sources result from the solution we provide in Sec. 3, as
follows:

• In the finite-state team model from subsection 3.1, the probabilistic ob-
servation map takes into account only the current state. Such memoryless
probability measures are generally used in planning approaches based on
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probabilistic information. Otherwise, the construction of abstractions that
have history-dependent probabilities rather than state-dependent ones
yields models with more states even for simple scenarios [47, 48].

• While the synchronous movement of the team can be ensured by the cen-
tralized architecture, the involved waiting modes induce more communica-
tion signals and robot motions with frequent stops. A method for reducing
such synchronization moments when a team moves in a static environment
was proposed in [49], but such an approach cannot be directly used in the
current probabilistic setting.

• The first optimization criterion from subsection 3.2 relies solely on prob-
abilistic data, while the number of traversed states is accounted as the
second optimization criterion. Although it is possible to obtain a much
longer run with a good probability instead of a shorter run with a slightly
worse probability, we use this approach because of the maximum prob-
ability of satisfying the formula without the need of recomputing runs
during movement. A weighting between probability and movement mea-
sures could be used as a single optimization criterion, but finding proper
weights may be a challenging problem with a heuristic solution based on
the variation ranges of available data.

• As next detailed, the number of states in the team model increases ex-
ponentially with the number of robots, fact that prevents the method
applicability to larger robot teams.

The computational complexity of our approach mainly arises from the steps
presented in Sec. 3. If |Q| denotes the number of states of a robot model Ti,
then the team model TT has |Q|n states. The Büchi automaton B corresponding
to an LTL−X formula φ has at most |φ| · 2|φ| states 4, where |φ| denotes the
size of the formula, given by the number of temporal operators [34]. Thus,
the bottleneck of our approach is given by the number of states of the product
automaton A, SA ≤ |Q|n · |φ| ·2|φ|. For finding an optimal accepted path in this
automaton we run the modified Dijkstra’s algorithm (|SA0| + |FA|)-times and
then make |SA0| · |FA| comparisons (subsection 3.2). Each Dijkstra’s run has
the order of complexity O(|SA|2) [45] 5. From Def. 4, |SA0| < |FA| ≤ |SA|, and

thus the complexity order for finding an accepted path is O
((
|Q|n · |φ| · 2|φ|

)3)
.

The execution monitoring strategy (subsection 3.3) may require some reruns of
optimization problem from subsection 3.2, but the number of these updates
is reduced due to the maximized probability of satisfying the formula. All
the mentioned computation burden is carried out by the central unit, which
generally uses powerful computation resources, while the robots have to execute
the received moving/stopping commands and to inform the central unit of their
current positions and observed regions of interest.

The computational complexity can be reduced by following two ideas:
• First, the execution monitoring strategy triggers trajectory updates only in

cases (i) and (iv) (subsection 3.3). As mentioned, the updates from case (i) are

4For usual specifications, the number of states of B is significantly smaller than the given
upper-bound.

5Optimized Dijkstra implementations use a sorted node list and have a smaller complexity
of order O (|δA| · log(|SA|)).
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optional, since they imply robot motions for faster accepting a run in B, rather
than motion pausing and following the current run. Thus, the central unit can
begin the computation for case (i) (robot motion being paused), and during
this computation if the robots observe regions that were desired to be visible in
the current position, then the central unit interrupts case (i) and the previous
trajectories are followed. Trajectory updates from case (iv) are necessary, since
conditions triggering this case are disjoint from those triggering the other cases.
However, case (iv) rarely appears for usual specifications and environments.
• Second, the number of states of robot models Ti and of team model TT

can be greatly reduced by collapsing (fusing) into a single state from Ti the
adjacent cells from the partition that belong to the same region of interest or
that are not included in any region. Informally, in such a case any transition in
Ti changes the value of the satisfaction map γ, but it does not return a sequence
of cells to be traversed by the robot. This sequence can be found by a search
algorithm on the collapsed cells. Formally, the robot models obtained from
such collapsing are simulating quotients of Ti with respect to map γ, while the
correctness of the solution results from the so called “closeness under stuttering”
property of LTL−X [50]. However, the team trajectory cannot be optimized by
considering the number of robot movements, since map ωmT from TT becomes
irrelevant. This procedure is not formally described in the current work, but its
computation effects are mentioned in simulations from Sec. 5.

All presented algorithms were implemented in the Matlab environment [46,
31], and they include tools from [34, 36] for partitioning the environment and
for converting an LTL formula into a Büchi automaton. Simulation examples
and involved computation times are included in the next section.

5 Examples

The simulations presented in this section were created by using our freely-
downloadable software package [31]. We consider the planar environment from
Fig. 1, partitioned in 38 triangular cells denoted by q1, . . . , q38 and including
six regions of interest: Π = {π1, . . . , π6}. Each region of interest is a union of
adjacent triangular cells, as follows:

• π1 is composed by cells q4, q5, q17, q18, q20, q21, q25, q26;

• π2 is composed by cells q2, q4, q5, q14, q16, q17, q20;

• π3 is composed by cells q31 and q35;

• π4 is composed by cells q8 and q10;

• π5 is composed by cell q15;

• π6 is composed by cell q1.

The appearance and disappearance rates for each region of interest are given
in the following list, together with the probabilities of existence, computed as
in equation (1):

• λa1 = 0.3, λd1 = 0.7, pπ1
= 0.3;

• λa2 = 0.8, λd2 = 0.3, pπ2 = 0.73;
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Figure 1: Environment partitioned in triangular cells, with six regions of inter-
est. Initially, all regions are appeared, and two robots are placed in centroids
of cells q29 and q37. Region π1 is colored with red, π2 with blue, π3 with green,
π4 with cyan, π5 with magenta and π6 with grey. When both π1 and π2 are
visible, they overlap in cells q4, q5, q17, q20.

• λa3 = 0.9, λd3 = 0.1, pπ3
= 0.9;

• λa4 = 0.5, λd4 = 0.1, pπ4
= 0.83;

• λa5 = 0.5, λd5 = 0.5, pπ5 = 0.5;

• λa6 = 0.5, λd6 = 0.3, pπ6 = 0.63.

Initially, all regions are assumed to be visible, as in Fig. 1, where they are
represented with different colors. Two robots are initially deployed in centroids
of cells q29 and q37, respectively.

Both T1 and T2 have 38 states, the finite state model of the team, TT ,
has 1444 states, and these transition systems were constructed in 18 seconds
on a medium performance laptop (CoreDuo 2GHz CPU, 4GB RAM). If one
constructs models Ti and TT by collapsing adjacent cells included in the same
regions, as mentioned in Sec. 4, than T1 and T2 would each have 10 states, TT
100 states, and all would be constructed in 4 seconds.

On the environment from Fig. 1 we will illustrate various scenarios that can
be encountered when planning and moving the robots such that the chance of
satisfying an LTL formula over the regions of interest is maximized. For this, we
will first consider one formula (φ1) and we will present some possible scenarios
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that can occur due to probabilistic nature of regions’ appearance and disap-
pearance, and then we will choose another formula (φ2) for depicting additional
situations.

Example 1
We consider the LTL specification:

φ1 = �¬π3 ∧ ♦ ((π1 ∨ π2) ∧ π4 ∧ ♦ (π5 ∧ π6))

Informally, π3 should be always avoided, π4 and π1 or π2 should be eventually
occupied and then the robots should reach a position where π5 and π6 are
observed.

The procedures described in subsection 3.2 are performed for finding a team
trajectory. The Büchi automaton corresponding to φ1 has 3 states, while the
product automaton A has 4332 states and it was constructed in 6 seconds. The
multi-criterion optimization took 17 seconds 6 and, after projection to a path
in TT , the following sequence of cell pairs should be synchronously followed by
the two robots:

runTT
=

(
q29

q37

)
,

(
q38

q30

)
,

(
q36

q22

)
,

(
q34

q36

)
,

(
q13

q25

)
,

(
q10

q20

)
,(

q6

q20

)
,

(
q3

q18

)
,

(
q7

q23

)
,

(
q15
q1

)
, . . .

(4)

The suffix is marked in bold font and it has the meaning that the robots
should stop in states q15 and q1, respectively. The projection of runA to runB
is not given, because of the abstract nature of the states of B. Instead, we
informally interpret the above robotic path with respect to runB as follows:
first, the robots head towards cells q10 and q20, respectively, because in these
positions there is the best chance of observing π4 (q10 belongs to region π4),
and π1 or/and π2 (q20 belongs to both regions π1 and π2). Then, the robots
go to q15 and q1, respectively (where regions π5 and π6 can be observed). As
imposed by the formula, region π3 should not be observed, even if it were always
appeared.

The number of traversed cells is minimized due to the second optimization
criterion from subsection 3.2: e.g., the closer simplex q20 is visited instead of
farther cells q4, q5 or q17, although all of them belong to both π1 and π2.

An obtained execution is represented in the snapshots from Fig. 2. During
this execution, the execution monitoring strategy from subsection 3.3 encounters
only cases (ii) and (iii) (advancing along designated path of TT , or pausing the
movement until runB advances due to some desired observation of TT ). Thus,
Fig. 2(a) corresponds to the situation in which region π4 disappeared when the
robots are in the second marked position along their trajectories (this event is
not known to the central unit, because no robot is currently inside the area
corresponding to π4). The robots continue to move and they synchronize when
entering q38 and q30, respectively (third marked position along each trajectory).
In Fig. 2(b), region π6 disappeared and the robots continue to move towards
next cells. In Fig. 2(c), the robots reach cells q10 and q20. In this moment they
do not observe π4 and (π1 or π2), and runB cannot advance. Case (iii) from
the monitoring strategy is activated, and the robots wait until (π1 ∨ π2) ∧ π4

6If the model reduced by cell collapsing were used, the time for constructing A and finding
a path is around 1 second.
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becomes true. In the snapshot from Fig. 2(d) first π1 appeared, then π4, and
now the robots can continue their paths towards q15 and q1. In Fig. 2(e) the
robots wait for the appearance of π5 and π6 (the execution monitoring strategy
is in case (iii)). In Fig. 2(f) the formula was satisfied once π5 and π6 became
visible; the robots converge to the centroids of cells q15 and q1 and remain there
(suffix of runTT

has length one).

Example 2
For the scenario depicted in Fig. 1, we now consider the following LTL task:

φ2 = �¬π3 ∧ ♦ (π1 ∨ π2 ∨ π4) ∧ ¬ (π5 ∨ π6)U (π5 ∧ π6)

Informally, π3 should be always avoided, either of regions π1, π2, π4 should
be eventually visited, and eventually the robots should simultaneously observe
regions π5 and π6 (because the last part of the formula requires that nor π5 nor
π6 are observed until both of them are observed at the same time).

The Büchi automaton corresponding to φ2 has 4 states and the product
automaton A has 5776 states. Optimum run of A was obtained in 33 seconds,
and its projection to TT yields exactly the run from (4). Of course, runB is
different due to the different structure of B. An intuitive interpretation of runTT

is in accordance with the requirements of φ2: the robots head towards cells q10

and q20, respectively, because here they have the largest probability of observing
either one of regions π1, π2, π4. Then, they go to q15 and q1, respectively and
enter them at the same time, with the “hope” that both π5 and π6 are appeared,
such that they are simultaneously observed.

Fig. 3 shows a possible execution. In Fig. 3(a), when the robots enter q34

and q26, region π1 is appeared, so it is observed by the second robot. Therefore,
runB is advanced faster and case (i) from the monitoring strategy is active
(intuitively, the robots don’t have to go anymore to q10 and q20 for observing
π1, π2 or π4, because this part of the formula was just satisfied). A new run in
A is computed according to the current position of robots and the current state
of B. As a result, the robots should go directly to q15 and q1 on the paths shown
in Fig. 3(b). Note that valuable energy for moving the robots may be saved due
to activating case (i); however, if additional computation on the central unit is
to be avoided, case (i) can be simply ignored (as mentioned in Sec. 4) and the
robots continue their initial trajectories. It happened that both π5 and π6 were
appeared when the robots entered cells q15 and q1, and therefore the formula
is satisfied. Intermediary snapshots when regions appear and disappear are not
included, since they did not affect the evolution.

Fig. 4 shows a situation in which the formula φ is violated. The robots
evolve along paths from equation (4). It happened that π1 has not appeared
until cells q10 and q20 were reached, and thus runB was not advanced faster. In
the snapshot from Fig. 4(a), π4 is observed by the second robot and the robots
continue along the initial run of TT towards cells q15 and q1. When q15 and q1

are simultaneously reached (Fig. 4(b)), π6 is appeared but π5 is disappeared.
Case (v) becomes active, and the formula is violated (recall that the last part of
φ2 requires that none of π5 and π6 is observed until both are observed). Since
the robots cannot see the appeared or disappeared regions before entering in the
corresponding cells, there is no algorithmic method of adjusting the movement
such that the formula is satisfied in such a situation.
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 π4 dissapeared 

 synchronize when 
entering q38 and q30 

 

 π6 dissapeared 

 synchronize when 
entering q36 and q22 

(a) (b)

 

 regions of interest  
appeared and dissapeared 

during motion to q10 and q20 

 
case (iii) – wait until 
π4 and (π1 or π2)  

are observed 

 

 π1 appeared and after 
some time π4 appeared 

(c) (d)

 

 
case (iii) – wait until π5 

and π6 are observed 

 

 π5 and then π6 appeared, 
the robots converge inside q15 and q1, 

and the formula is satisfied 

(e) (f)

Figure 2: Snapshots along execution for Example 1; positions of the two robots
are marked for moments when they synchronize and when a region appears or
disappears. The execution monitoring strategy was in case (ii) in snapshots
(a), (b), (d), (f) and in case (iii) in snapshots from (c), (e). Explanations are
included in the text and briefly in the yellow callouts.
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 π1 is observed and  
case (i) becomes active 

 some regions of interest  
appeared and dissapeared 

during motion 

 

 
both π5 and π5 were appeared when 
the robots have entered q15 and q1; 

the formula is satisfied 

 new trajectories are followed 
towards q15 and q1 

(a) (b)

Figure 3: Snapshots along a possible execution for Example 2. (a) Case (i)
from the monitoring strategy becomes active and new trajectories are found in
27 seconds. (b) When the robots synchronously enter q15 and q1 both regions
π5 and π6 were appeared, and the formula is satisfied. Except for the snapshot
(a), only case (ii) from the execution monitoring strategy was active during this
execution.

 

 
π4 is observed and the 

robots continue to move 
towards q15 and q1 

 

 
π6 is observed, but π5 
is dissapeared and the 

formula is violated 

(a) (b)

Figure 4: A possible execution leading to violating the formula from Example
2. (a) Robots reach q10 and q20, π4 is observed, and the movement along initial
path is continued. (b) Case (v) from the monitoring strategy becomes active:
when the robots synchronously enter q15 and q1, only π6 is observed, and the
formula is violated.
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For supporting the rapid increase in computational demands mentioned in
Sec. 4, we have performed tests on more robots. We mention that our implemen-
tation does not include techniques that could probably optimize the construction
or computation on the involved finite state descriptions, and it may not be so
efficient as dedicated model checking software tools. Thus, for 3 robots evolv-
ing in the above environment and an LTL specification whose Büchi automaton
has 3 states, the product automaton A has order of 105 states and a solution
was obtained in more than 10 hours. By using the reduced robot models, a
solution was obtained in less than 1 minute. For a team with 4 robots and
for reduced models, the computation increased to around 3 hours. Although
the overall computation times are large, we have observed that while size of A
increased, less than 25% of the reported times was used for finding a run (this
being the part that might be reiterated). These times show that the proposed
centralized approach is applicable only for a few robots, and suggest that further
research can be conducted for developing decentralized techniques or different
abstraction models for similar problems.

A simple real-time experiment performed on the experimental platform from
[51] is annexed as a video to this work. The experiment considers one robot
and emulates the region disappearances on appearances by externally covering
or uncovering them. The task requires that the robot always avoids red regions,
first visits the green region, then the blue one. Since we cannot emulate the
appearance of a region when the robot is inside it, we use information from an
overhead video camera and pause the robot motion in the previous cell.

6 Conclusions

This work presents a method for controlling the motion of a small robotic team
based on an LTL formula over a set of regions of interest from a partitioned
environment. The regions of interest alternate between appearance and disap-
pearance based on exponential probability density functions with known rates.
For accounting this aspect, the robotic team is modeled by a finite transition
system with probabilistic observations. We adapt model checking algorithms
and graph search procedures for finding a path of the transition system that is
most likely to satisfy the formula while optimizing the traveled distance. The
robots are moved according to projections of this path. Based on the actual
appearance states of the visited regions, an execution monitoring strategy al-
ters the motion by pausing it or by updating the path to be further followed.
The method is implemented as a freely-downloadable software package [31], and
several case studies are included for supporting the developed solution.
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