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Abstract

When discrete event systems are used to model systems with a large
number of possible (reachable) states, many problems such as simulation,
optimization, and control, may become computationally prohibitive be-
cause they require some enumeration of such states. A common way to
effectively address this issue is fluidization. The goal of this paper is that
of studying the effect of fluidization on fault diagnosis. In particular,
we focus on the purely logic Petri net model that results in the untimed
continuous Petri net model after fluidization. In accordance to most of
the literature on discrete event systems, we define three diagnosis states,
namely N , U and F , corresponding respectively to no fault, uncertain and
fault state. We prove that, given an observation, the resulting diagnosis
state can be computed solving linear programming problems rather than
integer programming problems as in the discrete case. The main advan-
tage of fluidization is that it enables to deal with much more general Petri
net structures. In particular, the unobservable subnet needs not be acyclic
as in the discrete case. Moreover, the compact representation of the set
of consistent markings using convex polytopes can be seen in some cases
as an improvement in terms of computational complexity.
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1 Introduction

The complexity of nowadays systems makes the problem of deriving efficient
approaches for fault diagnosis a major requirement. As a consequence, sig-
nificant contributions have been proposed in the literature in the last years,
dealing with fault detection, isolation and treatment of failures in the case of
continuous-time, discrete-time and discrete event systems [4–8]. The idea is to
construct fault tolerant models which can detect and adapt their software or
hardware in order to allow the system to continue working until repairs can be
realistically scheduled.

Faults correspond to discrete events modeling anomalous behaviors. As an
example, in a telecommunication system, a fault may correspond to a message
that is lost or not sent to the appropriate receiver. In a traffic system, a fault
may be a traffic light that does not switch from red to green according to the
given schedule. In a manufacturing system it may be the failure of a certain
operation, e.g., a wrong assembly, or a part put in a wrong buffer, and so on.

In the literature, faults are often classified as permanent, intermittent or
control faults. A fault is “permanent” if its effect remains permanently after its
occurrence. On the contrary, “intermittent” faults model faulty behaviors that
occur intermittently, with fault events followed by “reset” events, new occur-
rences of fault events, and so forth [9]. Finally, “control faults” usually model
errors of the control system, e.g., software errors. Therefore optimal controllers
should be designed so as to tolerate control errors. In practice, the control ap-
proaches should be robust so as to avoid violating security specifications also in
the presence of fault errors.

Now, according to the above classification, the faults considered in this paper
may either be permanent or control faults, while they cannot be intermittent
faults since no notion of “reset” is introduced here.

In the case of discrete event systems with a large number of reachable states
the problem of fault detection, as well as many others, becomes computationally
prohibitive because of the state explosion. A common technique to overcome
this is fluidization. Several discrete-event based fluid models have been proposed
in the literature, some of them derived by the fluidization of queuing networks
[10–12] or Petri nets (PNs) [13,14] [15,16]. The main idea of the fluidization of
PNs is the relaxation of the transitions firings allowing them to fire in positive
real amounts. Therefore, the content of the places is no more restricted to take
natural values, but it may be expressed by nonnegative real numbers. This
implies a series of significant properties. As an example, the reachability set
is convex [17]. Moreover, as it will be proved in this paper, in the case of
partial observation of the transitions firings (namely in the presence of silent
transitions), the set of markings that are consistent with a given observation is
convex.

Using this convexity property, the fault detection problem is studied here
for untimed continuous Petri nets (CPNs). In particular, in this paper we
assume that certain transitions are not observable, including fault transitions
and transitions modeling a regular behavior. Thus, faults are only detected
on the basis of the observation of a subset of transitions. Fault transitions are
partitioned into different fault classes and three different diagnosis states are
defined, each one representing a different degree of alarm: N means that no
fault of a given class has surely occurred; U means that a fault of a given class



may have occurred or not (uncertain state); F means that a fault of a given
class has surely occurred. We derive a criterion to define, for each fault class, the
value of the diagnosis state, given the observation of a sequence of transitions
firings.

Note that uncertain states are common to all discrete event systems diagnosis
approaches. This is a natural consequence of partial events observation. Indeed,
when the observation of the system behavior is not complete, it may occur that
the observed sequence of events is consistent with both a regular and a faulty
behavior, thus the resulting diagnosis state is uncertain.

In this paper general PN structures are considered and the only assumption
made, common to all works dealing with fault diagnosis, is that the unobserv-
able subnet has no spurious markings, i.e., all solutions of the state equation
are reachable markings. Since in continuous case this assumption is not very re-
strictive, this allows one to consider as well unobservable subnets that are cyclic,
making the procedure more general with respect to almost all the approaches
developed in the discrete event systems framework [18–20].

The paper is organized as follows. In Section 2 a survey on the literature on
diagnosis of discrete event systems is presented. Section 3 provides a comparison
among the proposed approach and the other approaches mentioned in Section 2.
In Section 4 some background on untimed CPNs is given. In Section 5 we intro-
duce the main notations and definitions used in the paper. Then the convexity
of a particular set, that is the key point for the proposed diagnosis procedure,
is proved and an algorithm to compute it is given. In Section 6 diagnosis states
are defined and it is shown how to compute them using linear programming.
Two manufacturing examples are considered in Section 7 so as to validate the
effectiveness of the procedure. Conclusions are finally drawn in Section 8. In
the appendix the main notations used in the paper are reported.

2 Literature review

The diagnosis of discrete event systems is a research area that has received a lot
of attention in the last years and has been motivated by the practical need of
ensuring the correct and safe functioning of large complex systems. A failure is
defined to be any deviation of a system from its normal or intended behavior.
Diagnosis is the process of detecting an abnormality in the system behavior and
isolating the cause or the source of this abnormality.

In the discrete event systems framework, fault detection has been firstly
studied using automata. Interesting contributions have been proposed by Boel
and van Schuppen [21], by Debouk et al. [22], by Hashtrudi Zad et al. [23],
by Jiang and Kumar [24], by Lunze and Schroder [25], and by Sampath et
al. [26, 27].

More recently this problem has also been addressed in the framework of
Petri nets. The intrinsically distributed nature of Petri net models, where the
notion of state, i.e., marking, and action, i.e., transition, is local, have often
been an asset to reduce the computational complexity involved in solving a
diagnosis problem. Among the different contributions in this area we recall the
work of Benveniste et al. [28], Cabasino et al. [19], Dotoli et al. [20], Genc and
Lafortune [18], Jiroveanu and Boel [29], Lefebvre and Delherm [30] and Ramirez
Treviño et al. [31].



In particular, Benveniste et al. [28] use a net unfolding approach for designing
an on-line asynchronous diagnoser. The state explosion is avoided but the on-
line computation can be high due to the on-line building of the PN structures
by means of the unfolding.

In [19] Cabasino et al. present a fault detection approach for discrete event
systems using Petri nets, where some transitions of the net are unobservable,
including all those transitions that model faulty behaviors. The diagnosis ap-
proach is based on the notions of basis marking and justification, that allow
one to characterize the set of markings that are consistent with the actual ob-
servation, and the set of unobservable transitions whose firing enables it. This
approach applies to all net systems whose unobservable subnet is acyclic.

Dotoli et al [20] address the on-line fault detection of discrete event systems
modeled by Petri nets. The paper recalls a previously proposed diagnoser that
works on-line and employs an algorithm based on the definition and solution
of some integer linear programming problems to decide whether the system
behavior is normal or exhibits some possible faults. To cope with the algorithm
computational complexity, they present sufficient conditions guaranteeing that
the continuous relaxation of the ILP problems provides an integer solution if
the unobservable subnet of the Petri net system considered is an acyclic state
machine. In this way the proposed algorithm turns out to exhibit polynomial
complexity.

Genc and Lafortune [18] propose a diagnoser on the basis of a modular
approach that performs the diagnosis of faults in each module. Subsequently,
the diagnosers recover the monolithic diagnosis information obtained when all
the modules are combined into a single module that preserves the behavior of
the underlying modular system. A communication system connects the different
modules and updates the diagnosis information. Even if the approach does not
avoid the state explosion problem, an improvement is obtained when the system
can be modeled as a collection of PN modules coupled through common places.

Jiroveanu and Boel [29] propose an algorithm for the model based design of
a distributed protocol for fault detection and diagnosis of large systems. The
overall process is modeled as time PN models that interact with each other
via guarded transitions that become enabled only when certain conditions are
satisfied. Different local agents receive local observation as well as messages
from neighboring agents. Each agent estimates the state of the part of the
overall process for which it has model and from which it observes events by
reconciling observations with model based predictions. They design algorithms
that use limited information exchange between agents and that can quickly
decide questions about whether and where a fault occurred and whether or not
some components of the local processes have operated correctly. The algorithms
they derive allow each local agent to generate a preliminary diagnosis prior to
any communication and they show that after the communications among agents
the diagnosis performances are the same as in the central case.

Lefebvre and Delherm [30] study the faulty behaviors modeled with ordinary
Petri nets with some “fault” transitions. Partial but unbiased measurement of
the places marking variation is used in order to estimate the firing sequences.
The main contribution is to decide which sets of places must be observed for the
exact estimation of some given firing sequences. Minimal diagnosers are defined
that detect and isolate the firing of fault transitions immediately.

Ramirez-Treviño et al. [31] employ Interpreted PNs to model the system



behavior that includes both events and states partially observable. Based on the
Interpreted PN model derived from an on-line methodology, a scheme utilizing a
solution of a programming problem is proposed to solve the problem of diagnosis.

3 A comparison among the proposed approach

and other methods in the literature

Let us now discuss the main differences among the proposed fault diagnosis
approach and the ones mentioned in the previous section.

The first main difference consists in the assumed model. In fact, in this
paper we consider untimed continuous Petri nets while in [18–20,28,30] discrete
Petri nets are taken into account; [29] focuses on timed Petri nets and [31]
on interpreted Petri nets. Moreover in Ramirez-Treviño et al. [31] continuous
information on the marking of some places are given, while in [30] the authors
deal with ordinary Petri nets, and in [18–20] the assumption on the acyclicity
of the unobservable subnet has to be satisfied. Finally, in [18, 29] the authors
propose distributed techniques for diagnosis while here we are considering a
centralized approach.

The second main difference with respect to all the fault diagnosis approaches
presented in the discrete event systems literature, not only based on Petri nets,
but on automata as well, is that to the best of our knowledge the proposed
procedure is the only one that can also be applied to systems whose unobservable
part contains cycles. This obviously consists in a significant advantage in terms
of generality of the method.

The other important aspect that should be considered to evaluate the ef-
fectiveness of the proposed technique is the computational complexity and in
particular the number of information that should be kept into account. Unfor-
tunately, it is not so easy, and probably nonsense, to compare the fluid approach
with an arbitrary other one, based on a different model and on different assump-
tions. What we have done in this paper is to compare the proposed procedure
with the approach for discrete nets we presented in [19], based on the notion
of basis markings. Note that we believe such a comparison significant since the
technique in [19] is known to present significant advantages in terms of compu-
tational complexity since it does not require an exhaustive enumeration of the
system states, but only a subset of it.

As a result of such a comparison, we conclude that, as it will be shown in
Section 7, the computational complexity of both procedures depends on the
particular net structure, on the observed word and on the initial marking as
well, thus a general claim cannot be given in this respect. Nevertheless, there
exist cases in which the proposed method provides a considerable improvement
on the computational complexity also allowing to deal with cases that cannot
be dealt with the discrete framework.

Summarizing, the conclusion of our investigation is that fluidization is basi-
cally suggested in two cases. The first one is when the unobservable subnet is
cyclic, being in such a case the only viable approach. The second case is when
the advantages in terms of computational complexity are really significant such
as in the case of systems with a very large number of reachable states as in the
manufacturing example in Subsection 7.2.



4 Background on Untimed CPNs

In this section we provide the basic background on untimed CPNs. For more
details we address to [13, 14].

Definition 1 A CPN system is a pair 〈N ,m0〉, where:

• N = 〈P, T,Pre,Post〉 is the net structure with two disjoint sets of
places P and transitions T ; pre and post incidence matrices Pre,Post ∈

R
|P |×|T |
≥0 , denote the weight of the arcs from places to transitions (respec-

tively, transitions to places);

• m0 ∈ R
|P |
≥0 is the initial marking. �

Let q = |P | and n = |T | be the cardinality of the set of places and transitions,
respectively.

The input and output set of a node x ∈ P ∪ T is denoted •x and x•, respec-
tively. The token load of a place pi at the marking m is represented as m(pi)
or simply by mi.

A transition tj ∈ T is enabled at a marking m if ∀pi ∈ •tj , m(pi) ≥ 0 and
the enabling degree of tj at m is:

enab(tj,m) = min
pi∈•tj

mi

Pre(pi, tj)
. (1)

When a transition tj is enabled at a marking m it can be fired. The main
difference with respect to discrete PNs is that in the case of CPNs it can be
fired in any real amount α, with 0 < α ≤ enab(tj,m) and it is not limited to a
natural number. Such a firing yields to a new marking m′ = m + α ·C(·, tj),
where C = Post − Pre is the token flow matrix (or incidence matrix ). This
firing is also denoted m[tj(α)〉m′.

If a marking m is reachable from the initial marking through a firing se-
quence

σ = tr1(α1)tr2(α2) · · · trk(αk),

and we denote σ ∈ R
|T |
≥0 the firing count vector whose component associated to

a transition tj is:

σj =
∑

h∈H(σ,tj)

αh

where
H(σ, tj) = {h = 1, . . . , k|trh = tj},

then we can write m = m0 + C · σ, which is called the fundamental equation
or state equation.

The set of all firable sequences is L(N ,m0), while the set of all markings
that are reachable with a finite firing sequence is R(N ,m0). An interesting
property of R(N ,m0) is that it is a convex set [17]. That is, if two markings
m1 and m2 are reachable, then any marking

m3 = α ·m1 + (1 − α) ·m2,

is also reachable ∀α ∈ [0, 1].



A net system 〈N ,m0〉 is bounded if there exists a positive constant k such
that, for m ∈ R(N ,m0), m(p) ≤ k.

The net N is called consistent iff ∃ x > 0 such that C · x = 0, i.e., it
is consistent iff there exists at least a complete sequence, i.e., that considers
all transitions, whose firing vector x does not lead to a variation in the actual
marking.

A CPN N = 〈P, T,Pre,Post〉 is a marked graph if ∀p ∈ P , |•p| = |p•| ≤ 1
and Pre(p, t), Post(p, t) ∈ {0, 1} for any p ∈ P and any t ∈ T .

Dually, a CPN N = 〈P, T,Pre,Post〉 is a state machine if ∀t ∈ T , |•t| =
|t•| ≤ 1 and Pre(p, t), Post(p, t) ∈ {0, 1} for any p ∈ P and any t ∈ T .

Given a net N = 〈P, T,Pre,Post〉, and a subset T ′ ⊆ T of its transitions,
the T ′−induced subnet of N is the new net N ′ = 〈P, T ′,Pre′,Post′〉 where
Pre′,Post′ are the restrictions of Pre,Post to T ′. The net N ′ can be thought
as obtained from N removing all transitions in T \ T ′ (and isolated place).

Let T ∗ be the set of all possible sequences obtainable combining elements
in T , included the empty word1. Given a subset T ′ ⊆ T , the projection Π of a
sequence σ ∈ T ∗ over T ′ is defined as Π : T ∗ → T ′∗ such that:

(i) Π(ε) = ε, where ε denotes the empty word;
(ii) for all σ ∈ T ∗ and t ∈ T , Π(σt) = Π(σ)t if t ∈ T ′, and Π(σt) = Π(σ)

otherwise.
Given a sequence σ ∈ L(N ,m0), we denote w = Πo(σ) the corresponding

observed word, i.e., the projection of σ over the set of observable transitions To.
In the following, with a little abuse of notation, we will write that w ∈ T ∗

o ,
where To is the set of observable transitions as specified in the following section.

Analogously, we denote Πu(σ) the unobservable projection of σ, namely its
projection over the set of unobservable transitions Tu = T \ To.

Let Co (Cu) be the restriction of the incidence matrix to To (Tu), namely
the matrix obtained from the incidence matrix C removing all columns not
relative to transitions in To (Tu).

Finally, in the following the Tu-induced subnet will also be called the unob-
servable subnet.

5 The set of y-vectors

Let us introduce the notion of y-vectors on which our diagnosis approach is
based on. We consider the following basic assumptions.

(A1) The initial marking of the net system is known.

(A2) The set of transitions is partitioned as T = To ∪ Tu.

(A3) The Tu-induced net has no spurious solutions.

A spurious marking is a non reachable marking solution of the state equation,
i.e., there exists no firing sequence corresponding to the firing vector. The
following proposition provides constructive criteria to establish the validity of
Assumption (A3).

1The notation T
∗ is used here with a little abuse. Indeed in the continuous case, to each

transition firing is associated a firing amount. Thus T
∗ denotes the possible sequences ob-

tainable combining elements in T , where each sequence is characterized by the firing amounts
of all the transitions in it.



Proposition 2 Let 〈N ,m0〉 be a CPN system. All markings m ∈ R
m
≥0 : m =

m0 + C · σ, with σ ≥ 0, are reachable, i.e., N has no spurious solution, if at
least one of the following three conditions is satisfied:

• N is acyclic;

• N is consistent and all transitions can fire at m0;

• m > 0.

Proof: The first item can be proved following exactly the same arguments
of Theorem 16 in [32] where the result is proved for discrete Petri nets, with the
only difference that in the continuous case the restriction to natural numbers of
the firing amount is relaxed.

The second item has been proved in Theorem 3 of [17]. Finally, the third
item has been proved in the first item of Corollary 18 in [33]. �

The third assumption, characteristic for continuous nets, states that the
interior points of the polytope of the markings solution of the state equation
are reachable markings. This condition allows one to deal with a larger class
of Petri nets with respect to the discrete case. In particular, nets having the
unobservable subnet cyclic can be studied (see Subsection 7.1 as an example).

Definition 3 Let 〈N ,m0〉 be a CPN system where N = 〈P, T,Pre,Post〉
and T = To ∪ Tu. Let w ∈ T ∗

o be an observed word. We define the set of firing
sequences consistent with w by

L(w) = {σ ∈ L(N ,m0) | Πo(σ) = w} (2)

and the set of markings consistent with w by

C(w) = {m ∈ R
q
≥0 | ∃σ ∈ T ∗ : m0[σ〉m, Πo(σ) = w}. (3)

�

Definition 4 Let 〈N ,m0〉 be a CPN system where N = 〈P, T,Pre,Post〉
and T = To ∪ Tu. Let σ ∈ L(N ,m0) be a firable sequence and w = Πo(σ) the
corresponding observed word.

The set of unobservable sequences consistent with w is:

Γ(w) = {σu ∈ T ∗
u | ∃σ ∈ L(w) : σu = Πu(σ)} . (4)

The corresponding set of y-vectors is:

Y (m0, w) = {[mT ; ̺T ]T | ∃σ ∈ L(w), Πu(σ) ∈ Γ(w),
̺ = Πu(σ), m = m0 +C · σ},

(5)

while the set of ̺-vectors is

Y (m0, w) =

{

̺ ∈ R
nu |

[

m

̺

]

∈ Y (m0, w)

}

. (6)

�

In simple words,
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Figure 1: The Petri net system considered in Examples 5, 8, 10 and 12.

• Γ(w) is the set of sequences of unobservable transitions interleaved with
w whose firing enables w.

• Y (m0, w) is the set of y-vectors, where:

– the first q = |P | entries of the generic vector y coincide with a con-
sistent marking m, i.e., a possible marking of the system after the
observation w;

– the last nu = |Tu| entries correspond to the firing count vector of the
unobservable sequence that has fired, interleaved with w, in order
to reach the consistent marking m from m0. They define a set of
vectors that will be called ̺-vectors in the rest of the paper.

Example 5 Let us consider the CPN system in Fig. 1 where

To = {t1, t2, t3}, Tu = {ε4, ε5, ε6, ε7, ε8}.

Let us first assume that no transition is observed, thus w = ε. In such a case
Γ(w) = {ε6(α)}, where α ∈ [0, 1]. In fact, ε6 is the only unobservable transition
enabled at m0 and it can fire for any amount α ∈ [0, 1].

Therefore both
y1 = [0 1 0 0 0 0 1 | 0 0 0 0 0]T ,

and
y2 = [0 0 1 0 1 0 1 | 0 0 1 0 0]T

belong to the set Y (m0, ε). In particular, y1 corresponds to α = 0, while
y2 corresponds to α = 1. Indeed the first q entries of y1 coincide with the
initial marking, while its last nu entries are null. Finally, the first q compo-
nents of y2 coincide with the marking reached firing ε6(1), while its last nu

entries correspond to the firing count vector of the unobservable transitions:
[̺(ε4) ̺(ε5) ̺(ε6) ̺(ε7) ̺(ε8)]

T = [0 0 1 0 0]T .
As it will be formally proved in Proposition 6, all vectors y obtained as a

convex combination of y1 and y2 are y-vectors as well.



Now, let us assume that t1(0.7) is observed, i.e., w = t1(0.7). For sure ε6
has fired at least for an amount α = 0.7 before w since its firing is the only way
to enable t1(0.7). However, after the firing of t1, transition ε8 may fire for an
amount α′ ∈ [0, 0.7] while ε6 can be fired in any amount α′′ ∈ [0, 0.3]. Hence,
Γ(t1(0.7)) = {ε6(0.7 + α′′), ε6(0.7 + α′′)ε8(α

′), ε6(0.7)ε8(α
′)ε6(α

′′), . . .} where
α′ ∈ [0, 0.7], α′′ ∈ [0, 0.3] and dots denote all other sequences of unobservable
transitions with the same firing vector as the previous ones. Repeating the
same arguments as in the previous case, we can conclude that the following four
vectors all belong to Y (m0, t1(0.7))

y′
1 = [0 0 0.3 0 0.3 0 1.7 | 0 0 1 0 0.7]T ,

y′
2 = [0 0.3 0 0 0 0 1.7 | 0 0 0.7 0 0.7]T ,

y′
3 = [0 0.3 0 0 0 0.7 1 | 0 0 0.7 0 0]T ,

y′
4 = [0 0 0.3 0 0.3 0.7 1 | 0 0 1 0 0]T .

�

Proposition 6 Let 〈N ,m0〉 be a CPN system where N = 〈P, T,Pre,Post〉
and T = To ∪ Tu.

Given an observable transition t ∈ To firing an amount α, under assumption
(A3), the set Y (m0, w) is convex.

Proof: Let us rewrite the observed sequence as

w = tr1(α1)tr2(α2) . . . trk(αk). (7)

Moreover, let

σ′ = σ′
u1
tr1(α1)σ

′
u2
tr2(α2) . . . σ

′
uk
trk(αk)σ

′
uk+1

and
σ′′ = σ′′

u1
tr1(α1)σ

′′
u2
tr2(α2) . . . σ

′′
uk
trk(αk)σ

′′
uk+1

be two sequences whose observable projections are equal to w, being

σ′
u1
, σ′′

u1
, . . . , σ′

uk
, σ′′

uk
, σ′

uk+1
, σ′′

uk+1
∈ T ∗

u .

Assume that σ′ and σ′′ are both enabled at m0. Thus, by definition,

y′ =

[

m′

̺′

]

∈ Y (m0, w)

if
{

m′ = m0 +C · σ′,
̺′ = σ′

u1
+ σ′

u2
+ . . .+ σ′

uk
+ σ′

uk+1
,

and

y′′ =

[

m′′

̺′′

]

∈ Y (m0, w)

if
{

m′′ = m0 +C · σ′′,
̺′′ = σ′′

u1
+ σ′′

u2
+ . . .+ σ′′

uk
+ σ′′

uk+1
.

We want to prove that any convex combination of y′ and y′′ still belongs to
Y (m0, w).



To this aim let δ, β ∈ [0, 1] such that δ + β = 1. Being the net system
continuous, by assumption (A3) it holds

m0 + δ ·Cu · σ′
u1

+ β ·Cu · σ′′
u1

= δ(m0 +Cu · σ′
u1
) + β(m0 +Cu · σ′′

u1
)

≥ δ · α1 ·Pre(·, tr1) + β · α1 · Pre(·, tr1)
= α1 ·Pre(·, tr1),

thus

y1 =

[

m1

̺1

]

∈ Y (m0, tr1(α1))

if
{

m1 = m0 +Cu · ̺1 + α1 ·C(·, tr1),
̺1 = δσ′

u1
+ βσ′′

u1
.

Analogously,

m0 +Cu · ̺1 +Co · σr1 + δ ·Cu · σ′
u2

+ β ·Cu · σ′′
u2

= δ(m0 +Cu · ̺1 +Co · σr1 +Cu · σ′
u2
)+

β(m0 +Cu · ̺1 +Co · σr1 +Cu · σ′′
u2
)

≥ δ · α2 · Pre(·, tr2) + β · α2 · Pre(·, tr2)
= α2 · Pre(·, tr2),

thus

y2 =

[

m2

̺2

]

∈ Y (m0, tr1(α1)tr2(α2))

if
{

m2 = m0 +Cu · ̺2 + α1 ·C(·, tr1) + α2 ·C(·, tr2),
̺2 = δ(σ′

u1
+ σ′

u2
) + β(σ′′

u1
+ σ′′

u2
).

Generalizing to a word w of arbitrary length k ≥ 1 defined as in equation (7),
we can conclude that

y = αy′ + βy′′ ∈ Y (m0, w)

thus proving the statement. �

If the net system is bounded the set Y (m0, w) can be easily characterized
in linear algebraic terms. Moreover, if the net system is bounded, even if there
exist cycles of unobservable transitions, the enabling degree of the unobservable
transitions is upper bounded. In more detail, the structural enabling bound of
a given transition t of N is the solution of the following LPP (see [34] for more
details):

EN(t) = max k
s.t. m0 +C · σ ≥ k ·Pre(·, t)

σ ≥ 0.
(8)

Now, let EN ∈ R
|Tu|
≥0 be a vector with as many entries as the number of

unobservable transitions, where each entry is equal to the structural enabling
bound of the corresponding unobservable transition. The following algorithm
can be used for the characterization of Y (m0, w).

Algorithm 7 (Computation of Y (m0, w))

1. Let v = ε.



2. Let Y (m0, v) be the polytope2 defined as







m = m0 +Cu · σu

m ≥ 0
0 ≤ σu ≤ EN .

3. Let t(α) be a new observation and w = vt(α).

4. Compute the set of vertices E(v) of

{

[mT ; ̺T ]T ∈ Y (m0, v)
m ≥ α · Pre(·, t).

5. Let E = ∅.

6. For all ei = [m̃T ; ˜̺T ]T ∈ E(v):

(a) compute the set of vertices Ei = [mT ; ̺T ]T of the polytope defined
as















m = m̃+ α ·C(·, t) +Cu · σu

̺ = ˜̺ + σu

0 ≤ σu ≤ EN

m ≥ 0

(9)

(b) let E = E ∪ Ei.

7. Let Y (m0, w) be the convex hull of E.

8. Let Y (m0, w) =

{

̺ ∈ R
nu |

[

m

̺

]

∈ Y (m0, w)

}

.

9. Let v = w and goto Step 3.

�

In simple words Algorithm 7 first computes in Step 2 the set Y (m0, ε). By
definition it includes all firing vectors corresponding to sequences of unobserv-
able transitions that are enabled at the initial marking.

Then, after a new observation t(α) occurs, it computes the set of vertices of
Y (m0, v) from which t(α) is enabled, denoted E(v) where v = ε. Now, for each
vertex ei = [m̃T ; ˜̺T ]T ∈ E(v), it defines the set of markings – ̺-vectors that
can be obtained from m̃ firing t(α) plus eventually a sequence of unobservable
transitions (σu). Note that by Assumption (A3) this does not lead to spurious
solutions. Then the algorithm computes the set of vertices Ei of such a set.
Finally, Y (m0, t(α)) is the convex hull of the union of all the vertices thus
obtained. The algorithm iterates when a new observation occurs.

Example 8 Let us consider again the CPN system in Fig. 1. Assume that an
observation w = t1(0.7)t2(0.5)t3(0.5) occurs. We apply Algorithm 7 to compute
the set of vertices of Y (m0, w).

2A bounded polyhedron P ⊂ R
n, P = {x ∈ R

n | Ax ≤ B} is called a polytope.



In accordance with the results in Example 5, we obtain that Y (m0, ε) has
two vertices: y1 = [0 1 0 0 0 0 1 | 0 0 0 0 0]T and y2 = [0 0 1 0 1 0 1 | 0 0 1 0 0]T .

Using Algorithm 7 we also compute the set of vertices of Y (m0, t1(0.7)):

y′
1 = [0 0 0.3 0 0.3 0 1.7 | 0 0 1 0 0.7]T ,

y′
2 = [0 0.3 0 0 0 0 1.7 | 0 0 0.7 0 0.7]T ,

y′
3 = [0 0.3 0 0 0 0.7 1 | 0 0 0.7 0 0]T ,

y′
4 = [0 0 0.3 0 0.3 0.7 1 | 0 0 1 0 0]T .

Iterating the procedure we find out a set of 16 vertices defining Y (m0, t1(0.7)t2(0.5)),
namely

y′′
1 = [0 0.3 0.5 0 0.5 0 1.2 | 0 0.5 0.7 0.5 0.7]T ,

y′′
2 = [0.5 0.3 0 0 0 0 1.2 | 0 0 0.7 0 0.7]T ,

y′′
3 = [0 0.3 0.5 0.5 0 0 1.2 | 0 0.5 0.7 0 0.7]T ,

y′′
4 = [0 0.8 0 0 0 0 1.2 | 0.5 0 0.7 0 0.7]T ,

y′′
5 = [0 0 0.8 0 0.8 0 1.2 | 0.5 0 1.5 0 0.7]T ,

y′′
6 = [0 0 0.8 0.5 0.3 0 1.2 | 0 0.5 1 0 0.7]T ,

y′′
7 = [0.5 0 0.3 0 0.3 0 1.2 | 0 0 1 0 0.7]T ,

y′′
8 = [0 0 0.8 0 0.8 0 1.2 | 0 0.5 1 0.5 0.7]T ,

y′′
9 = [0 0 0.8 0 0.8 0.7 0.5 | 0.5 0 1.5 0 0]T ,

y′′
10 = [0 0 0.8 0.5 0.3 0.7 0.5 | 0 0.5 1 0 0]T ,

y′′
11 = [0.5 0 0.3 0 0.3 0.7 0.5 | 0 0 1 0 0]T ,

y′′
12 = [0 0 0.8 0 0.8 0.7 0.5 | 0 0.5 1 0.5 0]T ,

y′′
13 = [0 0.8 0 0 0 0.7 0.5 | 0.5 0 0.7 0 0]T ,

y′′
14 = [0 0.3 0.5 0.5 0 0.7 0.5 | 0 0.5 0.7 0 0]T ,

y′′
15 = [0.5 0.3 0 0 0 0.7 0.5 | 0 0 0.7 0 0]T ,

y′′
16 = [0 0.3 0.5 0 0.5 0.7 0.5 | 0 0.5 0.7 0.5 0]T .

Note that there are two vertices relative to the same consistent marking,
namely y′′

9 and y′′
12. The reason of this is that the same marking can be

obtained by firing two unobservable sequences having different firing vectors.
More precisely, m = [0 0 0.8 0 0.8 0.7 0.5]T can be obtained from m0 firing
σ1 = ε6(1)t1(0.7)t2(0.5)ε4(0.5)ε6(0.5) or σ2 = ε6(1)t1(0.7)t2(0.5)ε5(0.5) ε7(0.5).

Finally, after the observation of t3(0.5), the set of vertices of Y (m0, t1(0.7)t2(0.5)t3(0.5))
is reduced to four, namely

y1
′′′ = [0 0 0.8 0 0.3 0 1.2 | 0 0.5 1 0 0.7]T ,

y2
′′′ = [0 0.3 0.5 0 0 0 1.2 | 0 0.5 0.7 0 0.7]T ,

y3
′′′ = [0 0.3 0.5 0 0 0.7 0.5 | 0 0.5 0.7 0 0]T ,

y4
′′′ = [0 0 0.8 0 0.3 0.7 0.5 | 0 0.5 1 0 0]T .

We can conclude that ε6(0.7) must have fired before the observation of t1(0.7)
and ε5(0.5) must have fired before t3(0.5). �

By looking at this very simple example, we can conclude that the number of
vertices of Y (m0, w) can either increase or decrease. However, it keeps bounded
if the net system is bounded.

6 Fault diagnoser design

Assume that a certain number of anomalous (or fault) behaviors may occur in
the system. The occurrence of a fault behavior corresponds to the firing of



an unobservable transition, but there may also be other transitions that are
unobservable as well, but whose firing corresponds to regular behaviors. Then,
assume that fault behaviors may be divided into r main classes (fault classes),
and we are not interested in distinguishing among fault events in the same class.
Usually, fault transitions that belong to the same fault class are transitions that
represent similar physical faulty behavior.

This can be easily modeled in PN terms assuming that the set of unobserv-
able transitions is partitioned into two subsets, namely

Tu = Tf ∪ Treg

where Tf includes all fault transitions and Treg includes all transitions relative
to unobservable but regular events. The set Tf is further partitioned into r
subsets, namely,

Tf = T 1
f ∪ T 2

f ∪ . . . ∪ T r
f

where all transitions in the same subset correspond to the same fault class. We
will say that the i-th fault has occurred when a transition in T i

f has fired.
Let us now introduce the definition of diagnoser.

Definition 9 A diagnoser is a function

∆ : T ∗
o × {T 1

f , T
2
f , . . . , T

r
f } → {N,U, F}

that associates to each observation w and to each fault class T i
f , i = 1, . . . , r, a

diagnosis state.

• ∆(w, T i
f ) = N if for all σ ∈ L(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the
firing sequences consistent with the observation contains fault transitions
of class i.

• ∆(w, T i
f ) = U if:

(i) there exists σ ∈ L(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) there exists σ′ ∈ L(w) such that for all tf ∈ T i
f it holds tf /∈ σ′

In such a case a fault transition of class i may have occurred or not, i.e., it
is uncertain, and we have no criteria to draw a conclusion in this respect.

• ∆(w, T i
f ) = F if for all σ ∈ L(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable se-
quences consistent with the observation contain at least one fault transi-
tion of class i. �

Thus, states N and F correspond to “certain” states: the fault has not
occurred or it has occurred for sure; on the contrary state U is an “uncertain”
state: the fault may either have occurred or not.

Example 10 Let us consider again the CPN system in Fig. 1. Assume that
there exists only one fault class: T 1

f = {ε5}.

Obviously, before any observation, ∆(ε, T 1
f ) = N since there exists no se-

quence enabled at the initial marking including no observable transition and the
fault ε5.



Now, let w = t1(0.7)t2(0.5). The vertices of the set Y (m0, w) are given in
Example 8. It is easy to observe that ε5 may have fired in an amount of 0.5
(see y′′

1 , y
′′
3 , y

′′
6 , y

′′
8 , y

′′
10, y

′′
12, y

′′
14 and y′′

16) or not (e.g. y′′
2). This implies that

∆(t1(0.7)t2(0.5), T
1
f ) = U , i.e., the fault may have occurred or not. �

The on-line computation of the sets L(w) and Γ(w) may be computationally
demanding in large scale systems. In the following we suggest an alternative
procedure to compute diagnosis states that is based on the knowledge of the set
of ̺-vectors Y (m0, w).

Proposition 11 Consider an observed word w ∈ T ∗
o . Let















li = min
∑

tj∈T i
f

̺(tj)

s.t.
̺ ∈ Y (m0, w)















ui = max
∑

tj∈T i
f

̺(tj)

s.t.
̺ ∈ Y (m0, w)

(10)

It holds:

∆(w, T i
f ) = N ⇔ ui = 0

∆(w, T i
f ) = U ⇔ li = 0 ∧ ui > 0

∆(w, T i
f ) = F ⇔ li > 0

Proof: It follows from Definitions 4 and 9.
If ui = 0 it means that none of the unobservable sequences consistent with w

contains transitions in T i
f . By Definition 9 this corresponds to diagnosis stateN .

Moreover, if ui > 0 it means that at least one unobservable sequence consistent
with w contains at least one transition in the ith class, thus the diagnosis state
cannot be N .

If li = 0 and ui > 0 it means that there exist at least one sequence of
unobservable transitions consistent with w that does not contain transitions in
the ith class and at least one sequence of unobservable transitions consistent
with w that contains transitions in the ith class. By definition this is the case
of diagnosis state equal to U . Similarly, if any of such conditions is violated the
diagnosis state cannot be equal to U .

Finally, if li > 0 then all the unobservable sequences consistent with w
contain at least one transition in T i

f , i.e., all words consistent with the actual
observation contain a transition in the ith class, that means that some fault in
the ith class has occurred for sure. By Definition 9 this corresponds to diagnosis
state equal to F . Similarly, if li = 0 it means that some unobservable sequences
consistent with w contain no transition in T i

f thus the diagnosis state is either
N or U .

�

Example 12 Let us still consider the CPN in Fig. 1. Assume again that there
is only one fault class T 1

f = {ε5}.
Solving the LPPs (10) it is immediate to obtain the following diagnosis

states:
∆(ε, T 1

f ) = N

∆(t1(0.7), T
1
f ) = N

∆(t1(0.7)t2(0.5), T
1
f ) = U

∆(t1(0.7)t2(0.5)t3(0.5), T
1
f ) = F.



�

Note that the numerical results in Examples 5, 8, 10 and 12 have been
obtained using the software in [35].

6.1 Some remarks related to fluidization

It is well known that the set of reachable markings of the discrete net is included
in the set of reachable markings of the underling continuous one. However, there
may exist integer markings in the reachability set of the continuous net that are
not reachable in the discrete one. The same result can be easily proved for the
set of markings consistent with a given observation. This implies that even if
a fault has occurred in the original net and it would have been detected using
the discrete approach, it may happen that using the continuous approach we do
not detect it, and the output is an uncertain state. On the contrary, if a fault
is detected in the continuous case, then for sure it has occurred in the original
net.

Obviously, this is a drawback of fluidization. However, in many cases, flu-
idization is the only viable solution, either because the unobservable subnet
is cyclic, or because the computational complexity of the discrete approach is
prohibitive as discussed in the following Section 7 via a numerical example.
In simple words, it is the same kind of limitation we met when using linear
programming to solve integer programming problems.

However there exist some cases in which the above limitation does not ap-
pear. In particular, we can prove that under particular assumptions on the net
structure, e.g. total unimodularity of the incidence matrix, the diagnosis states
in the two cases are guaranteed to be coincident.

Before formalizing this, let us recall that a square integer matrix is called
unimodular if its determinant is equal to ±1. A totally unimodular matrix is a
matrix for which every square non-singular sub-matrix is unimodular.

Proposition 13 Let 〈N ,m0〉 be a bounded discrete PN system satisfying as-
sumptions (A1) to (A3). If the incidence matrix of the unobservable subnet is
totally unimodular and the observed transitions fire in integer amounts, then the
set Y (m0, w) computed using Algorithm 7 is an integer convex polytope. Ad-
ditionally, the diagnosis states of the underlying discrete net can be computed
using LPPs (10).

Proof: The above statement can be proved using two basic results in [36].

• The first one claims that, if A is a totally unimodular, then matrix [A | I]
is totally unimodular as well.

• Concerning the second result, let us consider the polyhedron:

Q(A, b, b′, c, c′) = {x | b ≤ A · x ≤ b′ and c ≤ x ≤ c′}

where A is a square matrix of integer numbers, and the entries of vectors
b, b′, c, c′ are either integer numbers or ±∞. Theorem 2 in [36] states that
Q(A, b, b′, c, c′) is an integer polyhedron iff A is totally unimodular.

Based on the result in the first item above, we can conclude that, since the
incidence matrix of the unobservable subnet Cu is totally unimodular, then the
matrix [I −Cu] is totally unimodular as well.



We now prove that Y (m0, w) is an integer polytope by induction on the
length of the observed word.

Basis step: Let us consider the polytope computed in Step 2 of Algorithm 7,
namely Y (m0, ε). The set of constraints defining it can be rewritten as:















[I −Cu] ·

[

m

σu

]

= m0

0 ≤

[

m

σu

]

≤

[

∞ · 1
EN

] (11)

Now, let

x =

[

m

σu

]

, A = [I −Cu] ,

b = b′ = m0, c = 0 and c′ =

[

∞ · 1
EN

]

.

Since A is a unimodular matrix, based on the result in [36] recalled in the second
item above, (11) defines an integer polyhedron. Moreover, being 0 ≤ σu ≤ EN

and the net system bounded by assumption, all variables are bounded, therefore
(11) corresponds to an integer polytope, thus proving the basis step.

Inductive step: Assume that Y (m0, v) is an integer polytope. We want
to prove that Y (m0, vt(α)) is an integer polytope for any observable transition
t and any integer amount α.

Let us preliminary observe that, since Y (m0, v) is an integer polytope by
assumption, vectors m̃ and ˜̺ in (9) have integer entries. Moreover, by the
second constraint of (9), it is σu = ̺− ˜̺.

Moreover, let us observe that the set of constraints (9) can be rewritten as:














[I −Cu] ·

[

m

̺

]

= m̃+ α ·C(·, t)−Cu · ˜̺
[

0
˜̺

]

≤

[

m

̺

]

≤

[

∞ · 1
EN + ˜̺

] (12)

Now, let

x =

[

m

̺

]

, A = [I −Cu] ,

b = b′ = m̃+ α ·C(·, t)−Cu · ˜̺,

c =

[

0
˜̺

]

and c′ =

[

∞ · 1
EN + ˜̺

]

.

Since A is a unimodular matrix, based on the result in [36] recalled in the
second item above, it follows that (12) is an integer polyhedron. Moreover,
since x is bounded being ˜̺ ≤ ̺ ≤ EN + ˜̺ and the net system is bounded, (12)
corresponds to an integer polytope. This concludes the proof.

�

There exist algorithms to check total unimodularity of a matrix in polyno-
mial time [37]. Moreover, if the unobservable subnet is either a state machine
or a marked graph this is always true [1] and the set of integer points of the set
of consistent markings in the continuous net coincides with the set of consistent
markings in the discrete one. Hence, the fault diagnosis approach presented in
this paper guarantees to compute the same diagnosis state we obtain using a
discrete approach.
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Figure 2: Layout of the automated manufacturing system in Subsection 7.1.

7 Manufacturing examples

In this section we apply the proposed approach to two manufacturing systems.
In the first case the unobservable subnet is cyclic, thus it can only be dealt in
the continuous framework. In the second case we consider a Petri net whose
unobservable subnet is acyclic, thus it can also be dealt in the discrete case.
A detailed comparison among the proposed approach and the approach in [19]
is presented in terms of computational complexity, and it is shown that, as
expected, the advantage of fluidization highly depends on the initial marking of
the net. In more detail, it highly increases as the number of reachable markings
increases.

7.1 The unobservable subnet is cyclic

We now apply the above approach to a classical automated manufacturing sys-
tem whose layout is sketched in Fig. 2 and whose Petri net model is shown
in Fig. 3. Note that such an example has not been taken from the industrial
world. However, it is recognized to be significant in the literature since slight
variations of it have already been considered by Zhou and DiCesare in [38], by
Basile et al. in [39] and by Cabasino et al. in [40]. Note however, that while
in [38–40] the manufacturing system has been modeled as a discrete Petri net,
we now consider the untimed CPN model resulting from the fluidization of the
discrete model in [39].

The plant consists of five machines (M1 to M5), four robots (R1 to R4),
a finite capacity buffer B, two inputs of raw parts (I1 and I2) of type 1 and
type 2 respectively, two Automated Guided Vehicle (AGV) systems (AGV1 and
AGV2), and finally two outputs (O1 and O2) for the processed parts. The plant
produces two different types of products from two types of raw materials. An
unlimited source of raw parts is assumed. It is supposed that there are 19 pallets
for the first production line and 20 pallets for the second production line.

This net has m = 35 places and n = 24 transitions. The marking of place
p33, the co-buffer, represents the number of free buffer slots, while the marking
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Figure 3: Petri net model of the manufacturing system in Fig. 2.



of places p9 and p19 represent respectively the number of type 1 and type 2
parts present in the buffer. Moreover, there exist 14 circuits.

As in [39], we assume that the system is controlled with the addition of three
monitor places (p36, p37, p38) that impose the satisfaction of three Generalized
Mutual Exclusion Constraints (GMECs) [41, 42]:







∑9
i=2 mi ≤ 8 (a)

∑19
i=15 mi ≤ 8 (b)

∑9
i=2 mi +

∑19
i=15 mi ≤ 9 (c)

(13)

We assume that transitions t1 to t12 correspond to observable events, while
transitions ε13 to ε24 correspond to unobservable but regular events. In par-
ticular, we observe the introduction of parts in one of the two production lines
(transitions t1 and t12), the introduction of parts in the buffer by R3 (transitions
t2 and t3), all operations performed by robot R4 (transitions t6, t7, t8 and t9),
the drawing of parts from one of the two production lines by robot R2 (transi-
tions t4 and t10) and the output of parts in the AGV systems AGV1 and AGV2
(transitions t5 and t11).

Finally, we consider two different types of fault modeled by the unobservable
transitions ε25 and ε26. In particular we assume T 1

f = {ε25} and T 2
f = {ε26}.

The first kind of fault corresponds to a malfunctioning of robot R1 that moves
one raw part of the second type to the first production line, so that it is processed
by machine M2 instead of M4. The second kind of fault corresponds to a
malfunctioning of robot R2 that moves one part of the first type, after it has
been processed by machine M3, and sends it to AGV2 who directs it to the wrong
output (O2 instead of O1). Note that using fluidization is a requirement here
being the unobservable net cyclic (see e.g. the cycles ε13p3ε15p29, ε16p6ε18p25,
and so on).

Now, let us assume that the word
w = t1(1)t1(1)t2(1)t12(1)t3(1)t12(1)t3(1)t6(1)

t7(1)t8(1)t4(1)t5(1)t9(1)t10(1)t11(1)
is observed. The results of computations carried out on a PC Intel with a

clock of 1.80 GHz, are briefly summarized in Table 1. In particular, here we
reported: the number of vertices Nv of the set Y (v,m0) for all prefixes v of
w, the time Tv necessary to compute them, and the corresponding diagnosis
states. The MATLAB software used for computation is available on-line [35].
Note that for simplicity of notation in Table 1 we omitted the amount of firing
of the observations, that are unitary in all cases.

Let us also observe that the times to compute the diagnosis states, once
the set of vertices is given, is omitted here because in all cases it is practically
negligible (less than one second).

Moreover, let us observe that in this case, as it occurs in general cases, the
number of vertices is not related to the length of the observed word. What
is happening here is that the time to compute the diagnosis state at a given
observation increases when the number of vertices at the previous observation
increases. This is a direct consequence of the algorithm used to compute them.

For the sake of brevity we do not report all vertices. As an example, in
Table 2 we only summarize the set of vertices of Y (t1(1),m0) that includes 7
entries, namely e1 to e7. In particular, these vertices correspond respectively,
to the firing of the following unobservable sequences at the marking reached



Observed word v Nv Tv [sec] ∆(v, T 1
f ) ∆(v, T 2

f )

ε 1 7.67 N N
t1 7 0.81 N N
t1t1 20 3.33 N N
t1t1t2 12 2.72 N N
t1t1t2t12 51 5.92 U N
t1t1t2t12t3 18 4.70 U N
t1t1t2t12t3t12 59 10.63 U N
t1t1t2t12t3t12t3 18 5.27 F N
t1t1t2t12t3t12t3t6 2 1.25 F N
t1t1t2t12t3t12t3t6t7 2 1.25 F N
t1t1t2t12t3t12t3t6t7t8 2 1.16 F N
t1t1t2t12t3t12t3t6t7t8t4 12 4.63 F U
t1t1t2t12t3t12t3t6t7t8t4t5 4 5.58 F N
t1t1t2t12t3t12t3t6t7t8t4t5t9 4 5.31 F N
t1t1t2t12t3t12t3t6t7t8t4t5t9t10 8 8.09 F N
t1t1t2t12t3t12t3t6t7t8t4t5t9t10t11 4 5.05 F N

Table 1: Results of some numerical simulations carried out on the untimed CPN
system in Fig. 3.

from m0 firing t1 for a unitary amount:

σ
(1)
u = ε14(1)ε16(1)ε18(1), σ

(2)
u = ε13(1)ε15(1)ε17(1),

σ
(3)
u = ε14(1)ε16(1), σ

(4)
u = ε13(1)ε15(1),

σ
(5)
u = ε14(1), σ

(6)
u = ε13(1),

σ
(7)
u = ε.

Clearly, no fault occurrence may have been occurred when the observation is
t1(1) thus the two diagnosis states are both equal to N .

The first uncertain state occurs after the observation of w = t1(1)t1(1)t2(1)t12(1).
This is consistent with the fact that there exist sequences, such as

w′ = t1(1)t1(1)ε13(1)ε15(1)ε17(1)t2(1)t12(1)ε25(1),

that are consistent with the observation and contain the fault transition ε25, but
there also exist sequences consistent with the observation that do not contain
it, such as

w′′ = t1(1)t1(1)ε13(1)ε15(1)ε17(1)t2(1)t12(1).

On the contrary, the diagnosis state relative to the first fault class is equal to
F after the observation w = t1(1)t1(1)t2(1)t12(1)t3(1)t12(1)t3(1). The correct-
ness of this is evident. In fact, given the initial marking, if t1 has been observed
for an amount 2 the total amount of firing of t2 plus t3 may be greater than 2
if and only if transition ε25 has fired.

Similar considerations can be repeated to explain the other diagnosis states.



e1 e2 e3 e4 e5 e6 e7
p1 18 18 18 18 18 18 18
p2 0 0 0 0 0 0 1
p3 0 0 0 0 0 1 0
p4 0 0 0 0 1 0 0
p5 0 0 0 1 0 0 0
p6 0 0 1 0 0 0 0
p7 0 1 0 0 0 0 0
p8 1 0 0 0 0 0 0
p9 0 0 0 0 0 0 0
p10 0 0 0 0 0 0 0
p11 1 1 1 1 1 1 1
p12 0 0 0 0 0 0 0
p13 0 0 0 0 0 0 0
p14 20 20 20 20 20 20 20
p15 0 0 0 0 0 0 0
p16 0 0 0 0 0 0 0
p17 0 0 0 0 0 0 0
p18 0 0 0 0 0 0 0
p19 0 0 0 0 0 0 0
p20 0 0 0 0 0 0 0
p21 0 0 0 0 0 0 0
p22 0 0 0 0 0 0 0
p23 0 0 0 0 0 0 0
p24 1 1 1 0 1 1 1
p25 1 1 0 1 1 1 1
p26 0 0 0 0 0 0 0
p27 1 1 1 1 1 1 1
p28 1 1 1 1 1 1 1
p29 1 1 1 1 0 0 1
p30 1 1 1 1 1 1 1
p31 0 0 1 1 1 1 1
p32 1 1 1 1 1 1 1
p33 8 8 8 8 8 8 8
p34 1 1 1 1 1 1 1
p35 1 1 1 1 1 1 1
p36 7 7 7 7 7 7 7
p37 8 8 8 8 8 8 8
p38 8 8 8 8 8 8 8

e1 e2 e3 e4 e5 e6 e7
ε13 0 1 0 1 0 1 0
ε14 1 0 1 0 1 0 0
ε15 0 1 0 1 0 0 0
ε16 1 0 1 0 0 0 0
ε17 0 1 0 0 0 0 0
ε18 1 0 0 0 0 0 0
ε19 0 0 0 0 0 0 0
ε20 0 0 0 0 0 0 0
ε21 0 0 0 0 0 0 0
ε22 0 0 0 0 0 0 0
ε23 0 0 0 0 0 0 0
ε24 0 0 0 0 0 0 0
ε25 0 0 0 0 0 0 0
ε26 0 0 0 0 0 0 0

Table 2: The set of vertices (in column) of Y (t1(1),m0).



7.2 The unobservable subnet is acyclic

The second example we consider is voluntarily simple. It aims to show that,
even in very simple examples with no unobservable cycle, it may happen that
the discrete approach fails due to the exponential growth of the number of basis
markings, and a fortiori of the number of reachable states, while the continuous
approach reveals efficient due to a small number of vertices.

Let us consider the Petri net in Fig. 4. It represents a part of a large
manufacturing system consisting of several machines, robots and buffers. In
particular, transitions t1 and t2 model two robots R1 and R2, that take parts
from two different buffers modeled by places p1 and p2, respectively. The four
parts taken by robot R1 are packed in couples and placed on two different
conveyor belts modeled respectively by places p3 and p4, that follow two parallel
lines at two different levels. In more detail, p4 is located in the lowest level, while
p3 is in the highest level.

Parts in the conveyor belts represented by place p4 are processed by the
machine modeled by transition ε7 and then put in a common buffer represented
by place p7.

The bottom part of the net models similar operations.
Transitions t3andt4 model respectively the output of parts from the conveyor

belts modeled by p3 and p6 to a common buffer modeled by p8, while transition
t5 models the output of parts from the common buffer p7. To each part exiting
p7 and p8 corresponds a new part entering p1 and a new part entering p2, and
the process repeats cyclically.

As usual, transitions tj , j = 1, . . . , 6, represent observable transitions, while
transitions εi, i = 7, . . . , 10 model silent transitions. In more detail, ε7 and ε8
represent regular events, while ε9 and ε10 model fault events, i.e., some breakage
in the highest conveyor belts at the beginning of the two main production lines.
Finally, we assume that the two fault transitions belong to two different fault
classes, i.e., T 1

f = {ε9} and T 2
f = {ε10}.

Our goal here is that of evaluating the effectiveness of fluidization with re-
spect to fault diagnosis. To this aim, we apply to the above example both the
discrete approach in [19] and the continuous approach proposed in this paper,
and provide a comparison among them in terms of computational complexity.

The diagnosis approach in [19] is based on the notion of basis markings, that
are a subset of the set of consistent markings. In particular, given an observed
word w, a basis marking is a marking that has been reached firing w and all those
unobservable transitions that are strictly necessary to enable it. The number of
basis markings clearly affects the computational complexity, since they need to
be exhaustively enumerated, as well as the number of vertices of Y (w,m0) in
the continuous case.

Note that, as well as in the previous example, numerical simulations are
carried out on a PC Intel with a clock of 1.80 GHz. Moreover, the discrete
approach is implemented using the MATLAB tool in [43].

Two different scenarios are considered in the discrete case. First, we as-
sume as initial marking m′

0 = [20 20 0 0 0 0 0]T and as observed word
w′ = t1t2t5t5t5t1t3t4.

Secondly, we assume m′′
0 = [80 80 0 0 0 0 0]T and

w′′ = t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t1t1t1t1t3t3 t3t3t4t4t4t4.
The resulting number NMb

of basis markings, the time TMb
necessary to



t1 ε7 
p4 

p3 

p7 

p1 4 

4 

p2 p5 

p6 

t5 

t3 

t4 

ε8 

ε9 

ε10 
t2 

p8 

t6 

Figure 4: The Petri net considered in Subsection 7.2.

Discr. Observed word v NMb
TMb

[sec] ∆(v, T 1
f ), ∆(v, T 2

f )

ε 1 0.335 N , N
t1 1 0.226 U , N
t1t2 1 0.044 U , U
t1t2t5 3 0.080 U , U
t1t2t5t5 6 0.038 U , U
t1t2t5t5t5 6 0.052 F , N
t1t2t5t5t5t4 6 0.027 F , N
t1t2t5t5t5t4t1 6 0.051 F , N
t1t2t5t5t5t4t1t3 6 0.036 F , N

Table 3: Results of some numerical simulations carried out on the PN in Fig. 4
assuming m0 = [20 20 0 0 0 0 0]T .

compute them and the diagnosis states are reported in Tables 3 and Table 4,
respectively.

Both scenarios can be simulated in the continuous case assuming as initial
marking m0

′′′ = [2 2 0 0 0 0 0]T and observed word

w′′′ = t1(0.1)t2(0.1)t5(0.3)t4(0.1)t1(0.1)t3(0.1).

In particular, in the first case fluidization assumes that 10 discrete tokens cor-
respond to a unit of fluid content in the continuous PN system, while in the
second case 40 discrete tokens are approximated by a unit of fluid content.

The resulting number of verticesNv of Y (w,m0) and the time Tv to compute
them are reported in Table 5 where the last column also shows the diagnosis
states for the two fault classes. As it can be observed the diagnosis states
computed in the continuous case are in accordance with the discrete ones.

The advantages in terms of computational complexity are quite negligible



Discr. Observed word v NMb
TMb

[sec] ∆(v, T 1
f ), ∆(v, T 2

f )

ε 1 0.255 N , N
t1t1t1t1 1 0.149 U , N
t1t1t1t1t2t2t2t2 1 5.790 U , U
t1t1t1t1t2t2t2t2t5t5t5t5 81 18.100 U , U
t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5 4830 43.463 U , U
t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5 34650 297.308 F , N
t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t4t4t4t4 34650 227.509 F , N
t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t4t4t4t4t1t1t1t1 34650 739.524 F , N
t1t1t1t1t2t2t2t2t5t5t5t5t5t5t5t5t5t5t5t5t4t4t4t4t1t1t1t1t3t3t3t3 34650 266.386 F , N

Table 4: Results of some numerical simulations carried out on the PN in Fig. 4
assuming m0 = [80 80 0 0 0 0 0]T .

Cont. Observed word v Nv Tv [sec] ∆(v, T 1
f ), ∆(v, T 2

f )

ε 1 0.01 N , N
t1(0.1) 4 0.06 U , N
t1(0.1)t2(0.1) 12 0.04 U , U
t1(0.1)t2(0.1)t5(0.3) 1 0.03 F , N
t1(0.1)t2(0.1)t5(0.3)t4(0.1) 1 0.02 F , N
t1(0.1)t2(0.1)t5(0.3)t4(0.1)t1(0.1) 4 0.04 F , N
t1(0.1)t2(0.1)t5(0.3)t4(0.1)t1(0.1)t3(0.1) 2 0.04 F , N

Table 5: Results of some numerical simulations carried out on the CPN system
obtained from the fluidization of the PN in Fig. 4 assumingm0 = [2 2 0 0 0 0 0]T .



in the case of the first discrete scenario, while they become evident in the case
of the second scenario. Such advantages become even more significant if we
consider the same discrete PN system with an even larger number of reachable
states, e.g. the one obtained multiplying m0

′′′ by 50. In particular, in such a
case the simulation does not end after one day.

Summarizing, we conclude that the advantages of fluidization depend on the
considered net system, and in general there is no a priori relationship between
the number of vertices of the set Y (w,m0) and the number of basis markings.
This depends on the structure of the unobservable subnet, on the initial marking
and on the observed word. Nevertheless, as intuitive, major advantages are in
general obtained when the number of reachable markings in the discrete case is
large.

8 Conclusions

In this paper we investigated the effect of fluidization of Petri nets with respect
to fault diagnosis. In particular the focus is on untimed continuous Petri nets.
Two are the main conclusions of such research.

The first one is that fluidization allows to relax the assumption, common to
all the discrete event system diagnosis approaches, that there exist no cycle of
unobservable transitions.

The second one is that there may exist cases where fluidization leads to
significant advantages in terms of computational complexity, enabling us to also
perform diagnosis on systems whose number of reachable states is so large that
discrete approaches are not applicable in practice. A very simple case of this is
given in the paper.

In the next future we plan to study the problem of diagnosability of untimed
continuous Petri nets, i.e., determine some criteria to establish a priori if fault
occurrences can be reconstructed after a finite amount of observations.
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E. López-Mellado, “Structural Diagnosability of DES and Design of Re-
duced Petri Net Diagnosers,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 2011, in press.

[7] J. Meseguer, V. Puig, and T. Escobet, “Fault Diagnosis Using a Timed
Discrete-Event Approach Based on Interval Observers: Application to
Sewer Networks,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 40, no. 5, pp. 900–916, September 2010.

[8] S. Takai and R. Kumar, “Decentralized Diagnosis for Nonfailures of
Discrete Event Systems Using Inference-Based Ambiguity Management,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 40, no. 2, pp. 406–412, March 2010.

[9] O. Contant, S. Lafortune, and D. Teneketzis, “Diagnosis of intermittent
faults,” Discrete Event Dynamic Systems: Theory and Applications, vol. 14,
no. 2, pp. 171–202, April 2004.

[10] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis, “Stability conditions for mul-
ticlass fluid queueing networks,” IEEE Transactions on Automatic Control,
vol. 41, no. 11, pp. 1618–1631, November 2002.

[11] H. Chen and D. Yao, Fundamentals of queueing networks: Performance,
asymptotics, and optimization. Springer Verlag, 2001.

[12] G. Sun, C. Cassandras, and C. Panayiotou, “Perturbation analysis of mul-
ticlass stochastic fluid models,” Discrete Event Dynamic Systems: Theory
and Applications, vol. 14, no. 3, pp. 267–307, June 2004.

[13] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets.
Springer-Verlag, 2010, 2nd edition.

[14] M. Silva and L. Recalde, “On fluidification of Petri net models: from dis-
crete to hybrid and continuous models,” Annual Reviews in Control, vol. 28,
no. 2, pp. 253–266, December 2004.
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This appendix summarizes the main notations used in the paper.

• P : set of places;

• T : set of transitions;

• To (Tu, Treg, Tf ): set of observable (unobservable, regular, faulty) transi-
tions;

• T i
f : the i-th fault class;

• Pre (Post): pre (post) incidence matrix;

• C: incidence matrix;

• Co (Cu): restriction of C to To (Tu);

• N = 〈P, T,Pre,Post〉: net structure;

• 〈N ,m0〉: net system with initial marking m0;

• L(N ,m0): set of firable sequences at m0;

• R(N ,m0): set of markings that are reachable with a finite firing sequence
at m0;

• •x (x•): input (output) set of a node x ∈ P ∪ T ;

• Π: projection operator;

• L(w): set of firing sequences consistent with the observed word w;

• Γ(w): set of unobservable sequences consistent with the observed word w;

• C(w): set of markings consistent with the observed word w;

• Y (m0, w): set of y-vectors associated to m0 and the observed word w
(see (5));

• Y (m0, w): set of ̺-vectors associated to m0 and the observed word w (see
(6));

• EN(t): structural enabling bound of transition t (see (8));

• ∆(w, T i
f ): the diagnosis state relative to the observed word w and the

fault class T i
f .


