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Abstract

This paper presents a procedure for creating a probabilistic finite-state model
for mobile robots and for finding a sequence of controllers ensuring the highest
probability for reaching some desired regions. The approach starts by using re-
sults for controlling affine systems in simpliceal partitions, and then it creates a
finite-state representation with history-based probabilities on transitions. This rep-
resentation is embedded into a Petri Net model with probabilistic costs on transi-
tions, and a highest probability path to reach a set of target regions is found. An
online supervising procedure updates the paths whenever a robot deviates from the
intended trajectory. The proposed probabilistic framework may prove suitable for
controlling mobile robots based on more complex specifications.
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1 INTRODUCTION
Planning and controlling mobile robots is a research area that continues to receive a
lot of attention [2, 26]. An intensively studied problem in this area is the navigation of
a mobile robot, where a control strategy should be automatically generated such that
the robot reaches a target position without colliding with obstacles. Some solutions
proposed for this problem directly work in a continuous state space (e.g. navigation
and potential functions), while others abstract the initial problem to a finite-state one
and find a solution by a search on a graph (e.g. cell decomposition methods) [2].

The latter methods were successfully tailored such that more complicated problems
can be solved, where the specification is close to natural language and it is given as a
formula combining temporal and logic operators [32, 9, 20]. However, most of these
approaches are conservative mainly because of the abstraction to a finite-state (or dis-
crete) problem, as described below. The main idea is to partition the environment into
a set of cells (regions) having the same geometrical shape, and then to construct and
to reason on a finite-state representation in form of a graph or of a transition system.
In this finite representation a node or state corresponds to a region from the partition,
and the edges between nodes are added based on adjacency and on the existence of
continuous controllers steering the robot from one region to another, independent of
the initial position of the robot in the first region. Most of the approaches based on this
abstraction process are applicable to mobile robots with specific dynamics, for which
such continuous controllers can be easily designed, e.g. affine dynamics in simpliceal
or polytopal partitions, and multiaffine dynamics in rectangular partitions [13, 1]. The
approaches become conservative because the controllers have to correctly steer any
initiating trajectory from a region, and this steering may not be possible for the whole
region, but only for a subset. Therefore, less conservative approaches can be designed
for reachability analysis or for control with the goal of avoiding certain sets, rather than
visiting them. Thus, some works design refining procedures for finding such subsets
[21], but in such cases uncontrolled dynamics are assumed and the computational com-
plexity increases because of the great number of obtained regions. Other works design
more relaxed controllers that can steer trajectories from a region to a set of neighboring
regions [12], and then use a nondeterministic abstraction (with worst case scenario on
possible transitions) when searching for a solution on the finite-state abstraction.

This paper addresses the navigation problem of a team of mobile robots in a parti-
tioned environment, with the simple tasks of reaching a set of target regions by starting
from a set of given initial regions. The robots are assumed to have a negligible size,
and they have affine dynamics with bounded control inputs. Obstacles can be easily
avoided using the proposed approach. The problem we solve belongs to a class of
multi-robot task allocation problems [11], and its usefulness follows from its possible
applicability in rescue scenarios, resource gathering or resource allocation tasks.

The first main result is obtaining a probabilistic finite-state representation that al-
lows a computationally attractive solution which is less conservative than using sim-
pler controllers from [13] or controllers from [12] and a nondeterministic abstraction.
Thus, when constructing the finite-state representation, controllers steering trajectories
between adjacent regions are designed based on the results in [13, 12] and probabilities
are assigned to every edge of the abstraction. Whenever there exists a control law as in
[13] driving all trajectories from one region to an adjacent one, probability 1 is added
to the corresponding transition. When such a controller does not exist, less restric-
tive controllers to set of facets are employed [12], and a history-based probability of
reaching the next region is computed, based on the entering facet for the current region.
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The second main result is a procedure to obtain a Petri net model of the environment
that includes the history. By using the methodology proposed, the Petri net model
belongs to a particular class of Petri nets called state machines having some good
properties to overcome the computational complexity of obtaining optimal paths. The
history-based probabilities computed in the first step will be used to define the objective
function of the optimization programming problem. Moreover, the use of Petri nets
is twofolded: (i) if more robots are considered, the number of states (places) of the
model remains the same; (ii) the model can be used for task planning, plan execution
and plan analysis. In particular, for plan analysis, properties such as boundedness and
liveness of Petri nets correspond to checking if resources usage is stable and plans
have no deadlocks, as well as on stochastic performance, concerning the plan success
probability [4].

Related works and contributions of the paper:
Modeling and control of robot tasks using a Petri net approach has been considered in
literature in the last years [19, 18, 4]. In [19], a Petri net model of a robot task ensur-
ing some qualitative properties is proposed and the quantitative properties are studied
through simulations. In [18, 4], Generalized Stochastic Petri net models are consid-
ered for modeling and analyzing robot tasks. A modular strategy is proposed, where
different Petri net models are given for environment layer and action executor layer.
However, the model of the environment considers different modes of the dynamics,
and in general it is obtained by identification/simulation. In our case, we split the en-
vironment in regions and then we show how to automatically compute control laws
to move from one region to another and how to compute probabilities to characterize
these movements.

Thus, this work creates a probabilistic framework for abstracting the control capa-
bilities of mobile robots into finite-state representations. Such representations can be
further used for solving more complex robotic problems. For example, in [25] a prob-
abilistic planning based on linear temporal logic specifications is envisioned, but the
probabilities are fixed and they come from measurement uncertainty, rather than from
controller design. In [8] the authors assume controls yielding to probabilistic move-
ments, but the actual probabilities are priori given and not computed from specific
control laws. A probabilistic model of foraging robots composing a swarm system [28]
is the starting point of [24], and the goal is to analyze possible behaviors by employing
model checking algorithms. Two global models for the whole team are constructed
in [24], either by a product approach that quickly yields a state-space explosion prob-
lem, or by a model that counts the number of robots in each behavioral state. The
tokens from the Petri net model we use are related with the counters from [24], but
our abstraction models robot locations and it is aimed towards solving a control prob-
lem, while the one from [24] models robot behaviors and analyzes swarm properties.
Probabilistic model checkers are used in [16] for quantifying the influence of prob-
abilistic measures on the satisfaction of a temporal logic specification for a mobile
robot. However, the probabilities from [16] come from sensor errors and the robot
actuation is assumed to be perfectly deterministic, while in our scenario the proba-
bilities come from uncertainties induced by the abstraction of movement capabilities.
Feedback policies for a mobile robot are designed in [7] by considering a continuous
model affected by bounded disturbances. The focus of [7] is on directly working in
the infinite state space of a discrete time model and on providing formal guarantees
under given disturbance bounds, rather than abstracting to finite state representations
and computing disturbances (probabilities) resulting from this process. The idea of
having history-based transition costs is used in works as [33, 5, 6]. In [5, 6] the goal
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is to find a feasible trajectory for a car-like robot with a kinematic model. By assum-
ing a partition in rectangular and equal tiles, history-dependent costs are computed for
transitions between adjacent cells, based on the capability of the vehicle of following a
sequence (history) of tiles. The framework from our method is different since we use
a simpliceal partition and we compute history-based costs from control laws for affine
systems. Moreover, different than most of the above mentioned related works, we fo-
cus on proposing a computationally feasible algorithm for a team of robots rather than
for a single agent. Also, we outline both an explicit method for computing probabilities
based on movement control laws, and a modeling methodology for the whole team of
robots that avoids an explosion in the number of states.

The results presented in this paper extend the ones from [22, 29] in several ways.
Unlike [22], the abstraction performed takes into account obstacles from the environ-
ment, the Petri net model is extended by allowing multiple identical agents, and an
online solution for updating the paths is integrated in the method. Different than [29],
we assume static obstacles, fact which yields a reduced computational complexity for
obtaining the optimal solution and a fully automated framework that does not require
heuristic adjustments of cost parameters. Moreover, some possible extensions for im-
proving the probabilistic abstraction are discussed. Although the algorithms presented
in this work are used for planning mobile robots, they can be also applied to different
research scenarios where similar finite state abstractions are of interest.

All algorithms presented in this paper have been implemented in MATLAB and
are freely downloadable from [23]. The implementation also includes the polyhedral
operation package from [10], and the linear programming problem (LPP) solver from
[30].

The paper is structured as follows. Sec. 2 presents some preliminaries necessary
throughout the paper and formulates the problem to solve. The algorithms for comput-
ing history-based probabilities are included in Sec. 3, and the Petri Net based solution
is given in Sec. 4. Sec. 5 discusses the complexity and the conservativeness of our
method. An example is presented in Sec. 6, and Sec. 7 formulates some concluding
remarks.

2 PRELIMINARIES
First, some results concerning control of affine systems on simplices are presented, and
then some preliminary notions on discrete Petri Nets (PN) are given. The problem to
solve is formulated towards the end of this section.

2.1 Affine System Control
This subsection briefly presents results from [12, 13] concerning feedback control de-
sign for an affine system evolving in a simplex. Although these results are applicable
to arbitrary state-space dimensions, this paper assumes only two-dimensional systems.
This restriction is motivated by the intention of providing a framework suitable to mo-
bile robots evolving in planar environments.

Consider a two-dimensional simplex (triangle) s ∈ R2, and the following affine
control system evolving in s:

ẋ = Ax+ b+Bu, x ∈ s, u ∈ U ⊂ Rm, (1)

4



(a) (b)

Figure 1: Vector fields ensuring that the triangle s is left in finite time. At any point
inside triangle, the vector field is a convex combination of its values at vertices (rep-
resented with thick arrows). a) Any trajectory initiating in triangle s leaves it through
facet F1. b) Triangle is left in finite time through either F2 or F3, and there is no
additional information available on corresponding probability.

where A ∈ R2×2, B ∈ R2×m, b ∈ R2, and U is a given polyhedral subset of Rm
(m ≤ 2) capturing control constraints.

In [13] the authors formulate necessary and sufficient conditions for constructing
a feedback control law u(x), x ∈ s such that any trajectory initiating in s leaves the
simplex through a desired facet in finite time. However, due to dynamics (1) and con-
trol bounds U , in some cases such control laws cannot be created. Therefore, a less
restrictive solution was developed in [12], where control laws driving any trajectory
initiating in s through a set of desired facets were designed.

The problem of designing such control laws is computationally attractive, since it
reduces to solving a set of three LPPs, one for each vertex of s. Controllers are con-
structed only at vertices, and then the feedback control anywhere inside s is a convex
combination of these values, given by (2), where v1, v2, v3 ∈ R2 denote the vertices of
s, and x ∈ s.

u(x) =
[
u(v1) u(v2) u(v3)

] [ v1 v2 v3

1 1 1

]−1 [
x
1

]
(2)

As a consequence of (2), the dynamics anywhere in s are a convex combination of
the controlled dynamics at vertices. Furthermore, on a facet of s, the control is uniquely
defined as a convex combination of control values from the vertices of that facet, and
the same applies to the controlled dynamics. The interested reader is referred to [12, 13]
for technical details on testing the existence and on constructing such controllers. For
an easier understanding of the outcome of such control problems, Fig. 1 illustrates
some vector fields driving all initial states from a simplex to a single exit facet or to a
set of exit facets. Thus, the vector field in Fig. 1(a) guarantees that the simplex is left
in finite time through facet F1, while in Fig. 1(b) the simplex is left through either F2

or F3.

2.2 Petri Nets
This subsection introduces the basic notions of PN (see [31, 35] for a gentle introduc-
tion).
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Definition 1 A Petri net (PN) is a tuple N = 〈P, T,Pre,Post〉 with P and T two
disjoint sets of places and transitions; Pre,Post ∈ N|P |×|T | the pre and post matri-
ces defining the weights of the arcs from places to transitions and from transitions to
places, respectively.

For h ∈ P ∪ T, the sets of its input and output nodes are denoted as •h and h•,
respectively. Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T| denote the places and transi-
tions. Each place can contain a non-negative integer number of tokens, and this number
represents the marking of the place. The distribution of tokens in places is denoted by
m, whilem(pi) or simplymi is the marking of place pi. The initial token distribution,
denoted by m0 ∈ N|P |, is called the initial marking of the net system. A PN with an
initial marking is a PN system 〈N ,m0〉. The enabling degree of a transition tj at a
markingm is given by

enab(tj ,m) = min
pi∈•tj

{⌊
m(pi)

Pre(pi, tj)

⌋}
,

which represents the maximum amount in which tj can fire.
A transition tj ∈ T is enabled at m if and only if enab(tj ,m) > 0. An enabled

transition tj can fire in any integer amount α, with 0 < α ≤ enab(tj ,m), leading to a
new state m′ = m + α ·C(·, tj), where C = Post − Pre is the token flow matrix
and C(·, j) is its jth column. It will be said that m′ is a reachable marking that has
been reached fromm by firing tj .

Ifm is reachable fromm0 through a finite sequence of transitions σ = ti1ti2 . . . tik,
the following state (or fundamental) equation is satisfied:

m = m0 +C · σ, (3)

where σ ∈ N|T | is the firing count vector, i.e., its jth element is the cumulative amount
of firings of tj in the sequence σ. Notice that (3) is only a necessary condition for
the reachability of a marking. The markings solutions of (3) that are not reachable are
called spurious markings. Checking if a marking m is reachable or not is not an easy
problem due to these spurious markings.

A PN where each transition has at most one input and at most one output place is
called state machine. Formally, a PN is state machine if |•t| ≤ 1 and |t•| ≤ 1, ∀t ∈ T .
A PN is called live if from any reachable marking any transition can eventually fire
(possibly after first firing other transitions). It is well known that for state machine
PNs, liveness is equivalent to strongly connectedness and non emptiness of (initial)
marking. Moreover, in a live state machine, there exist no spurious markings [36], i.e.,
the solutions of the fundamental equation (3) give the set of reachable markings.

2.3 Objective and Approach
This paper consideres a simpliceal partition of the free space of a planar environment
cluttered with obstacles, where multiple identical mobile robots with affine dynamics
evolve. Each robot has a negligible size and it starts from a given simplex, and the
objective is to reach a set of simplices, without a priori assigning a target simplex to
each robot. The main goal is to design a control strategy for each robot such that the
overall probability of reaching targeted simplices is maximized.

The remainder of this section outlines the main steps of the proposed solution, and
motivates several aspects of the used strategy. Instead of trying to solve the problem by

6



directly working with the continuous dynamics, the control capabilities of each robot
are abstracted into a finite state representation in form of a graph. Each node in this
graph corresponds to a simplex from the partition, and the outgoing edges correspond
to the capabilities of constructing continuous controllers driving any state from the
current simplex to adjacent triangles. These controllers are designed as in Sec. 2.1.
Whenever a control ensuring that a triangle is left through a single exit facet cannot
be constructed, controllers driving the continuous system through a set of facets are
searched. In such situations, the next reached triangle is not exactly known (e.g., see
Fig. 1.b) and, from the point of view of the constructed abstraction, a probability
of reaching a certain triangle from the possible set of next triangles is needed. For
reducing the conservativeness of the abstract model, history-based probabilities for
each edge are computed, where the history is represented by the triangle from which
the current triangle was entered.

The choice of using finite-state models is motivated by results where such models
allowed extensions to human-like specifications for mobile robots, as temporal and
logic tasks [32, 9, 20]. However, in such results only deterministic models were used
(corresponding to controllers enforcing that a simplex is left through a single facet), or
probabilistic models were constructed based on measurements uncertainty [25, 16], or
worst-case scenarios on possible transitions were used [21]. Therefore, this part of the
proposed solution can be a valuable framework for explicitly constructing probabilistic
models suitable for planning mobile robots.

The probabilistic abstraction of each robot will be further embedded into a Petri
Net model, where the history-based probabilities will become static probabilities asso-
ciated with transitions. This model allows an easy and computationally feasible exten-
sion to multiple identical robots, in contrast with existing complex approaches relying
on product of transition systems or graphs [20]. After the PN model is constructed,
sequences of regions (transitions in PN) solving the problem are obtained. The overall
probability of following these sequences is optimized by solving an LPP, and the fea-
sibility of the obtained paths is guaranteed by sstructural properties of the constructed
PN model. Whenever the sequences are left (due to less than one probabilities), an
online algorithm updates the paths.

3 HISTORY-BASED PROBABILITIES
This section details the algorithms that allow the abstraction of the behavior of a single
agent in the given environment to a finite state probabilistic representation. Subsection
3.1 introduces some necessary notations and presents a general algorithm for finding
the probabilities. Then, specific cases encountered during these computations are de-
tailed in subsections 3.2 and 3.3. Subsection 3.4 formulates some additional aspects
that can be investigated in such problems.

3.1 Control laws and corresponding probabilities
The first step is to partition in triangles the free space of the given environment (the
space not covered by obstacles). The details on constructing such a partition are not
in the scope of this paper, and here it is just mentioned that this construction can be
performed by using an available software tool for constrained triangulations, as [37, 3,
34]. Assume that |S| triangles are obtained, and they are labeled with symbols from
set S = {s1, s2, . . . , s|S|}. Two triangles are called adjacent if they share a facet, and
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the adjacency relation adj ⊆ S × S can be constructed such that (si, sj) ∈ adj if and
only if si 6= sj and triangles si and sj are adjacent.

The obtained finite state representation has the form of a special graphG = (S, adj, p, ctrl),
where:

• S is the set of nodes;

• adj is the adjacency relation;

• p : S × S × S → [0, 1] is a history-based probability map;

• ctrl : S × S × S → Rm×3 is a control assignment at vertices of a simplex, as
necessary in (2).

This section is mainly concerned with creating maps p and ctrl. The intuition be-
hind these maps is as follows: p(si, sj , sk) is the probability of steering trajectories of
system (1) from triangle si to sj , given that si was entered from simplex sk. For a more
intuitive notation, from now on notation psi→sj |sk will be used instead of p(si, sj , sk).
One can observe that this probability does not come from a nondeterminism in sys-
tem dynamics or in system evolution, but it comes from the performed abstraction, by
reducing each simplex to a single state in the finite state representation G. Also, for
obtaining a more accurate abstractionG, in the following, such history-based probabil-
ities are considered that depend not only on the current and next triangle, but also on
the triangle from where the current one was entered.

For any tuple (si, sj , sk) for which psi→sj |sk > 0, control values are required
(ctrl(si, sj , sk) = [u(v1)u(v2)u(v3)]) at vertices of si for constructing a feedback
control law everywhere inside si, as in (2). This control law implies that si is exited in
finite time through the facet shared with sj (if psi→sj |sk = 1), or through one of a set
of multiple facets (if psi→sj |sk < 1).

For avoiding supplementary indexing or notations, in the remainder of this section,
a single tuple of triangles (si, sj , sk) is considered, for which the proposed method
of computing psi→sj |sk is described. Of course, the map p can be easily obtained by
iterating the presented procedures for all tuples (si, sj , sk) ∈ S × S × S for which
(si, sj) ∈ adj and (sk, si) ∈ adj (otherwise, obviously psi→sj |sk = 0). Fig. 2
illustrates a generic triangle si that was entered from state sk through facet F1, and the
goal is to leave this triangle through facet F3 (for reaching simplex sj). We denote by vi
the opposite vertex of facet Fi, and ni denotes the outer normal of facet Fi, i = 1, 2, 3.
In the following it is assumed that si /∈ {sj , sk}, and the case sj = sk is allowed.

Alg. 1 presents the generic procedure for finding an affine feedback control law
and the corresponding probability for exiting si to sj , given that si was entered from
sk. The control law is found by using the results briefly mentioned in Sec. 2.1, and
when solving the involved LPPs, an optimality criterion is imposed for maximizing the
resulted speed projection on n3. Alg. 1 starts by finding the set Fexit containing com-
binations of facets through which si can be left without hitting any obstacle or without
leaving the environment bounds (lines 1-4). F1 and F3 are included in this set because
there exist neighbors to si that share one of these facets (sk and sj respectively). If
there is no simplex sharing F2 with si, then si should never be left through F2, because
this would lead to either hitting an obstacle, or leaving the defined environment. It is
assumed that Fexit is scanned by loop on line 5 in the same order enumerated on lines
2 or 4. Thus, only facet F3 is first considered as exit facet. If a control law is found,
then si is left for sure in finite time by hitting sj , so the algorithm is stopped by re-
turning exit probability 1 and the computed control law. Otherwise, the set of feasible

8



Figure 2: The desired sequence of triangles (suggested by dotted arrows) and several
notations concerning si.

controls is relaxed by allowing a whole set of exit facets including F3. Controllers are
searched iteratively for each such set of exit facets, and whenever a controller is found,
the probability of exiting si through F3 is computed with procedure find probability.
If more probabilities were computed (line 12 reached), then the maximum of these
probabilities and the corresponding control law are returned.

Algorithm 1: Control law and corresponding probability

Input: S, adj ; /* the set of triangles and the adjacency
relation */

Output: p, ctrl ; /* history-based probabilities and control
laws */

1 if ∃sl ∈ S \ {si, sj , sk} s.t. (si, sl) ∈ adj then
2 Fexit ∈ {F3, {F2, F3}, {F1, F3}, {F1, F2, F3}}
3 else
4 Fexit ∈ {F3, {F1, F3}}
5 for F ∈ Fexit do
6 find control uF for exiting simplex si through facet(s) from F ; (by solving

LPP in theorem 4.17 from [12])
7 if uF was found then
8 if F = F3 then
9 return psi→sj |sk = 1 and uF

10 else
11 psi→sj |sk(F ) = find probability(uF , si, sj , sk)

12 F ′ = arg maxF psi→sj |sk(F )

13 return psi→sj |sk = psi→sj |sk(F ′) and ctrl(si, sj , sk) = uF ′

3.2 Procedure find probability when sj 6= sk

The procedure find probability finds the probability of leaving si through F3 under
a feedback control law which is generically denoted in the remainder of this section
by u. This probability is computed as the ratio between the length of a subset of F1
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that guarantees exiting through F3 and the whole length of F1. The steps followed
by the find probability procedure differ depending on the relation between sj and sk.
This subsection details these steps for the case sj 6= sk, and subsection 3.3 focuses on
the case sj = sk. The resulting velocity at a current state x inside si is denoted by
f(x) = ẋ = Ax+Bu(x) + b, where the control law u found as in Alg. 1 yields u(x)
as in (2).

Alg. 2 starts by restricting F1 to a subset from where the continuous trajectories do
not immediately leave si through the entering facet F1 (lines 1-10). The fulfillment of
condition from line 1 implies zero probability for reaching sj , because the continuous
trajectories would immediately leave si by bouncing back from F1 (see Fig. 3.a). If
only one vertex of F1 has a controller yielding a dynamics that prevents entering si
through that vertex, the vertex is moved on F1 to a point where the vector field has
zero projection on n1. Such a point is uniquely determined by solving a linear system
of two equations, since the vector field on F1 is a convex combination of its values
from v2 and v3 (Sec. 2.1). Fig. 3.b illustrates a situation when condition from line 3
is fulfilled, and v3 is moved along F1. For avoiding sliding along F1 from a moved
vertex, a neighboring position where the projection on n1 is negative is picked, such
that si is entered.

Next, numerical integration is applied for deciding what subset of F1 contains tra-
jectories that leave si throughF3. For this, a procedure denoted integratesi,f (direction,x0)
is used, procedure which integrates forward or backward in time the system with dy-
namics given by f , starting from initial condition x0 in simplex si. The integration
stops when si is left, and the procedure returns the exiting facet and the point on the
exiting facet. This procedure correctly handles situations when the trajectory from a
vertex immediately leaves si (as in Fig. 3.c).

First a forward integration from v2 is employed (line 11), guided by the fact that
the initial position of v2 is the common vertex of si, sj and sk. If Fv2 exit is different
than the exit facet F3, probability 0 is assigned and the find probability procedure is
stopped. For example, if Fv2 exit is F2, then no trajectory initiating on F1 could reach
F3, because the trajectories of affine systems cannot intersect. Fig. 3.c and Fig. 3.d
present two cases when the algorithm continues after integrating from v2.

If Fv2 exit is equal to F3, then the integration from v3 is performed. Fig. 3.e
presents a situation when Fv3 exit = F3, and the probability is computed as in line 16
(ratio between the green segment from Fig. 3.e and the length of F1).

In case Fv3 exit = F2 (from line 19 on), the backward integration from v1 is pre-
pared. If necessary, v1 is moved on F3 (similar to moving v2 or v3 on F1). Note that,
if condition on line 20 is true, then f(v2 init) has positive projection on n3 because F3

was included among exit facets when designing controllers. Therefore, v1 new can be
determined when needed, similar to finding v2 new or v3 new.

From v1, backwards integration is performed with the hope of reaching F1, case
when the probability is computed as on line 26 (see Fig. 3.f and Fig. 3.g for such
situations). If backward integration from v1 yields facet Fv1 back = F2, a point Pback
on F1 has to be found, such that the trajectory starting from Pback is tangent to F2,
and after that it leaves s1 through F3 (lines 27-32), as in Fig. 3.h. Pback is found (if
possible) by first choosing the point P ∈ F2 where vector field is tangent to F2. P
can be uniquely determined, because all situations handled until here guarantee that
v1 = v1 init = v1 back, nT2 f(v1 init) < 0, and nT2 f(v3 init) ≥ 0 (otherwise, it would
be impossible to have Fv3 exit = F2 and Fv1 back = F2).

Line 33 collects all unsuccessful situations when algorithm did not returned. The‘proposed
algorithm can be conservative in cases when Fv2 exit = F1, Fv3 exit = F1, or when
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Algorithm 2: Procedure find probability when sj 6= sk

Input: S, adj, uF (= ctrl(si, sj , sk)), si, sj , sk
Output: psi→sj |sk

1 if nT1 f(v2) ≥ 0 ∧ nT1 f(v3) ≥ 0 then
2 return psi→sj |sk = 0

3 else if nT1 f(v2) < 0 ∧ nT1 f(v3) ≥ 0 then
4 v3 init = v3

5 find v3 new ∈ F1 s.t. nT1 f(v3 new) = 0
6 v3 = v3 new

7 else if nT1 f(v2) ≥ 0 ∧ nT1 f(v3) < 0 then
8 v2 init = v2

9 find v2 new ∈ F1 s.t. nT1 f(v2 new) = 0
10 v2 = v2 new

11 [Fv2 exit, Pv2 exit] = integratesi,f (forward,v2)
12 if Fv2 exit 6= F3 then
13 return psi→sj |sk = 0

14 [Fv3 exit, Pv3 exit] = integratesi,f (forward,v3)
15 if Fv3 exit = F3 then
16 return psi→sj |sk = ‖v2−v3‖

‖v2 init−v3 init‖

17 if Fv3 exit = F1 then
18 return psi→sj |sk = 0

19 /* Fv3 exit = F2 */
20 if nT3 f(v1) < 0 then
21 v1 init = v1

22 find v1 new ∈ F3 s.t. nT3 f(v1 new) = 0
23 v1 = v1 new

24 [Fv1 back, Pv1 back] = integratesi,f (backward,v1)
25 if Fv1 back = F1 then
26 return psi→sj |sk =

‖v2−Pv1 back‖
‖v2 init−v3 init‖

27 if Fv1 back = F2 then
28 find P ∈ F2 s.t. nT2 f(P ) = 0
29 [FP back, Pback] = integratesi,f (backward,P )
30 [FP exit, Pexit] = integratesi,f (forward,P )
31 if FP back = F1 ∧ FP exit = F3 then
32 return psi→sj |sk = ‖v2−Pback‖

‖v2 init−v3 init‖

33 return psi→sj |sk = 0

11



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Possible situations encountered by Alg. 2. Vector field values at vertices of
si are represented by thick arrows, and they define the vector field in the whole simplex
si. The dashed boxes contain some decisions taken in Alg. 2. The trajectories obtained
by numerical integration are represented with blue, while the subset of F1 from where
all originating trajectories leave si through F3 are represented with green.

12



tests involving P ∈ F2 did not yield a feasible solution (e.g. due to computation er-
rors induced by numerical integration). In all these situations, one could try to reduce
the conservativeness by choosing a random set of points on F1 and integrating forward
with the hope that some of these points will exit si through F3. Such an approach is not
used here for two reasons: (i) the construction from Alg. 2 guarantees that whenever
a positive probability is returned, this is the exact (up to integration and representation
errors) exit probability, and (ii) for avoiding too many numerical integrations.

3.3 Procedure find probability when sj = sk

When sj = sk, the exit probability is computed by Alg. 3. In this situation, the entry
facet is the same as the desired exit one, and it is denoted by F1 in this subsection.
Basically, the probability of hitting sj from si is equal to the ratio of subsegment of
F1 where continuous trajectories bounce back to sj . Since the vector field on F1 is a
convex combination of its values at v2 and v3, in Alg. 3 ideas from lines 1-10 of Alg.
2 can be adapted.

Algorithm 3: Procedure find probability when sj = sk

Input: S, adj, uF (= ctrl(si, sj , sk)), si, sj , sk
Output: psi→sj |sk

1 if nT1 f(v2) ≥ 0 ∧ nT1 f(v3) ≥ 0 then
2 return psi→sj |sk = 1

3 else if nT1 f(v2) < 0 ∧ nT1 f(v3) ≥ 0 then
4 find P ∈ F1 s.t. nT1 f(P ) = 0

5 return psi→sj |sk = ‖P−v3‖
‖v2−v3‖

6 else if nT1 f(v2) ≥ 0 ∧ nT1 f(v3) < 0 then
7 find P ∈ F1 s.t. nT1 f(P ) = 0

8 return psi→sj |sk = ‖P−v2‖
‖v2−v3‖

9 else
10 return psi→sj |sk = 0

Thus, whenever the vector field value at v2 and v3 has projections with different
signs on n1, one can uniquely identify the point P ∈ F1 from Alg. 3 where the vector
field projection on n1 is zero. If the vector field projections at v2 and v3 on n1 have
the same sign, the probability is 1 (when projections are positive) and it is 0 (when
projections are negative). Fig. 4 illustrates the situations encountered by Alg. 3.

3.4 Possible extensions for computing history-based probabilities
This subsection indicates some additional ideas that have been investigated when com-
puting abstractions G with history-based probabilities.

First, a refinement procedure that might increase the value of psi→sj |sk computed
by Alg. 2 from subsection 3.2 has been considered. The idea is to partition si in two
subtriangles, based on the the point found on the entry facet F1 which yields psi→sj |sk
in some cases encountered by Alg. 2. Depending on specific situations, this point was
denoted by v3, Pv1 back or Pback in Alg. 2 and in Fig. 3, and it is generically denoted
here by P , as represented in Fig. 5. The triangles partitioning si are determined by v1,
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(a) (b)

(c) (d)

Figure 4: The four possible situations encountered by Alg. 3. The subset of entry
facet from where all trajectories immediately bounce back to the previous triangle is
represented with green. For each case, the output of Alg. 3 is given in the dashed box.
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Figure 5: Refinement of triangle si. The dashed line linking P with v3 splits si in two
subtriangles. The dotted lines and the dash-dot lines suggest the possible sequences of
triangles for reaching sj from sk, by crossing through si.

v2, P (triangle supi ), and by v1, P , v3 (triangle sdowni ). Now, it is searched for a control
law and a corresponding probability for exiting sdowni to supi , given that sdowni was en-
tered through the facet determined by P and v3 (denote this probability by pdown→up).
Then, we search for a control law and the corresponding probability for exiting supi to
sj , given that the entry facet to supi is defined by v1 and P (denote this probability by
pup→sj ). The above control law and probabilities can be easily found by using ideas
from Alg. 1 and Alg. 2. If psi→sj |sk was returned by Alg. 2 for the original (not par-
titioned) si, based on the above refinement of si, psi→sj |sk can be increased by adding
to it the value pdown→up · pup→sj .

If si is not partitioned and (after projecting a solution found on G to a sequence of
continuous controllers) a continuous trajectory entering from sk to si hits F1 between
P and v3, then the control law assumed in Alg. 2 cannot steer to sj . In such a case,
by assuming the partition of si in supi and sdowni , the sequence of control laws deter-
mined when computing pdown→up and pup→sj may lead to hitting sj . However, in the
performed tests, such a refinement procedure did not yield a meritorious increase in
history-based probabilities, when balanced with the increase in the necessary compu-
tation for creating G.

Secondly, some probabilities from G may have larger values if F2 is not excluded
from Fexit in Alg. 1, i.e. one allowed for possible obstacle intersections or for leav-
ing the environment bounds. In such a case, the multiple choices from Fexit could
lead to an increased value for psi→sj |sk . However, if the control law corresponding
to this increased value includes possible collisions with obstacles that neighbor si, a
corresponding “error” state and a transition to it should be included in G. This transi-
tion would be activated with the probability of hitting an obstacle or the environment
bounds from si. Such an approach is not included in the proposed framework, because
in the targeted problem the possibility of hitting any obstacle should have probability
zero.

Finally, in some cases the probabilities could be increased by heuristically adjusting
restrictions from [12, 13] for finding control laws. However, such control problems are
not within the main scope of the proposed problem, because the current interest is in
employing largely used methods, as are the ones suggested by [12], as premises for
creating probabilistic abstractions on which one can solve various problems.
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4 PETRI NET MODEL AND SOLUTION
Subsection 4.1 presents an algorithm to obtain a PN model for a team of agents evolv-
ing in a planar environment. In the PN model, each transition is modeling a cross by
a robot of an edge between two adjacent regions, and a weight is associated to each
transition based on the history-based probabilities computed in Sec. 3. Based on this
PN model, an LPP is developed in subsection 4.2 to compute the optimal paths that
may bring the team of robots from some given initial states to some desired final states.
Optimality is understood here as a set of paths having the highest overall (product)
probability. Since the paths may not be always followed because of the involved prob-
abilities, subsection 4.3 provides an online algorithm that updates the solution based
on the current execution.

4.1 Petri net model
For a simplex si ∈ S, denote by adj(si) (with a slight abuse of notation) the set of
all neighbor regions, i.e., adj(si) = {s ∈ S|adj(si, s) ∈ adj}. Since in this paper
triangular partitions are considered, |adj(si)| ≤ 3. The PN model is composed by∑
si∈S |adj(si)| places. For each simplex si and for each sk ∈ adj(si) a new place pki

is defined. The number of tokens in this place, denoted bym(pki ), indicates that m(pki )
robots exist in region si, all of them entering in si from sk. According to the previous
observation, the number of places is upper bounded by 3 · |S| (S is the set of regions
of the environment). Therefore,

|P | =
∑
si∈S
|adj(si)| ≤ 3 · |S| (4)

For each place pki , a number of |adj(si)| transitions will be added. Each transition
models the move from region si (that has been entered from sk) to a neighbor region
belonging to adj(si) (including sk). Thus, transition i

kt
j has only one input place (pki )

and only one output place (pij) and its firing removes one token from pki (since robot
will leave si that has been entered from sk) and puts one token in pij (the robot moved
to sj and the previous region becomes si). Since each place pki (with sk ∈ adj(si))
has |adj(si)| output transitions, there are |adj(si)|2 transitions added for modeling the
possibilities of leaving simplex si. Therefore, the total number of transitions is:

|T | =
∑
si∈S
|adj(si)|2 ≤ 32 · |S| (5)

To each transition i
kt
j the probability psi→sj |sk computed in Sec. 3 is associated.

Example 1 Assume an environment composed by three simplices, as depicted in Fig.
6(a), and assume that the only history-based probabilities different than zero are:
p1→2|3 = 0.4, p1→2|2 = 0.7 and p3→1|1 = 0.9.

The PN model is composed by |adj(s1)|+ |adj(s2)|+ |adj(s3)| = 2 + 1 + 1 = 4
places and |adj(s1)|2 +|adj(s2)|2 +|adj(s3)|2 = 4+1+1 = 6 transitions. In particu-
lar, P = {p2

1, p
3
1, p

1
2, p

1
3} is the set of places and T = {31t1,11 t3,12 t3,13 t2,12 t2,21 t1} is the

set of transitions. For example, 1
3t

2 corresponds to the move from s1 to s2, given that s1

has been entered from s3. Therefore, the input place of 1
3t

2 is p3
1 (s1 is the actual sim-

plex entered from s3) while the output place is p1
2 (the new simplex is s2 entered from
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Algorithm 4: Procedure construct PN

Input: S, adj, p ; /* the set of triangles, the adjacency
relation and the history-based probabilities */

Output: Pre, Post, prob vect ; /* the Petri net model and
the probability vector */

1 Construct P by adding a place pki for each si ∈ S and sk ∈ adj(si);
2 Let T = ∅;
3 for each pki do
4 for each sj ∈ adj(si) do
5 Add a transition i

kt
j : T = T ∪ i

kt
j ;

6 Pre(pki ,
i
k t
j) = 1; (pki is the input place of ikt

j);
7 Post(pij ,

i
k t
j) = 1; (pij is the output place of ikt

j);
8 prob vect(ikt

j) = psi→sj |sk ;

9 return Pre,Post,prob vect

3

s1 s2

s

2

p

t 13
1 t 31

1 t 31
2

p
2
1

t 12
1

2

1

3

p
3

11

t 21 t 21
3

p

(a) (b)

Figure 6: An environment (a) and the corresponding Petri net model (b) considered in
Ex. 1
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s1). The complete PN is given in Fig. 6(b). Notice that transitions 1
1t

3, 1
2t

3 and 2
1t

1 cor-
respond to impossible movements (the corresponding history-based probabilities are
zero). �

Proposition 1 The PN of a given environment obtained by applying Alg. 4 is a strongly
connected state machine.

Proof: The result trivially holds based on the procedure of obtaining the PN model.
�

One immediate consequence of the previous result is that the PN system of an
environment obtained by applying Alg. 4 is bounded, i.e., the number of tokens in each
place is upper-bounded by the number of robots. Therefore, its reachability graph is
equivalent to a finite-state automaton. However, the number of states of this automaton
could be every large and in the following we use the PN structure to compute the
optimal plan to overcome the enumeration of the reachability states.

4.2 Optimal plan path
Let R = {r1, r2, . . . , r|R|} be the set of robots and let F : S → N be a function
that associates to each region (simplex) the number of robots that should be sent there,
i.e., if F(si) = ni then ni robots should eventually reach simplex si. We assume
that F is consistent with the number of robots:

∑
∀si∈S F(si) = |R|. Using the

obtained PN a path for each robot is computed such that the product of the individual
path probabilities is as high as possible. First, the initial and final markings of the
PN system are constructed. The initial marking, m0, is computed as follows: m0

is initialized with the null vector and then, for each robot, one token is added to the
place corresponding to the region where the robot is initially placed. Obviously, it is
necessary for each robot to assume a previous region since each place models also the
history of one step.

Since for each region si, a number of |adj(si)| places models that a robot is in
region si entered from a |adj(si)|, it is not possible to impose an unique final place
(state) for a robot. This requirement imposes restrictions that have to be satisfied by
the final marking m, which can be expressed by the following constraint belonging to
an LPP: ∑

sj∈adj(si)

m(pji ) = F(si),∀si ∈ S

Therefore, trajectories for robots ensuring that all robots start from their initial
positions and finish in regions whose collection is F are solutions of the following
system of equalities and inequalities: m = m0 +C · σ,∑

sj∈adj(si)
m(pji ) = F(si),∀si ∈ S (6)

where σ includes all firings encountered during movement of agents from initial to
final states.

An objective function is constructed for being able to find paths having the overall
maximum probability. Since the probability of each agent path is the product of the
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encountered probabilities, and since σ includes movements of all robots, the highest
probability path corresponds to σ that maximizes:

Φ =

|T |∏
i=1

prob vectσi
i ,

where σ is the firing count vector of (6), and each component σi is the number of times
that the corresponding transition fires in the optimal path. As noted, firings from σ
correspond to movements of all agents, and for finding individual paths for robots, just
fire all enabled transitions until final states are reached, as explained towards the end
of this section.

Obviously, this is not a linear objective function but, the maximization of

ln(Φ) =

|T |∑
i=1

σi · prob logi = σ · prob log,

can be considered instead, where prob log is a vector containing the natural logarithm
of the probability vector element by element. Since prob vect is a probability vector,
0 < prob vect ≤ 1, the following is true: −∞ < prob log ≤ 0. Observe that
if a probability is zero, its logarithm is −∞. Therefore, if the cost of the solution is
finite, all transitions belonging to the path have positive probability and the path can be
followed by the robots. On the contrary, a path containing a transition with probability
zero means that the final state cannot be reached with the computed control laws.

Observe that the optimal solution of maximizing ln(Φ) is not unique, in general. In
particular, if there exist cycles of transitions with associated probability equal to one,
they can be added to the solution without changing the resulted path probability. In
order to limit the number of solutions, the objective function is changed for minimizing
the number of transitions belonging to the paths. Obviously, maximizing ln(Φ) is
equivalent to minimizing

−ln(Φ) = σ · (−prob log) ,

where (−prob log) ≥ 0.

Proposition 2 The shortest highest probability path for reaching the final regions can-
not contain the firing of a transition more than r times (where r is the number of
robots).

Proof: Consider first the path of one robot. If a transition appears twice in the firing
sequence, then there exists an evolution of the form sk → si → sj appearing twice.
Since only the history of the previous state is considered, the probability of the evolution
sk → si → sj is the same both times, and the path probability cannot be improved by
firing the corresponding transition two times. Having r robots, the maximum number
of times of firing a transition in the shortest optimal path is r. � �

Define ∆ = M ·(−prob log)+1 ·ε, where 1 is a vector having all elements equal
to 1, ε is a small positive constant, andM ∈ R such thatM ≥ r · |T |. Notice that r · |T |
is an upper bound on the number of transitions that have to be fired in the optimal path
according to Prop. 2. It can be shown that the minimization of σ ·∆ yields the highest
probability paths ensuring also the minimization of the number of transitions fired, i.e.,
it is not considering unnecessary firings of transitions with probability one.
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Putting together, the following LPP can be used to compute the optimal paths of
reaching the desired states:

Γ = min σ ·∆
s.t. m = m0 +C · σ,∑

sj∈adj(si)
m(pji ) = F(si),∀si ∈ S

m,σ ≥ 0

(7)

Recall that a square integer matrix is called unimodular if its determinant is equal
to ±1. A totally unimodular matrix is a matrix for which every square non-singular
sub-matrix is unimodular.

Proposition 3 If optimal solution of LPP (7) has a finite cost, then the obtained firing
count vector σ corresponds to the maximum probability paths of the robots.

Proof: According to Prop. 1, the PN model is a state machine. The incidence matrix
C of a state machine PN is an unimodular matrix having in each column maximum
one element equal to 1 and one equal to −1 [14]. Therefore, the reachability set is an
integer polytope [14]. If the simplex method is used to solve the LPP (7), the optimal
solution is an integer vertex. As mentioned before, a finite cost corresponds to a path
with probability greater than zero. �

Let Γ∗ be the optimal solution of (7) and N =
|T |∑
i=1

σi, i.e., the number of transi-

tions that have to be fired in the optimal path. The probability of the optimal path is
e−(Γ∗−N)/M . Once having an optimal firing count vector σ, the robot sequences of re-
gions are obtained by enumerating regions corresponding to places that receive tokens
while firing transitions in σ. Notice that while finding individual paths there is no need
to keep track of each individual token (as in a colored PN), and when there are multiple
tokens in a place, random assignments of tokens to corresponding robots are used. The
existence of such random assignments means is just a consequence of the fact that the
individual paths may not be unique for a given optimum σ. Also, observe that another
possible source for non-uniqueness of individual paths is the fact that LPP (7) may have
multiple optimal solutions. Once the individual paths are found, the control strategies
for each robot have a hybrid nature, because each path consists of a finite number of
regions, and in each region a different continuous control law has to be applied until
the current simplex is left.

4.3 Online algorithm
Because of the probabilities on transitions, the desired simplices may not be always
reached when the control laws corresponding to the solution of LPP (7) are applied.
This subsection proposes an online algorithm that dynamically adjusts the trajectories
based on the current position of the robots, such that if a desired probabilistic transi-
tion of PN is not actually followed, then the robot planning automatically adapts its
trajectory.

The approach is centralized, meaning that there exists a central computing unit that
can always communicate with the robots and that coordinates their movement. In the
following, we first introduce notations that characterize the robots and the signals they
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send to the central unit. Then we present the online algorithm that runs on the central
unit.

During robotic movement, we assume that the position of each robot at any time is
known through a function f : R × R≥0 → S, i.e., f(ri, τ) = sj means that the robot
ri is inside region sj at time τ . The robots move and change their simplices due to the
applied affine control laws. Let movei be the event generated by the robot ri when it
moves to a new region, formally defined by:

movei(τ) =

{
0, if f(ri, τ) = f(ri, τ

−)
1, otherwise

where f(ri, τ
−) is the value of f at the previous time instant τ−. If a robot moves from

region sj to sk we assume that it can return to sj after some time.
Algorithm 5 presents the main steps of the online approach that runs on the central

unit and updates when necessary the robot paths (sequence of simplices to be followed).
The new paths for robots (solutionσ) are computed only when a robot leaves its desired
path (iteration conditions on line 12). The algorithm reiterates until each final region is
reached by the intended number of robots. If the LPP (7) is unbounded then the final
regions cannot be reached and the algorithm stops.

Algorithm 5: Online implementation

Input: Pre, Post, prob log, F ; /* the Petri net model, the
logarithm of history-based probabilities and the
desired simplices */

Output: - ; /* τ ′ the robot movements */
1 ; // Let τ be the current time, updated by the central
unit

2 τ ′ := τ ; // τ ′ is the previous time when an obstacle
moved

3 Compute control laws and prob vect by applying alg. in section 3;
4 if eq. (7) is unbounded then
5 return; ; // The final regions cannot be reached.

6 while final regions are not reached do
7 Obtain new robot paths by solving (7);
8 if eq. (7) is unbounded then
9 return; ; // The final regions cannot be reached.

10 repeat
11 Apply the control laws to the robots;
12 until (∃i ∈ {1, . . . , |R|} s.t. f(ri, τ) does not belong to the trajectory);

5 CONSERVATISM AND COMPLEXITY
Our approach for solving the focused problem is conservative due to several reasons,
which are discussed below in the order of their occurrence in our framework.

(i) Our approach assumes multiple identical robots, rather than accommodating agents
with different dynamics. This leads to lower computation complexity, because the
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probabilistic behavior is computed only for one robot, and the model for the team
represents identical agents as tokens in a standard PN. An extension for consid-
ering different dynamics for the robots would imply a more complex and chal-
lenging problem. This is because standard Petri nets could not be used anymore,
and colored Petri nets [15] may be necessary in order to distinguish between the
different tokens of the model.

(ii) We assume a simpliceal partition of the continuous state space and we abstract
each triangle to a single node in a graph. While this allows the construction of
a decidable finite-state representation, it also leads to the following two aspects
that limit the method.

(iii) When searching for continuous control laws for steering between adjacent sim-
plices, we employ the well-established results from [12] rather than investigating
other control possibilities or partition refining techniques.

(iv) The one step history-based exit probabilities are computed by assuming a uniform
distribution along the entry facet of each simplex. Although this assumption is
in general not true, it is a price paid for obtaining the finite abstraction of the
environment. For longer sequences of simplices, the product of successive tran-
sition probabilities tend to become different than the real probability of following
the sequence. In principle, this modeling limitation can be relaxed by assuming
longer histories, i.e. by investigating (for each step in the history) the control law
in the previous simplex and by finding the possible subset of the common facet
where the continuous trajectories can cross from one simplex to another. How-
ever, we do not implement such longer histories because they would affect both
the computational complexity for computing history-based probabilities and the
size of the PN model (for a history length of k simplices, there would be up to 3k

places in PN for each simplex from partition).

(v) The optimality of the solution found in (7) only refers to maximizing the overall
probability of following some robotic paths, and it does not include any penalty
on the trajectory lengths. This is due to the difficulty of appropriately combining
in a cost function the product of probabilities and the sum of expected traveled
distances along firing sequences of PN. However, the optimization of path fol-
lowing probability reduces the number of iterations of the online Algorithm 5.

For analyzing the complexity of our approach, let |S| denote the number of sim-
plices in the partition. As stated in equation (4), the number of places in the PN model
is upper bounded by 3 · |S|. Each simplex has at most 3 neighbors, and by accounting
(5), the number of transitions in PN is upper bounded by |T | ≤ 9 · |S|.

As explained in Section 4, each transition has associated a history-based probability
computed by Algorithm 1. A single run of this algorithm includes at most 4 iterations
(maximum cardinality of Fexit from Algorithm 1, line 2). Each iteration embeds 3
LPPs for solving the control-to-facet problem, and the computation of exit probabilities
(Algorithms 2 and 3), with some numerical integration routines called in Algorithm 2.
Thus, for computing the history-based probabilities one has to solve at most 3 ·4 ·9 · |S|
= 108 · |S| low-complexity LPPs (each having a small number of restrictions, given by
the complexity of set U bounding the control inputs). We mention that for solving an
LPP there exist polynomial time algorithms. For example, the Karmarkar algorithm
[17] has a time complexity given by O(n3.5 · L), where n is the number of variables
and L depends on the input length.
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Therefore, the PN model construction is computationally tractable, since its com-
plexity linearly increases with the number of partition simplices. An optimal movement
plan is found by solving LPP (7) (which can be done in polynomial time), and if the
paths are left the solutions are updated by iterating optimization (7), as in Algorithm
5. It is worth noticing that the number of robots r influences only the number of LPP
constraints - in the worst case, LPP (7) will have 3 · r + 1 equality constraints (when
|F| = r, i.e. the destination simplices are different).

In the remainder of this section we briefly mention other techniques one can envi-
sion for solving such problems. One idea would be to model the environment using a
finite state transition system and then applying a shortest path algorithm on the graph,
e.g., Dijkstra’s algorithm. Notice that the finite state transition system that is obtained
in the case of one robot is very similar with the PN model: just remove PN transitions,
merge the corresponding input/output arcs, and weight each resulted arc with the corre-
sponding element from prob log (probability logarithms ensuring optimization based
on product rather than sum of individual probabilities). Another idea is to model the
behavior of a single robot by a Markov Decision Process (MDP), e.g., as used in [8].
This formalism can be viewed as a discrete event system where transitions are proba-
bilistically executed (rather than having a probability-based cost). Since MDP requires
static (history-free) probabilities, the structure of the MDP model mimics the one of
the above-mentioned transition system. The advantage is that a control policy for the
MDP can be found such that the system is steered to a desired state without the need
of having an online updating algorithm. While the choice between an offline generated
policy and an online replanning procedure is generally debatable [27], we prefer for
our method an online planning algorithm, due to the following reasons.

Both methods mentioned above work with similar complexity for the case of a
single robot. However, the PN approach can be easily extended to the case in which
more than one robot is deployed since the structure is the same and only the initial and
final markings are changed. Thus, the behavior of all agents is modeled by a simple
increase in the number of tokens. As explained above, the change in complexity of
solving (7) with respect to the number of robots r is negligible.

However, in the case of transition system- or MDP- based approaches the prob-
lem is not so simple, mainly because the optimum allocation of robots to required
destinations has to be found. A first solution is to successively consider all possible
robot-destination pairs and find the optimum one, but this would require a combinato-
rial number of solutions to individual (single agent) problems. An alternate solution is
to to model the behavior of all robots by a product of individual models, but this yields
to a possible explosion in the number of states [20]. Hence, the PN approach provides
a considerable computational complexity advantage.

The number of iterations of the online replanning algorithm is not priori known. An
upper bound can be given but, in general, this upper bound would be very far from the
real value. Nevertheless, in many cases it is preferable to solve many low-complexity
problem instead of solving a single but very complex problem.

6 EXAMPLE
Consider the planar environment from Fig. 7, cluttered with 8 obstacles and whose free
space is composed by 50 simplices s1, . . . , s50. The following dynamics are considered
in all regions:

23



Figure 7: A planar environment with the free space composed by 50 simplices. The
vector field of uncontrolled system in represented with black arrows.

ẋ =

[
0.5 −0.6
0.7 −0.4

]
· x+

[
1 0
0 1

]
· u+

[
0.3
−0.3

]
(8)

The control u is bounded by a disc in R2, centered at origin and with radius 3,
which is approximated by a 12-sided regular polygon. The vector field corresponding
to the uncontrolled system is represented in Fig. 7.

Controllers and transitions probabilities are computed as described in Sec. 3, and
the corresponding PN is obtained as in Sec. 4. The PN has 114 places and 270
transitions. From these transitions, the following have probabilities between 0 and 1:
14
24t

24 = 0.17; 20
35t

35 = 0.74; 22
4 t

28 = 0.01; 23
24t

21 = 0.75; 23
29t

21 = 0.89; 23
24t

29 = 0.25;
23
29t

29 = 0.23; 24
14t

23 = 0.44; 24
23t

23 = 0.84; 24
27t

23 = 0.22; 25
20t

20 = 0.48; 26
30t

33 = 0.68;
29
23t

30 = 0.4; 30
26t

26 = 0.73; 30
29t

26 = 0.50; 33
25t

25 = 0.61; 33
34t

25 = 0.44; 41
1 t

45 = 0.5;
41
45t

45 = 0.38; 45
41t

42 = 0.68; 45
44t

42 = 0.91; 46
49t

10 = 0.53; 46
49t

47 = 0.5; 46
47t

49 = 0.01;
46
49t

49 = 0.04; 47
46t

46 = 0.26; 47
48t

46 = 0.04; 47
46t

48 = 0.69; 49
12t

12 = 0.95. There are
42 transitions with null probabilities, namely: 4

27t
22; 8

44t
47; 8

47t
47; 10

40t
46; 10

46t
40; 10

46t
46;

12
7 t

49; 12
49t

7; 14
2 t

24; 14
24t

2; 15
11t

48; 15
48t

11; 20
25t

35; 22
35t

28; 23
21t

29; 24
14t

27; 24
23t

27; 24
27t

27; 25
20t

33;
25
33t

20; 27
4 t

4; 27
24t

4; 33
26t

25; 35
20t

22; 35
20t

37; 35
22t

37; 40
10t

10; 40
50t

10; 44
8 t

8; 44
45t

8; 45
41t

44; 45
42t

44; 45
44t

44;
46
10t

47; 46
10t

49; 46
47t

10; 47
8 t

46; 47
8 t

48; 49
46t

12; 50
1 t

40; 50
40t

1; 50
40t

40. The remaining 199 transi-
tions have probability one. As explained in Sec. 4, transitions having associated zero
probabilities could have been not introduced in the PN systems. However, their inclu-
sion guarantees that PN is a strongly-connected state machine, and the complexity of
finding a transition sequence to reach a final marking is significantly reduced because
one has to solve an LPP instead of an integer programming problem. Moreover, spuri-
ous markings cannot appear, and one can consider a single vector containing all fired
transitions instead of a sequence of firing vectors (each vector corresponding to the
firing of only one transition).

For the environment from Fig. 7 five point robots are considered (with dynamics
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Figure 8: Controlled trajectories that reach the desired simplices. For each trajectory,
the initial condition is marked with “*”, and the evolution is stopped when the last
simplex is entered. Magenta corresponds to the first robot, cyan to the second, blue to
the third, red to the fourth and green to the fifth robot.

(8)), initially situated in s7 (entered from s2), s23 (entered from s24), s24 (entered from
s14), s46 (entered from s49), and s49 (entered from s12). The robots have to reach
simplices s4, s27, s30, s36 and s39, without having any robot specifically assigned
to a desired simplex. By using the LPP (7) and by constructing individual paths as
mentioned in Sec. 4, the following sequences of regions to be followed by the robots
are obtained:

• Robot 1: (s2)→ s7→ s16→ s18→ s6→ s9→ s31→ s17→ s5→ s32→ s43

→ s38 → s36 → s37 → s35 → s22 → s4 → s27. This path has a probability to
be followed equal to 1.

• Robot 2: (s24)→ s23 → s21 → s13 → s19 → s3 → s6 → s9 → s31 → s17 →
s34→ s33 → s26→ s30, the probability of the path being 0.75.

• Robot 3: (s14)→ s24 → s23 → s21 → s13 → s19 → s3 → s6 → s9 → s31 →
s17→ s5→ s32→ s43 → s38→ s36, with probability 0.33.

• Robot 4: (s49) → s46 → s47 → s8 → s44 → s45 → s41 → s1 → s39, with
probability 0.5.

• Robot 5: (s12)→ s49 → s46 → s47 → s8 → s44 → s45 → s41 → s1 → s39 →
s28→ s22→ s4, having probability 0.5.

The above paths have a combined probability (product of individual probabilities)
of 6%, and they include a total number of 65 simplices to be visited. In this case the
sequences of regions yielding this global optimum are not unique. This aspect can
be quickly understood by observing that some paths include identical sequences of
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Figure 9: Vector fields corresponding to sequences of simplices to be followed by
robots 3 and 5 from Fig. 8, and their continuous trajectories (blue for robot 3, green for
robot 5).

simplices, and after these sequences the last parts of the paths can be swapped with-
out affecting the overall optimality. Fig. 8 illustrates some trajectories of robots ob-
tained by applying control laws corresponding to the found sequences of simplices.
The vector fields induced by control laws for robots 3 and 5 are given in Fig. 9. It is
worth mentioning that the probability returned by the proposed approach is not equal
with the real probability of following the corresponding sequence of simplices, because
history-based probabilities with history consisting of only one simplex were assumed.
However, the obtained probability measures the chance of following the actual paths
without having to update them by a reiteration of Algorithm 5. Also, the path proba-
bility does not reflect the chance of satisfying the requirement, because whenever the
paths are left they are updated by the online algorithm. For example, by simulating
trajectories from multiple initial conditions for robot 3 (points on the common facet
of s24 and s14), the above path (returned by the first iteration of Algorithm 5) was
followed in about 44% cases (e.g. if the initial condition is chosen in the upper part
of line segment between s24 and s14, the vector field in simplex s24 induces simplex
s14 being hit instead of s23). On the same lines, for robot 5, if simplex s46 would be
entered from s49 through a point with coordinates close to [10, 0]T , then s46 would be
left to s10 rather than s47, due to vector field shown in Fig. 9. An exact measure of the
real probability of following an obtained sequence of simplices could be found by an
iterative backwards integration procedure that starts from the last facet of the path (in
case of path for robot 3 the common facet of s36 and s38). However, such an operation
is not necessary, because whenever a robot leaves its current path through simplices, a
new optimization (7) is triggered. Also, a more detailed analyzis of the real probability
of following a path would go beyond the scope of the current paper, which provides a
method for obtaining a finite-state probabilistic model and for finding optimum paths
in such an abstraction.
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7 CONCLUSIONS
This paper presents a probabilistic abstraction approach for planning and controlling
mobile robots with affine dynamics. It is assumed that the environment is partitioned
into triangular regions, each region corresponding to a node in a graph. If from a region
si there exists a control law able to drive the robot to an adjacent region sj , then there
exists an arc between the corresponding nodes of the graph. In many cases it may be
impossible to find a control law for crossing only the border (facet) between si and sj ,
but it may be possible to find a control law for exiting through a set of facets of si.
In such cases, the probability of crossing the desired facet under the designed control
law is computed algorithmically. In order to reduce the conservativeness, history-based
probabilities that depend on the previous region are considered. Finally, a PN model
is constructed and the task of reaching a set of target regions is achieved by solving an
LPP. The optimality of the solution is guaranteed by specific properties of the finite-
state model. Therefore, the main benefits of the presented work are (i) a method for
constructing probabilistic abstractions for affine systems and (ii) a procedure for con-
structing PN models for teams of agents and for finding optimal probabilistic paths by
using low-complexity algorithms. Enabled by the low-complexity of the PN model,
future work can be conducted towards extending the range of handled specifications to
high-level formal languages.
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