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Abstract

A distributed continuous Petri net system (DCPN) is composed of

several subsystems which are interconnected through buffers that are ori-

gin and destination private (i.e., modeled by places such that its input

transitions belong to only one subsystem and its output transitions also

belong to only one subsystem). In this framework, the control problem

of driving a DCPN from an initial state to a target one is considered.

Such a control problem can be divided into two tasks: (i) computation of

a firing count vector that ensures the reachability of the target marking

in the untimed subsystem; (ii) implementation of a local control law exe-

cuting the computed firing count vector in every timed subsystem. This

work mainly focuses on the first task which is achieved by the network

of interconnected local coordinators located at subsystems. In particular,

the firing count vectors are obtained as a result of a negotiation among

those local coordinators. A distributed algorithm that implements the

negotiation performed by each coordinator is presented and it is formally

proved that the subsystems reach the target marking.

Published as:

H. Apaydin-Ozkan, C. Mahulea, J. Julvez, and M. Silva, “A Control Method for

Distributed Continuous Mono-T-Semiflow Petri nets,” International Journal of

Control, vol. 87, no. 2, pp. 223-234, 2014. DOI: 10.1080/00207179.2013.826822

∗Corresponding author is: Cristian Mahulea, Maŕıa de Luna 1, 50018 Zaragoza, Spain, tel.
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1 Introduction

A recurrent difficulty in the analysis and synthesis of populated discrete event

systems is the so called state explosion problem. This well known problem makes

the use of many analysis and verification techniques computationally prohibitive

when applied to many systems of interest in practice. One way of overcoming

such a problem is to relax the original discrete model and deal with a continuous

approximation of it. In the Petri net framework this leads to continuous Petri

nets [10, 28]. Continuous Petri nets have been used in many domains, e.g.,

manufacturing systems [19, 2, 1], traffic systems [13] or supply chains by using

hybrid extension [11]. They may be studied by means of net based structural

analysis techniques [7, 14, 26]. Many works exist in the literature dealing with

the control of continuous timed or hybrid Petri nets [19, 20, 7, 5]. In many cases,

the system is distributed and the controller cannot have access to all variables.

Thus a distributed controller must be considered. Moreover, it is frequently the

case when limited communication among controllers is available and they can

just communicate locally with their neighbors. Therefore, it is not possible to

implement a single coordinator for the whole system and local coordinators for

the different subsystems must be designed.

The main goal of this paper is to propose a control method for distributed

systems modeled by continuous Petri nets. This paper primarily focuses in

developing an algorithm that computes firing amounts for each subsystem that

ensure the global reachability of the desired target marking. Depending on the

initial and final states and the structures, the major problems that can arise are

related to the consensus that must be reached by subsystems in order to provide

enough tokens in the buffers and the global reachability of the final state.

Several approaches have been presented to model modular discrete event

dynamical systems, e.g., [31, 23, 9, 21]. In [23], the class of Deterministically

Synchronized Sequential Processes (DSSP) is proposed. In such a class, each

process is modeled by a state machine and the communicating buffers are output

private (a necessary condition to be distributable). This is different with respect

to our approach since here we deal with different structures for subsystems, and

not only the output but also the input transitions of each buffer must belong

to only one subsystem, i.e., buffers are output (input) private. The work in

[31] deals with a class of discrete nets, called Extended-Controllable-Output

(ECO) nets, whose composition retains liveness and reversibility. In contrast

to DCPN, ECO nets must by acyclic. In [9], analysis techniques that can be

carried out modularly are described. In such a work, modules can share places

and transitions, this is not allowed in our framework since the overall system is
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distributed and therefore each subsystem could be in a different location. In [21],

a particular methodology for modular modeling of manufacturing systems using

PNs is presented. The modular strategy takes into account the shared resources

and the alternative process planning, but it is not related to distributability.

There exist some works in the literature about the control of distributed

(timed) discrete event systems. For example, distributed timed automata is

defined in [16] while an optimal planning using weighted automata calculus is

presented in [12]. A supervisory control for a distributed manufacturing process

is studied by using discrete Petri nets in [8], while an architecture for distributed

implementation of Petri nets in control applications is proposed in [22]. In

[15], timed Petri nets are used for supervisory control and stability purposes.

The work in [3] is a survey on hybrid control systems and on approaches to

model hybrid systems, most of which are timed but not distributed. A synthesis

method of a coordinated control strategy for large CPN systems that can be seen

as a set of T-disjoint modules interconnected by places has been presented in

[29]. In such paper, it is required to compute the set of vertices of the reachability

set what might increase the computational complexity. This paper extends the

results presented in [4] and [6] by considering a more general framework.

The kind of systems considered in this work are composed by several con-

tinuous net subsystems that could model different parts of a plant. They are

interconnected by buffers modeled by places. These buffers contain the items

produced by a given subsystem and needed by another one. As a basic introduc-

tory example let us consider a simplified car manufacturing factory composed

by two subsystems in two different cities. The net model is given in Fig. 1.

The subsystem 1 produces car bodies (place p1) and then sends them to the

subsystem 2 (transition t3). The subsystem 1 can produce a limited number of

car bodies in parallel (the initial marking of p3). In subsystem 2, the engines

are assembled (p4) and then it is put in an intermediate deposit p5. The same

plant paints the body received from subsystem 1 in p6 and puts it in p7 to be

assembled together with the engine. The firing of t8 means the production of a

new car. We assume that subsystem 2 can produce a limited number of engines

in parallel (initial marking of p8) and can paint a limited set of car bodies in

parallel (initial marking of p9). Place bb is the buffer containing the car bodies

produced by subsystem 1 while ba is the maximum number of cars that can be

in fabrication simultaneously.

The buffers connecting subsystems are assumed to be input and output pri-

vate, i.e., given a buffer b, only one subsystem i can put tokens in b, and only

one subsystem j can remove tokens from b. We consider that each subsystem
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Figure 1: A DCPN marked graph modeling a car manufacturing plant where ba

and bb are buffer places.

k knows its structure and initial marking, and that the structure and marking

of the rest of subsytems i 6= k are unknown by subsystem k. Each subsystem

has its own goal which consists of reaching a given local target marking. Notice

that in order to reach a given target local marking by subsystem k, it might

be necessary that other subsystems produce enough tokens in its input buffers.

The method is required to drive the distributed system to a final global marking

in which all target local markings are reached.

Being the system distributed, subsystems do not have access to the state

variables of the other subsystems, and therefore it is impossible that they com-

pute global control laws to reach desired markings and a decentralized solution

should be developed. In this paper we consider a particular class of continuous

Petri nets, called mono-T-semiflow (bounded net systems with only one repet-

itive behavior) and we propose a decentralized algorithm that will be executed

by a coordinator at each subsystem. It is proved that the decentralized firing

amounts coincide with the firing amount obtained if the problem would have

been solved as centralized.

The remainder of the paper is organized as follows: Section 2 introduces

DCPN. The control problem under consideration is presented and a control

algorithm is proposed in Section 3. A case study consisting of a five Auto-

mated Guided Vehicle (AGV) system is shown in Section 4. Finally, Section 5
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summarizes the main conclusions of the work.

2 Distributed Continuous Petri nets

Definition 1. A continuous Petri net system is a pair 〈N ,m0〉, where N =

〈P, T,Pre,Post〉 is the net structure with: P and T the sets of places and

transitions; Pre,Post ∈ R
|P|×|T|
≥0 the pre and post matrices; m0 ∈ R≥0 the

initial marking.

For v ∈ P ∪ T , the sets of its input and output nodes are denoted as •v and

v•, respectively. Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the places

and transitions. Each place can contain a non-negative real number of tokens,

this number represents the marking of the place. The distribution of tokens

in places is denoted by m. A transition tj ∈ T is enabled at m if ∀pi ∈
• tj ,

m(pi) > 0 and its enabling degree is given by

enab(tj,m) = min
pi∈•tj

{

m(pi)

Pre(pi, tj)

}

(1)

which represents the maximum amount in which tj can fire at m. An enabled

transition tj can fire in any real amount α, with 0 < α ≤ enab(tj,m) leading

to a new state m′ = m+ α ·C(·, tj) where C = Post−Pre is the token flow

matrix and C(·, j) is its jth column.

Ifm is reachable fromm0 through a finite sequence σ = tj1(α1)tj2(α2) . . . tjp(αp),

the state (or fundamental) equation is satisfied: m = m0+C ·s, where s ∈ R
|T |
≥0,

sj =
∑

i=1,...,p;ji=j

αi, is the firing count vector, i.e., sj is the cumulative amount

of firings of tj in the sequence σ.

Left and right natural annullers of the token flow matrix C are called P-

semiflows (denoted by y) and T-semiflows (denoted by x), respectively. If

∃ y > 0, y ·C = 0, then the net is said to be conservative. If ∃ x > 0, C · x = 0

it is said to be consistent. Intuitively, a T-semiflow corresponds to a potential

repetitive behavior of the system, i.e., if it is executed from a given marking m

the same marking m is reached. The support of a vector v is the set of nonzero

components. A semiflow v is said to be minimal when its support is not a

proper superset of any other and the greatest common divisor of its elements is

one.

Definition 2 (MTS ). A (continuous) Petri net is mono T-semiflow (MTS)

if it is conservative, consistent and has only one minimal T-semiflow.

Definition 3 (DCPN ). A distributed (continuous) Petri net system is a (con-

tinuous) Petri net composed of: (i) a set of (continuous) Petri net systems called
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subsystems; (ii) a set of buffers modeled as places that connect subsystems; (iii)

each buffer is input and output private, i.e., given a buffer b, only one subsys-

tem i can put tokens in b, and only one subsystem j can remove tokens from

b.

Let K denote the set of subsystems of a given DCPN. The set of places,

transitions and token flow matrix of subsystem k ∈ K is denoted by P k, T k

and Ck = Postk −Prek ∈ R
|Pk|×|Tk|, respectively. The partition into disjoint

subsystems leads to P k ∩ P l = ∅ and T k ∩ T l = ∅, ∀k, l ∈ K, k 6= l. The

directional connection between subsystems is provided by a set of places, B,

called buffers. In particular, the directional connection from subsystem k to

l is provided by a set of places denoted by B(k,l), whose input transitions are

contained only in subsystem k and output transitions are contained only in

subsystem l, i.e., B(k,l) = {b ∈ P |•b ∈ T k, b• ∈ T l, b 6∈ P q, ∀q ∈ K} for every

k, l ∈ K, k 6= l, and B(l,l) = ∅ for every l ∈ K.

Note that b ∈ B(k,l) is input buffer of subsystem l and output buffer of

subsystem k. The set of all output buffers of subsystem k is denoted by B(k,∗),

i.e., B(k,∗) =
⋃

l∈K B(k,l), and the set of all input buffers of subsystem k is

denoted by B(∗,k), i.e., B(∗,k) =
⋃

l∈K B(l,k). The marking vector of subsystem

k is denoted by m(P k) ∈ R
|Pk|
≥0 . This vector is called local marking of subsystem

k. In contrast, we call the global marking the vector m containing all local

markings and the markings of the buffer places.

A firing count vector σk ∈ R
|Tk|
≥0 is locally fireable if there exists a fireable

sequence σk in the PN 〈P k, T k,Postk,Prek〉 with initial marking m0(P
k)

whose firing count vector is σk. A firing count vector σ ∈ R
|T |
≥0 is globally fireable

if there exists a fireable sequence σ in the PN 〈P, T,Post,Pre〉 with initial

marking m0 whose firing count vector is σ. We say that marking m(P k) ∈

R
|Pk|
≥0 is locally reachable if there exists a locally fireable firing count vector

σk ∈ R
|Tk|
≥0 such that m(P k) = m0(P

k) + Ck · σk. A marking m ∈ R
|P |
≥0 is

globally reachable if there exists a globally fireable firing count vector σ ∈ R
|T |
≥0

such that m = m0 +C · σ.

3 Design of a distributed coordinator for DCPN

3.1 Control Architecture

Our control problem aims at reaching a particular target marking mf at each

subsystem. Depending on the interpretation given to the buffers, their desired

final markings can also be specified or not. Here, it is considered that the final
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marking of buffers is not relevant, being any non-negative value appropriate as

final marking (if final markings of the buffers are required the method can be

easily extended by considering that the output buffers are part of subsystems).

In some practical applications, it is useful to specify a minimum number of

times a given activity (transition) has to be executed. In order to consider this,

the control problem is enriched by considering that some transitions must fire a

number of times greater than a given value. For this purpose we define a vector

z̄ ≥ 0, where z̄(ti) is the minimum quantity of required firings of ti.

In contrast to a centralized control, each subsystem is equipped with its own

coordinator that computes the firing count vector that drives the subsystem

to the target marking. We naturally assume that each subsystem knows only

its marking and the marking of its input buffers. The marking of the other

subsystems and their output buffers are unknown.

flowK
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Controller 1

Subsystem 1

Local
Coordinator 1

s1

flow1

Controller layer

Coordinator layer

(time−independent)

Distributed System

Local
Controller 2

Local
Controller K

........

........

........
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Subsystem 2

Local
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s2

flow2

Subsystem K

Local
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Figure 2: Sketch of the control approach for DCPN. Coordination layer on the

top, controller layer in the middle and subsystems modeled as Petri nets and

connected by buffers at the bottom.

Fig. 2 sketches the proposed architecture of the control for the DCPN. The

control architecture mainly consists of two layers: the coordinator and the con-

troller layers. According to this architecture, a local coordinator and a local

controller is associated to each subsystem. The coordinator layer is respon-

sible for computing feasible firing count vectors whose implementation should

drive the subsystems to the specified target markings. The controller layer im-

plements these firing count vectors for a given time interpretation, i.e., firing

semantics. For such purpose there exist several strategies, e.g., an ON-OFF

controller [30], model predictive control [20], etc. This work focuses on the co-

ordinator layer and proposes an iterative technique to compute the mentioned
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firing count vectors in the untimed systems. In section 4 we illustrate how the

implementation of the control, once the firing count vector is computed, can be

carried out with an ON-OFF strategy.

Since each local coordinator will compute its own firing count vector, in

order to obtain a firing vector that permits the global reachability of the desired

marking, some interchange of information, i.e., negotiation, between subsystems

must be considered. Obviously, it is desirable that coordinators exchange as few

information as possible. The underlying idea of the strategy is to design a local

coordinator for each subsystem. Each coordinator will compute a firing count

vector independently of the time interpretation to reach the target state of its

subsystem, and will ask the other coordinators to produce enough resources in

the buffers to execute its control actions.

There are two basic problems that must be addressed when designing local

coordinators for the described framework: (i) given that the subsystems are

interconnected, they may require resources, i.e., tokens, to be available in the

communication buffers to reach the target marking; (ii) another problem that

can appear is the impossibility of reaching the target marking due to the system

structure or the initial marking of the buffers.

Example 3.1. Consider the DCPN in Fig. 1 with m0(P
1) = [0 0 3]T for

subsystem 1, m0(P
2) = [0 0 0 0 2 2]T for subsystem 2, m0(ba) = 1, m0(bb) = 0

and let mf (P
1) = [0 0 3]T , mf (P

2) = [0 0 1 0 2 1]T be the target markings of

each subsystem. Let the firing count vectors of subsystem 1 and 2 be denoted as

s1 and s2 respectively.

A coordinator for the second subsystem could compute s2(t6) = 1, s2(t4) =

s2(t5) = s2(t7) = s2(t8) = 0 so that the subsystem reaches the target marking.

Given that the initial and target markings of subsystem 1 are the same, a co-

ordinator for that subsystem could yield: s1(t1) = s1(t2) = s1(t3) = 0. Since

m0(bb) = 0, transition t6 cannot fire unless t3 fires. Unfortunately, according

to the computed controls, t3 will not fire (s1(t3) = 0). Hence, these controls are

not valid to reach the desired target marking of subsystem 2. In order to solve

this situation, subsystem 2 may ask subsystem 1 to put enough tokens in bb.

This can be achieved easily by firing t3. However, this will imply that subsystem

1 moves away from its desired target marking.

Consider now m0(ba) = m0(bb) = 0 and the same initial and target markings

for subsystems. In this case, the target markings are locally reachable but not

globally reachable. �

Our control objective is not only to reach the desired target marking at each

subsystem, but also to minimize the overall number of times the transitions are
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fired. This implies minimum movement of tokens from and to buffer places.

3.2 Distributed coordinator

This subsection is devoted to the design of a distributed coordinator for a DCPN.

We first present the algorithm associated to the local coordinator of each sub-

system and then prove its correctness. The control algorithm applies to those

DCPN systems satisfying the following assumptions:

(A1) The DCPN is composed of |K| MTS disjoint subsystems. The minimal

T-semiflows are denoted by xk, k ∈ {1, 2, ..., |K|}.

(A2) The overall system is MTS.

(A3) Every transition is fireable from m0.

The first assumption reduces the class of DCPN to those systems having

MTS subsystems, i.e., consistent and conservative nets with one T-semiflow.

Notice that consistency and conservativeness are necessary and sometimes suffi-

cient conditions for the often desired properties of structural liveness and bound-

edness [24, 25]. Thus, in addition to these properties, systems are just assumed

to have only one minimal T-semiflow. Notice that the class of MTS net systems

subsumes marked graph systems (PN in which any place has only one input

and one output transition), weighted-T systems (marked graph with weighted

arcs), structural persistent PN (all places has at most only one output transi-

tions). Moreover, because the marked graph class is included in MTS systems,

all systems linearly modeled in (max,+) algebra can be modeled as MTS net

systems.

Assumption (A2) implies that the overall system is MTS, since this is a

structural property, it just needs to be checked once at the beginning of the

process. The last assumption ensures that each transition can eventually fire.

One way of easily checking this assumption is by solving a linear programming

problem (LPP) that looks for initially empty siphons [27]. Together with (A2)

it guarantees the absence of spurious solutions in the continuous subsystem [24].

The coordinator algorithm that will be executed in each subsystem sep-

arately is given in Alg. 3.3. Each coordinator executes asynchronously and

communicates with neighbor subsystems by means of communication channels.

The information sent through these channels is used to meet an agreement be-

tween coordinators and ensure that the final marking is globally reached. Each

coordinator has a queue where the request from neighbor subsystems are kept.

In each iteration one element of the queue is processed, if the queue is empty
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the coordinator waits until a request is queued. This represent an implicit syn-

chronization among subsystems avoiding the need of a global clock.

Example 3.2. Let us consider again the net system in Fig. 1 used also in

Ex. 3.1. Assume for the first subsystem the same initial and desired markings:

m0(P
1) = mf (P

1) = [0 0 3]T while for the second one: m0(P
2) = [0 0 0 0 2 2]T

and mf (P
2) = [0 0 1 0 2 1]T . For the buffers, let us assume m0(ba) = 1,

m0(bb) = 0 and let z̄ = 0, i.e., no minimum firing amount is required.

Let us compute a firing vector in the global system to reach the final mark-

ing assuming mf (ba) = mf (bb) = 0. Being the system mono-T-semiflow, the

minimal firing count vector is unique and it is obtained by solving: min 1T ·sG

subject to mf = m0 +C · sG, sG ≥ 0. Being the net MTS, the unique solution

of this LPP is

sG = [1 1 1 | 0 0 1 0 0]T ,

where the first three components correspond to the transitions belonging to the

subsystem 1 and the last five ones to transitions belonging to the subsystem 2.

Observe also that the firing vectors correspond to firing sequences that can be

locally fired.

Now, let us compute local control laws in each subsystem. For the first one,

since m0(P
1) = mf (P

1), the minimum firing vector is unique and equal to

s1 = [0 0 0]T , i.e., not firing any transition. For the second subsystem, it is

easy to observe that the minimum firing vector is s2 = [0 0 1 0 0]T , i.e., firing

t6 in an amount equal to 1.

Observe that s2 is exactly equal to the projection of sG to the set of tran-

sitions of subsystem 2 while s1 is not. However, it is always possible to fire

once the T-semiflow of subsystem 1 (equal to the vector of ones). Because a

T-semiflow corresponds to a repetitive behavior, adding to any firing vector the

T-semiflow, the same final marking is obtained. The idea of Alg. 3.3 is to en-

sure the firing of the T-semiflows of the subsystems (if it is necessary) such that

if the local laws computed are put together, the minimum firing vector of global

system is obtained. Hence, the global marking will be reached. This consensus

between subsystems is obtained by using the marking of buffers since the firing of

the T-semiflow produces some tokens in the output buffers. Being the net mono-

T-semiflow, there exists only one way to produce tokens in the output buffers

without modifying the target subsystem marking, i.e., firing the T-semiflow.

The input parameters of the algorithm are: the token flow matrix, initial

and target markings, input and output buffers, their initial markings and the

minimum quantity of firing required for each transition (denoted by z̄ ≥ 0, where
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Algorithm 3.3. [Distributed coordinator of subsystem k].

Input: Ck,m0(P
k),mf (P

k), B(k,∗), B(∗,k), m0(B
(k,∗)), z̄(T k) ≥ 0

Output: firing count vector s

1. Solve
min 1T · z

s.t. mf (P
k)−m0(P

k) = Ck · z

z ≥ z̄(T k)

(2)

2. For Iteration=1 to |K| − 1 do

(a) For every p ∈ B(∗,k) calculate qreqp = (
∑

t∈p• Pre(p, t) ·z(t))−m0(p)

(b) For all p ∈ B(∗,k) send qreqp to the connected subsystem

(c) For all p ∈ B(k,∗) receive rreqp from the connected subsystem

(d) For all p ∈ B(k,∗) calculate hp = (
∑

t∈•p Post(p, t) · z(t))− rreqp

(e) If minp∈B(k,∗){hp} < 0 then solve

min 1T · s

s.t. mf (P
k)−m0(P

k) = Ck · s
(

∑

t∈•p Post(p, t) · s(t)
)

≥ rreqp , ∀p ∈ B(k,∗)

s ≥ z̄(T k)

(3)

Else s = z

End If

(f) z = s

End For

3. return s
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z̄(ti) is the minimum quantity of required firings of ti). In step 1, each subsystem

computes the firing count vector z required to reach its target marking without

taking into account the marking of the buffers, this step is carried out by means

of the LPP (2).

Step 2 implements a loop executed |K| − 1 times, where |K| is the number

of subsystems. Step 2.a) computes the amounts of tokens qreqp to be produced

in each input buffer p in order to be able to fire z. The connected subsystems

send information about the amounts of required tokens qreqp in step 2.b). This

information is sent through communication channels and remains queued until

it is got by the receiver. In step 2.c), each subsystem gets information from the

communication channels about the amount of tokens it has to produce in its

output buffers. The receive command in step 2.c) is understood as a blocking

instruction, i.e., the algorithm is not executed further until the required amount

of tokens is available in all the incoming communication channels. This ensures

that all requests are properly processed. Step 2.d computes the number of

tokens that would remain in each output buffer if z was applied. If this value

is negative, more tokens must be produced in the output buffers, and therefore

the firing count vector must be recomputed. This re-computation is achieved

in step 2.e) using LPP (3). Observe that comparing with LPP (2) of step 1 as

many constraints as there are output buffers are added in order to ensure that

enough tokens are produced in the output buffers.

Observe that in general, the longest path between a couple of subsystems is

less than or equal to |K| − 1. Hence, the number of iterations that the iterative

algorithm must perform is |K| − 1. In each iteration, each local coordinator

solves a LPP (3) for which there exist polynomial time algorithms. Because

initially, LPP (2) is solved by each subsystem, the maximum number of LPP

solved is |K|2. Therefore, the complexity of the algorithm is polynomial in the

number of subsystems. After the execution of the algorithm, if one hp is still

negative then the desired marking is not globally reachable.

In the following we will prove the correctness of the algorithm.

Lemma 3.4. Let 〈N ,m0〉 be a MTS system and mf a reachable marking.

Then, the LPP:

min 1T · σ

s.t. mf = m0 +C · σ

σ ≥ z̄

(4)

has a unique solution, and there exists t such that σ(t) = z̄(t).

Proof. Let us show that the constraints of the LPP are feasible. The first

constraint is the state equation which is a necessary condition for reachability.
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The second constraint imposes a minimum number of firings of transitions,

this number can always be satisfied by firing the unique minimal T-semiflow

as many times as neeeded. On the other hand, assume that the LPP has two

solutions σa and σb, then, mf = m0+C ·σa and mf = m0+C ·σb, therefore

C · (σa − σb) = 0 and hence (σa − σb) is a T-semiflow. Given that the system

is MTS, it holds that there exists a real γ 6= 0 such that σa = σb + γ · x where

x is the T-semiflow. Thus, either σa or σb is not minimizing the objective

function.

Lemma 3.5. Let 〈N ,m0〉 be a DCPN satisfying assumptions (A1), (A2) and

(A3) and mf be the target marking of subsystems. For the following LPP:

min 1T · σ

s.t. v = m0 +C · σ

v(p) = mf (p), ∀ p ∈ P i, i ∈ {1, . . . , |K|}

v(p) ≥ 0, ∀ p ∈ B

σ ≥ z̄

(5)

it holds that: a) if mf is not reachable then (5) is not feasible; b) if mf is

reachable then (5) is feasible and has a unique solution.

Proof. a) Given that the system is consistent and every transition is assumed

to be fireable, the state equation of the continuous net system does not contain

spurious solutions, i.e., it represents a necessary and sufficient condition for

reachability [24]. Hence, if mf is not reachable then the first constraint of the

LPP is not feasible.

b) Since every subsystem is MTS, LPP (5) is equivalent to:

min
∑|K|

i=1 αi

s.t. v = m0 +C · σ

σ = [σ1 + α1 · x1 σ2 + α2 · x2 . . .]

v(p) = mf (p), ∀ p ∈ P k

v(p) ≥ 0, ∀ p ∈ B

σ ≥ z̄

(6)

where vectors σi are obtained from the solution of LPP (4) applied to each

subsystem i. LPP is feasible given that mf is reachable and the system is con-

sistent and the transitions fireable. Let us see that there exists i ∈ {1, . . . , |K|}

such that αi = 0. Assume that αi > 0 for every i ∈ {1, . . . , |K|}, then there

would exist σb = σ−ρ ·x with ρ > 0 and x the minimal T-semiflow of the whole

system (which is unique and necessarily exists due to assumption (A2)) that is

also solution of (6). This would imply that σ is not giving the minimum of the

13



objective function. The interpretation αi = 0 is that subsystem i does not have

to produce tokens in its output buffers. Notice that the set of such subsystems

just depends on m0, mf and z̄. The same reasoning can be applied to subsys-

tems having a positive αi, those subsystems will fire in the minimum amount

in order to satisfy the constraints being that amount depending exclusively on

m0, mf and z̄. This implies that the solution is necessarily unique.

Notice that, according to the previous Lemma, reachability of mf is a neces-

sary and sufficient condition for the feasibility of LPP (5). Moreover, if LPP (5)

is feasible, the solution is unique.

Theorem 3.6. Let 〈N ,m0〉 be a DCPN satisfying assumptions (A1), (A2) and

(A3) and mf a reachable global marking of subsystems. The firing count vector

computed by Alg. 3.3 is equal to the solution of LPP (5).

Proof. At each iteration one firing count vector per subsystem is obtained. No-

tice that since subsystems are MTS, in each iteration the initial firing count vec-

tor zi is modified by adding a given amount of the T-semiflow. We can express

the global vector at the end of iteration j as σj = [z1 + β
j
1 ·x1 z2 + β

j
2 ·x2 . . .],

where xi is the unique minimal T-semiflow of subsystem i. Observe that if

σ0 = [z1 z2 . . .] is used in the state equation, the marking of the subsystems

will be equal to the final marking but there could be negative markings at

buffers. We will show that after each iteration the output buffers of at least one

subsystems will be non-negative until the end of the procedure.

Let us consider the solution of LPP (6) and the resulting firing count vector:

[σ1 + α1 · x1 σ2 + α2 · x2 . . .]. Let S0 be the set of subsystems k such that

αk = 0. According to Lemma 3.5, S0 6= ∅. Let us assume that there exists an

iteration h such that one subsystem in S0 is requested to recompute its local

firing count vector. This would imply a circular dependence of the markings of

the involved buffer places. Notice that the global system is conservative (due to

assumption (A2)) and therefore there exists a P-semiflow containing such places.

Hence, this would result in the non-reachability of the final marking. This is a

contradiction of our hypothesis. Therefore, the subsystems in S0 compute their

local control law in step 1) of the algorithm.

Let us define O1 = K \S0. If O1 = ∅ the theorem trivially holds. Otherwise,

by applying a similar reasoning, it can be proved that there exists a subsystem

in O1 such that their output buffers are greater than or equal to zero for every

σi, i > 1. Denote by S1 the set of subsystems that do not have to recompute

after the first iteration.

14



The same reasoning can be applied to O2 = K \ (S0 ∪ S1), O3 = K \

(S0 ∪ S1 ∪ S2), . . ., implying that at most |K| − 1 iterations are sufficient to

ensure that no subsystem has to recompute.

3.3 On the distributed and centralized approaches

In this subsection we discuss some properties of the distributed implementation

proposed in the previous subsections with respect to a centralized method.

Let us observe that a centralized method requires first the computation of a

globally fireable firing count vector. This can be done by using an LPP having

constraints which depend on the global PN structure and on the global marking,

and a number of variables equal to |P | + |T |. The computation complexity of

the distributed approach, based on the iterative algorithm, requires in the worst

case |K| − 1 iterations, in each iteration each subsystem k might need to solve

an LPP with a number of variables equal to |P k| + |T k|. Although, it is not

easy to compare the computation complexity of both methods, in many cases

is preferable to compute many small LPP instead of a bigger one. Moreover, in

the case of a distributed approach, these small LPP could be solved in parallel

by each subsystem.

One of the most important advantages of the distributed approach appears

when a time interpretation is considered. In order to apply the local control

laws it is not necessary to coordinate the full set of states (global marking of

the system). This opens the possibility to design independently controllers for

each subsystem. And thus, each controller could optimize different objective

functions. Moreover, in many practical situations, it is not possible to have a

global view (structure and state) of the system making a centralized controller

infeasible.

4 Case study

We consider the AGV system taken from [17] as a case study. This system

describes a factory floor which consists of three workstations which operate

on parts, two input stations, one output station and five AGVs which move

parts from one station to another. A Petri net model is presented in [18] but

there, the communication between modules is done via common transitions. In

order to apply our method we need communication through buffers. We can

simply transform the common transitions to buffers by following the scheme in

Fig 1.4 (d) of [25], i.e., a master/slave structure, leading to the DCPN model

in Fig. 3. Tokens in workstations represent available workers and we assume
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Figure 3: A marked graph DCPN model for 5 AGVs taken from [17]. Buffers

are places c(i,j).
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for workstations 1 and 3 only one worker and two workers for workstation 2

(initially, one worker is in p56 and one worker in p59). Additionally, the number

of tokens in the part corresponding to an AGV represents its capacity. We

assume capacity 10 for each AGV.

4.1 Local coordinators

We want to compute the firing vectors for each subsystem to produce at least

20 final products at the output. This implies the firing of transition t111 at least

in an amount equal to 20, i.e., z̄(T 11) = [20 0 0]T .

Let us consider the same initial and desired state for input and output sta-

tions and workstations. For the input and output stations, we assume that they

are IDLE being ready to provide a raw material or accept a final product, i.e.,

m0(p
1
1) = mf (p

1
1) = 1, m0(p

9
1) = mf (p

9
1) = 1, m0(p

11
1 ) = mf (p

11
1 ) = 1. For

workers we assume the following initial/final distribution: m0(p
3
6) = mf (p

3
6) =

m0(p
5
6) = mf (p

5
6) = m0(p

5
9) = mf (p

5
9) = 1 and m0(p

7
1) = mf (p

7
1) = 1.

For the AGV, we consider the following initial states: AGV 1: m0(p
2
3) = 6,

m0(p
2
4) = 4; AGV 2: m0(p

4
1) = 3, m0(p

4
6) = 7; AGV 3: m0(p

6
1) = 1, m0(p

6
6) =

9; AGV 4: m0(p
8
7) = 8, m0(p

8
8) = 2; AGV 5: m0(p

10
8 ) = 10. At the final state

we require: AGV 1: mf (p
2
3) = 10; AGV 2: mf (p

4
6) = 10; AGV 3: mf (p

6
6) = 10;

AGV 4: mf (p
8
7) = 8, mf (p

8
1) = 2; AGV 5: mf (p

10
8 ) = 10.

Each subsystem, as well as the global PN system, is MTS (in fact, it is a

marked graph), being the unique minimal T-semiflow equal to 1. This means

that for each subsystem, if all transitions are fired in the same quantity g, the

local initial marking is recovered. This can be interpreted as the production and

consumption of g items. Let us apply Alg. 3.3 to compute (for each subsystem)

the firing count vector driving the subsystem from its initial state to the final

one ensuring the global reachability in all subsystems. Initially, each subsystem

solves LPP (2) and the following firing count vectors are obtained:

• z1 = [0 0 0]T ;

• z2 = [4 4 0 0 0 4]T ;

• z3 = [0 0 0 0 0 0]T ;

• z4 = [0 0 3 3 0 3]T ;

• z5 = [0 0 0 0 0 0 0 0]T ;

• z6 = [0 0 0 0 1 1 1 1 0 1]T ;

• z7 = [0 0 0 0 0 0]T ;

17



• z8 = [0 0 0 0 0 0 0 0 0 0 0 0 0 2]T ;

• z9 = [0 0 0]T ;

• z10 = [0 0 0 0 0 0 0 0]T ;

• z11 = [20 20 20]T .

Since the DCPN has 11 subsystems, Alg. 3.3 performs 10 iterations.

According to the firing vector ensuring the reachability of the global marking,

the subsystems can be split into sets according to the quantity they have to

fire their local T-semiflow (see the proof of Theorem 3.6). In this case, S0 =

{Σ11}, S1 = {Σ10}, S2 = {Σ5}, S3 = {Σ4,Σ6}, S4 = {Σ3,Σ7}, S5 = {Σ2,Σ8},

S6 = {Σ9,Σ1}. Therefore, after the first computation, Σ11 computes its final

control law, i.e., z11 will not change during the iterations. Notice that, since

the required number of final product is 20 and no intermediate products are

initially available in Σ11, the T-semiflow of the subsystem must fire 20 times.

Since, S1 = {Σ10}, after the first iteration, the subsystem Σ10 computes its

final firing vector. In particular, the following vector is obtained: z10+20 ·1 by

solving LPP (3). Again, there are no intermediate products at the initial state

of Σ10.

In the second iteration, the information that 20 final products must be man-

ufactured arrives to Σ5 that computes its final firing vector in order to satisfied

the buffer requirements. Since, Σ5 is also connected with Σ4 and Σ6, in the third

iteration, these subsystems receive the final buffer requirements. According to

the initial and final states of the AGV of subsystem Σ4, the T-semiflow of this

subsystem must fire 17 times. Therefore, the final vector is z4 + 17 · 1. For Σ6,

the values of the initial and final states yield a vector z6+19 ·1. This processes

repeats and the particular final vector of each subsystem can be obtained from

the number of times T-semiflows are fired (these numbers are given in Table 1).

For this final marking, the set of subsystems has been dived into seven

subsets, implying a number of six iterations of the algorithm in order to reach

an agreement. However, this partition is depending on the initial and final

markings and in general, the number of necessary iteration is not not six but

upper bounded by 10 as it is proved in Theorem 3.6.

4.2 Local controllers

Let us consider now a time interpretation, in particular infinite server semantics

[26]. In this case, we assign to each transition tj a firing rate λj and the
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Iteration Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10 Σ11

1 0 0 4 0 3 0 2 0 0 20 20

2 0 0 4 4 20 2 2 0 0 20 20

3 0 0 4 17 20 19 2 0 0 20 20

4 0 0 17 17 20 19 19 0 0 20 20

5 0 13 17 17 20 19 19 17 0 20 20

6− 10 13 13 17 17 20 19 19 17 17 20 20

Table 1: Execution of Alg. 3.3 on subsystems of DCPN in Fig. 3. Observe that

from the sixth iteration there is no update.

instantaneous firing flow of tj at a marking m is given by

fj = λj · enab(tj ,m), (7)

where enab(tj,m) is the enabling degree of transition tj given in eq. (1).

If the net system is subject to external control actions, the only admissible

control law consists in slowing down the (maximal) firing flow of transitions

(defined for the uncontrolled systems as in eq. (7)). This implies that the con-

trolled flow of the system is: w(τ) = f(τ) − u(τ), with 0 ≤ u(τ) ≤ f (τ). The

overall behavior of the system is ruled by: ṁ = C · (f (τ)− u(τ)).

Once a server semantics is chosen, we can fix a control goal on the dynamic

subsystems. For example, a minimum time control goal for this system leads to

an ONOFF strategy for which every transition is fired as fast as possible at any

moment until the required minimal firing count is reached (for more details see

[30]).

Figures 4(a) and 4(a) show the time trajectories of places c(1,2), p31 and

p23 and when an ON-OFF control strategy is applied to the subsystems using

the computed firing count vectors and all firing rates of transitions are 1. We

assume that the subsystem Σ2 is applying its corresponding control law 2 time

units later than subsystem Σ1. Notice that during the time interval 10 to 52

approximatively, the markings remain constant so that subsystems fire their T-

semiflow 13 times. Finally, around 65 time units, both subsystems reach their

final markings.

5 Conclusions

This paper studies the control of distributed continuous Petri net systems. Fol-

lowing a Divide & Conquer approach, a two level solution is proposed. The
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first level corresponds to the untimed distributed system while the second level

corresponds to the timed system. This paper has focused on the first level.

Each disjoint subsystem is modeled as a subnet, and the communication

among subsystems is achieved by means of buffers. The approach developed

here is based on the design of a set of local coordinators (one per subsystem)

that negotiates with its neighbor coordinators to meet an agreement in order to

reach the target markings. It is proved that, under certain assumptions on the

system, the proposed algorithm always yields an appropriate firing count vector.

This firing amount is equal to the global firing vector that would have been

obtained by solving the reachability problem on the overall system. The number

of iterations of the algorithm is equal to the number of subsystems minus one

being the complexity of the operations in the loop polynomial. The procedure

assumes no time interpretation and therefore it can be potentially applied to

timed systems with any firing semantics and control goals, e.g., minimum time,

minimum quadratic cost.
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