
SimHPN: a MATLAB toolbox for

simulation, analysis and design with

hybrid Petri nets

-draft-

Jorge Júlvez, Cristian Mahulea and Carlos-Renato Vázquez ∗

December 23, 2014

Abstract

This paper presents a MATLAB embedded package for hybrid Petri

nets called SimHPN . It offers a collection of tools devoted to simu-

lation, analysis and synthesis of dynamical systems modeled by hybrid

Petri nets. The package supports several server semantics for the firing

of both, discrete and continuous, types of transitions. Besides providing

different simulation options, SimHPN offers the possibility of computing

steady state throughput bounds for continuous nets. For such a class of

nets, optimal control and observability algorithms are also implemented.

The package is fully integrated in MATLAB what allows the creation of

powerful algebraic, statistical and graphical instruments that exploit the

routines available in MATLAB.

Published as:
J. Julvez, C. Mahulea, and C.R. Vazquez, “SimHPN: a MATLAB toolbox for
simulation, analysis and design with hybrid Petri nets,” Nonlinear Analysis:
Hybrid Systems, vol. 6, no. 2, pp. 806-817, May 2012. DOI: http://doi.org/
10.1016/j.nahs.2011.10.001

∗The authors are with The Aragón Institute for Engineering Research (I3A),
University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain. E-mail:
{julvez,cmahulea,cvazquez}@unizar.es.
This work has been partially supported by the European Community’s Seventh Framework
Programme under project DISC (Grant Agreement n. INFSO-ICT-224498), by CICYT -
FEDER grants DPI2010-20413 and TIN2007-66523 and by Fundación Aragón I+D.

1

1 Introduction

Petri nets (PNs)[14, 5] is a mathematical formalism for the description of
discrete-event systems, that has been successfully used for modeling, analy-
sis and synthesis purposes of such systems. A key feature of a PN is that its
structure can capture graphically fundamental primitives in concurrency theory
such as parallelism, synchronization, mutual exclusion, etc. The state of a PN
system is given by a vector of non-negative integers representing the marking
of its places.

As any other formalism for discrete event systems, PNs suffer from the state
explosion problem which produces an exponential growth of the size of the state
space with respect to the initial marking. One way to avoid the state explosion
is to relax the integrality constraint in the firing of transitions and deal with
transitions that are fired in real amounts. A transition whose firing amount is
allowed to be any real number between zero and its enabling degree is said to
be a continuous transitions. The firing of a continuous transition can produce
a real, not integer, number of tokens in its input and output places. If all
transitions of a net are continuous, then the net is said to be continuous. If a
non-empty proper subset of transitions is continuous, then the net is said to be
hybrid [4].

Different time interpretations can be considered for the firing of continuous
transitions. The most popular ones are infinite and finite server semantics which
represent a first order approximation of the firing frequency of discrete transi-
tions. For a broad class of Petri nets, infinite server semantics offers a better
approximation of the steady-state throughput than finite server semantics [12].
Moreover, finite server semantics can be exactly mimicked by infinite server se-
mantics in discrete transitions simply by adding a self-loop place. A third firing
semantics, called product semantics, is also frequently used when dealing with
biochemical and population dynamics systems.

In this paper we present a new MATLAB embedded software called
SimHPN that provides support for infinite server and product semantics in
both, discrete and continuous, types of transition. A description of a prelimi-
nary version of this software can be found in [8, 9]. As far as we know this is
the first MATLAB package that enables the analysis and simulation of hybrid
nets with these two firing semantics. There already exists a toolbox dealing
with discrete Petri nets [13], and one for the so-called first order hybrid Petri
nets [15] which provides support for continuous transitions under finite server
semantics. The main features of the SimHPN toolbox are: (i) simulation of
hybrid Petri nets under different server semantics; (ii) computation of steady
state throughput bounds; (iii) computation of minimal P-T semiflows ; (iv) op-
timal sensor placement; (v) optimal control algorithm; (vi)import models from
different graphical Petri net editors.

The paper is organized as follows: Section 2 introduces the formal definition
of the hybrid Petri nets supported by SimHPN . Section 3 briefly presents the
main features of the package. Sections 4, 5 and 6 exemplify those features by
applying them to three case studies. Section 7 concludes the paper.

2

2 Hybrid Petri nets

Hybrid Petri nets [4, 2] represent a powerful modeling formalism that allows
the integration of both continuous and discrete dynamics in a single net model.
This section defines the class of hybrid nets supported by SimHPN . In the
following, the reader is assumed to be familiar with Petri nets (PNs) (see [14, 5]
for a gentle introduction).

2.1 Untimed Hybrid Petri net systems

Definition 2.1 A Hybrid Petri Net (HPN) system is a pair 〈N ,m0〉, where:
N = 〈P, T,Pre,Post〉 is a net structure, with set of places P , set of transitions

T , pre and post incidence matrices Pre,Post ∈ R
|P |×|T |
≥0 , and m0 ∈ R

|P |
≥0 is

the initial marking.

The token load of the place pi at marking m is denoted by mi and the preset
and postset of a node X ∈ P ∪ T are denoted by •X and X•, respectively. For
a given incidence matrix, e.g., Pre, Pre(pi, tj) denotes the element of Pre in
row i and column j.

In a HPN, the set of transitions T is partitioned in two sets T = T c ∪ T d,
where T c contains the set of continuous transitions and T d the set of discrete
transitions. In contrast to other works, the set of places P is not explicitly
partitioned, i.e., the marking of a place is a natural or real number depending
on the firings of its input and output transitions. Nevertheless, in order to make
net models easier to understand, those places whose marking can be a real non-
integer number will be depicted as double circles (see p11 in Fig. 3), and the
rest of places will be depicted as simple circles (such places will have integer
markings, see p15 in Fig. 3). Continuous transitions are graphically depicted as
two bars (see t14 in Fig. 3), while discrete transitions are represented as empty
bars (see t15 in Fig. 3), .

Two enabled transitions ti and tj are in conflict when they cannot occur at
the same time. For this, it is necessary that •ti ∩ •tj 6= ∅, and in that case it is
said that ti and tj are in structural conflict relation. Right and left non negative
annullers of the token flow matrix C are called T- and P-semiflows, respectively.
A semiflow v is minimal when its support, ‖v‖ = {i | v(i) 6= 0}, is not a proper
superset of the support of any other semiflow, and the greatest common divisor
of its elements is one. If there exists y > 0 such that y ·C = 0, the net is said
to be conservative, and if there exists x > 0 satisfying C ·x = 0, the net is said
to be consistent. As it will be seen, the basic tasks that SimHPN can perform
on untimed hybrid Petri nets are related to the computation of minimal T- and
P-semiflows.

The enabling degree of a continuous transition tj ∈ T is:

enab(tj,m) =

min
pi∈•tj

⌊

mi

Pre(pi, tj)

⌋

if tj ∈ T d

min
pi∈•tj

mi

Pre(pi, tj)
if tj ∈ T c

(1)

Transition tj ∈ T is enabled at m iff enab(tj,m) > 0. An enabled tran-
sition tj ∈ T can fire in any amount α such that 0 ≤ α ≤ enab(tj,m) and

3

α ∈ N if tj ∈ T d and α ∈ R if tj ∈ T c. Such a firing leads to a new marking
m′ = m+ α ·C(·, tj), where C = Post − Pre is the token-flow matrix and
C(·, tj) is its j column. If m is reachable from m0 through a finite sequence
σ, the state (or fundamental) equation, m = m0 + C · σ is satisfied, where

σ ∈ R
|T |
≥0 is the firing count vector. According to this firing rule the class of

nets defined in Def 2.1 is equivalent to the class of nets defined in [4, 2].

2.2 Timed Hybrid Petri net systems

Different time interpretations can be associated to the firing of transitions. Once
an interpretation is chosen, the state equation can be used to show the depen-
dency of the marking on time, i.e., m(τ) = m0 + C · σ(τ). The term σ(τ) is
the firing count vector at time τ . Depending on the chosen time interpretation,
the firing count vector σj(τ) of a transition tj ∈ T c is differentiable with respect
to time, and its derivative fj(τ) = σ̇j(τ) represents the continuous flow of tj .
As for the timing of discrete transitions, several definitions exist for the flow
of continuous transitions. SimHPN accounts for infinite server and product
server semantics in both continuous and discrete transitions, and additionally,
discrete transitions are also allow to have deterministic delays.

Definition 2.2 A Timed Hybrid Petri Net (THPN) system is a tuple
〈N ,m0, T ype,λ〉 where 〈N ,m0〉 is a HPN, Type : T → {id, pd, dd, ic, pc} es-
tablishes the time semantics of transitions and λ : T → R≥0 associates a real
parameter to each transition related to its semantics.

Any of the following semantics is allowed for a discrete transition ti ∈ T d:

• Infinite server semantics (Type(ti) = id): Under infinite server semantics,
the time delay of a transition ti, at a given marking m, is an exponentially
distributed random variable with parameter λi · enab(ti,m), where the
integer enabling enab(ti,m) represents the number of active servers of ti
at marking m.

• Product server semantics (Type(ti) = pd): Under product server se-
mantics, the time delay of a transition ti at m is an exponentially dis-

tributed random variable with parameter λi ·
∏

pj∈•ti

⌊

m(pj)

Pre(pj , ti)

⌋

, where

∏

pj∈•ti

⌊

m(pj)

Pre(pj , ti)

⌋

is the number of active servers.

• Deterministic delay (Type(ti) = dd): A transition ti with deterministic
delay is scheduled to fire 1/λi time units after it became enabled.

Conflict resolution: When several discrete exponential transitions, under
either infinite or product server semantics, are in conflict, a racing policy is
adopted, i.e., the one with smaller time delay will fire first.

If a discrete transition with deterministic delay is not in conflict with other
transitions, it is fired as scheduled, if it is in conflict then it is fired only if
its schedule firing time is less than the firing time of the conflicting transition.
The transition to fire, in the case of several conflicting deterministic transitions
with same scheduled firing instance, is chosen probabilistically assigning the

4

same probability to each conflicting transition. Furthermore after the firing of
a deterministic transition, the timers of all the transitions in the same conflict
are discarded.

For a continuous transition ti ∈ T c the following semantics are allowed:

• Infinite server semantics (Type(ti) = ic): Under infinite server the flow
of a transition ti is:

fi = λi · enab(ti,m) = λi · min
pj∈•ti

{

mj

Pre(pj , ti)

}

(2)

Such an expression for the flow is obtained from a first order approximation
of the discrete case [18] and corresponds to the variable speed of ([1])

• Product server semantics (Type(ti) = pc): In a similar way to discrete
transitions, the continuous flow under product server semantics is given
by:

fi = λi ·
∏

pj ∈ •ti

{

mj

Pre(pj , ti)

}

The described supported semantics cover the modeling of a large variety of
actions usually associated to transitions. For instance, infinite server semantics,
which are more general than finite server semantics, are well suited for model-
ing actions in manufacturing, transportation and logistic systems [4]; product
server semantics are specially useful to modeling population dynamics [17] and
biochemical reactions [7]; and deterministic delays allow one to represent pure
delays and clocks that appear, for instance, when modeling traffic lights in au-
tomotive traffic systems [19].

3 The SimHPN package

The SimHPN simulator supports infinite server and product server semantics
for both discrete and continuous transitions. Moreover, deterministic delays
with single server semantics are also supported for discrete transitions. Both
the data related to the model description, i.e., net structure, initial marking
and timing parameter, and the output results, i.e., time trajectories, are MAT-
LAB variables. At the end of the simulation, the user can export the data
to the MATLAB workspace where can be used for further analysis. The next
two subsections describe the functionality of the graphical interface and the
implemented simulation algorithm. Besides simulation, SimHPN offers some
analysis algorithms which are presented together with the case study in Sec-
tion 4.

3.1 Graphical interface

The SimHPN toolbox (http://webdiis.unizar.es/GISED/?q=tool/
simhpn) provides a Graphical User Interface (GUI) that enables the user to
easily perform simulations and carry out analysis methods. This GUI consists
of a MATLAB figure window, exhibiting a Menu bar and three control panels:
(i) Drawing Area, (ii) Options panel, and (iii) Model Management panel. Fig.

5

Figure 1: Sketch of the main window of SimHPN

1 presents a hard-copy screenshot of the main window opened by SimHPN
toolbox, where all the component parts of the GUI are visible.

The Menu bar (placed horizontally, on the top of the window in Fig. 1)
displays a set of four drop-down menus at the top of the window, where the
user can select different features available in the SimHPN toolbox. These
menus are: Model, Options, Simulation, and Optimal.

The Model menu contains the pop-up menus Import from Pmeditor, Import
from TimeNet and Import from .mat file that implement several importing
options for the matrices, Pre, Post, m0, etc, that describe the net system:
Such matrices can be introduced manually or through two Petri nets editors:
PMEditeur and TimeNet [20]. Moreover, the matrices can be automatically
loaded from a .mat file (MATLAB file format) or loaded from variables defined
in the workspace, this is done just by writing the name of the variable to be
used in the corresponding edit boxes.

The Options menu contains only the pop-up menu Show Figure Toolbar al-
lows to show the characteristic toolbar of the MATAB figure object that permits,
for example, the use of zoom tool on the displayed graphic in the Drawing Area.

The Simulation menu contains the pop-up menus Markings to plot, Flows to
plot, and Save results to workspace. The pop-up menus Markings to plot, Flows
to plot allow the user to select the components of marking vector and flow vector
that will be plotted after simulation in the Drawing area. The pop-up menu Save
results to workspace permits to export, after simulation, the marking and flow
evolution to variables in the MATLAB workspace.

The Optimal menu contains the pop-up menus Optimal Observability and
Optimal Control. Such pop-up menus perform calls to the algorithms for com-
puting optimal steady state and optimal sensor placement for continuous Petri

6

nets with infinite server semantics (see Section 4 for more details).
The Drawing area (located in the left and central side of the window in Fig.

1), is a MATLAB axes object where the trajectories of the simulation results
are plotted. The components of markings and flows that will be represented are
selected from the menu.

The Options panel (placed, as a horizontal bar, on the right part of the
window Fig. 1) presents a number of options related to the model. From top to
bottom: (a) two radio buttons to select the firing semantics for continuous and
discrete exponential transitions; (b) three radio buttons allowing to select the
variables to be plotted in the Drawing Area, the simulator allows one to plot the
evolution of the marking of the places, the evolution of the flow of the transitions
and the evolution of the marking of one place vs. the marking of other place;
(c) three edit boxes to fix the maximum absolute and relative errors allowed by
the simulated trajectory and the sampling time used in simulations (see next
subsection for more details on the selection of the sampling time); (d) a Simulate
button to start a new simulation; (e) a Compute Bounds button that computes
performance bounds for continuous nets under infinite server semantics; (f) a P
T semiflows button to compute the minimal P- and T-semiflows of the net, the
results are displayed on the MATLAB command window and can be used for
future analysis tasks; and (g) a Close button to close the SimHPN toolbox.

The Model Management Panel panel is composed of different edit boxes
(placed in the bottom left corner of the window in Fig. 1), where the SimHPN
toolbox displays the current values of the matrices describing the net system
and permits to select the simulation time and the number of simulations to
be performed (this last parameter is ignored if the net contains no stochastic
transitions). The required matrices for a system in order to be simulated are:
Pre and Postmatrices, initial markingm0, the parameter λ of each transition,
and the type of each transition. This last parameter is equal to ’c’ for continuous
transitions, to ’d’ for stochastic discrete transitions and to ’q’ for deterministic
discrete transitions. Notice that if the type of a transition is ’q’ then single
server semantics is adopted for its firing and therefore the selection of firing
semantics in the Options panel will be ignored for this transition.

3.2 Internal simulation

Particular classes of hybrid Petri nets are continuous Petri nets and discrete
Petri nets. As SimHPN supports hybrid Petri nets, it also supports pure
continuous and pure discrete nets. For the sake of computational efficiency, the
simulation of the different cases is dealt separately.

Continuous Petri nets. A continuous PN under either infinite or product
server semantics is deterministic and is described by a set of differential equa-
tions. In such case, the SimHPN uses a standard equation solver (ODE func-
tion) of MATLAB to simulate the time trajectory of the system.

Discrete Petri nets. On the other hand, a discrete PN under either infinite or
product server semantics is stochastic and can be simulated by using an event-
base approach, i.e., after each firing the simulator computes the marking reached
and the time of the next potential firing of the enabled transitions (stored in
variables called clocks), next, the simulation time is updated as the minimum of
such firing times. The SimHPN applies such an approach for discrete PNs. For
models having discrete stochastic transitions, SimHPN computes the average

7

trajectories (of the marking or firing frequencies of the transitions) obtained
after several simulations (the number of simulations is specified by the user
using the edit box called Num. Simulations of the Model Management Panel).

Hybrid Petri nets. The simulation becomes more complex for hybrid PNs,
since neither an ODE solver nor an event-base simulation can be efficiently used.
In such case, a discrete-time simulation is carried out. The sampling time can
be fixed and specified by the user (through the box labeled as Sampling Time
of the Model Management Panel). If a sampling is not specified (introducing a
negative number as a sampling time), SimHPN computes a suitable sampling
based on a trial simulation. It is also possible to use a variable sampling time,
which is computed during the simulation (this is specified in the Hybrid Sampling
popup menu of the Model management Panel). For hybrid models, SimHPN
performs five basic operations at each sampling instant: 1) the simulation time
is updated, 2) the scheduled discrete transitions are fired (according to the
clocks) and all the clocks are updated; 3) the marking is updated according to
the flow of the continuous transitions (using a finite difference equation for the
continuous subnet); 4) the enabling degree of the discrete transitions and clocks
are updated (a change in the continuous marking can enable or disable discrete
transitions); and 5) the next sampling time is computed.

Conflicts involving stochastic (discrete) transitions are solved by a race pol-
icy. For conflicts involving deterministic transitions, the first rule is a race
policy. If the conflict remains (discrete transitions that should fire at the same
time) then it is randomly solved by considering equal firing probabilities. Af-
ter the firing of a deterministic transition, the clocks of the other deterministic
transitions in the conflict are discarded.

Algorithm 1: Update clocks

1 Input: 〈N ,m0, T ype,λ〉, m, clocks, S
2 Output: clocks

3 forall the ti ∈ T d do

4 if ti is not enabled then

5 clocksi := ∞;

6 else if (ti is enabled and (ti ∈ S or ti is newly enabled)) then

7 switch the value of Type(ti) do
8 case Type(ti) = dd
9 θ = 1/λi

10 case Type(ti) = id
11 get θ ∈ R>0 from an exponential p.d.f with parameter

λi · enab(ti,m)

12 case Type(ti) = pd
13 get θ ∈ R>0 from an exponential p.d.f with parameter

λi ·
∏

pj∈•ti
⌊m(pj)/Pre(pj , ti)⌋

14 clocksi := τ + θ

Procedure ’Update clocks’ described in Alg. 1, updates the clock variables
associated to discrete transitions (the schedule time). In each iteration of the

8

Algorithm 2: Simulation of a HPN using a variable sampling time

1 Input: 〈N ,m0, T ype,λ〉
2 Output: m /* Time evolution of marking */

3 τ = 0
4 m(0) = m0

5 ∀ ti ∈ T d : clocksi = ∞
6 S = ∅
7 Call procedure(Update clocks)
8 ∆τ = min(DSet), where

DSet = {clocksi|ti ∈ T d} ∪ {0.1/fi|ti ∈ T c, fi > 0}
9 while τ ≤ total simulation time do

10 τ := τ +∆τ
11 m(τ) := m(τ −∆τ)
12 /* Fire scheduled discrete transitions */

13 while ∃tj ∈ T d such that clocksj ≤ τ do

14 Let tj ∈ T d such that clocksj ≤ τ
15 Solve conflicts involving tj

16 Define ∆σ =

{

∆σk := 1 if tk fires

∆σk := 0 if tk does not fire

17 m(τ) := m(τ) +C ·∆σ

18 S := ||∆σ||
19 Call procedure(Update clocks)

20 /* Fire continuous transitions */

21 f := 0;
22 forall the ti ∈ T do

23 switch the value of Type(ti) do
24 case Type(ti) = id or Type(ti) = pd
25 fi := 0

26 case Type(ti) = ic :
27 fi := λi · enabi(m)

28 case Type(ti) = pc :
29 fi := λi ·

∏

p∈•ti
m[p]/Pre[p, ti]

30 m(τ) = m(τ) +C · f ·∆τ
31 S = ∅
32 Call procedure(Update clocks)
33 /* Compute next sampling */

34 ∆τ = min(DSet), where

DSet={clocksi−τ |ti ∈ T d}∪{0.1/fi|ti ∈ T c, fi>0}

9

algorithm, the set S contains the transition to fire and newly enabled expresses
the transitions that were not enabled in the previous iteration and become
enabled in the current one. If the transition is not enabled, its clock is fix to
∞. Otherwise, if it is enabled and either it has been fired at the current time τ
or has just become enabled its clock is computed as follows:

1. 1/λi if the transition ti is deterministic;

2. a random number obtained from an exponential p.d.f. if it is exponential
(infinite server or product semantics).

Algorithm 2 is the main algorithm for simulation, it performs only one sim-
ulation (realization). It consists in the following: First, the current time is ini-
tialized to zero, the current marking to m0, the clocks to ∞, the set S as empty
(the set of currently fired transitions, required for calling the procedure ’updat-
ing clocks’), and the function ’Update clocks’ defined in Alg. 1 is called. Then,
a suitable sampling ∆τ is computed, which is used when the variable sampling
option has been selected. Such a sampling is the minimum amount between the
next firing time (schedule) of the discrete transitions, and 1/10 of the maximum
instantaneous flow of the continuous transitions (in our experience, this ratio
1/10 provides a good enough approximation). The simulation loop starts in
line 9. Inside the loop, the simulation time is updated, the scheduled discrete
transitions are fired according to the conflict resolution policy described above
(after that, clocks are updated), next, the continuous transitions are fired (after
that, clocks are updated again), and finally, the next sampling is computed.
The simulation loop stops when the the current simulation time is larger than
the total simulation time, indicated by the user.

4 An assembly line

The Petri net system in Fig. 2 represents an assembly line with kanban strategy
(see [21]). The system has two stages that are connected by transition t14. The
first stage is composed of three lines (starting from p2, p3 and p4 respectively)
and three machines (p23, p24 and p25). Places p26, p27 and p28 are buffers at
the end of the lines. The second stage has two lines that require the same
machine/resource p18. The number of kanban cards is given by the marking of
places p2, p3 and p4 for the first stage, and by the marking of p32 for the second
stage. The system demand is given by the marking of p1. We will make use of
this net system to illustrate some of the features of SimHPN .

Given that all transitions represent actions that can potentially have high
working loads, all transitions are considered continuous. Moreover, infinite
server semantics will be adopted for all of them. Let the initial marking be
m0(p1) = m0(p18) = m0(p23) = m0(p24) = m0(p25) = m0(p29) = m0(p32) =
1, m0(p26) = m0(p27) = m0(p28) = 3 and the marking of the rest of places
be equal to zero. Let us assume that the firing rates of the transitions are
λ(t2) = λ(t3) = λ(t4) = λ(t8) = λ(t9) = λ(t10) = λ(t14) = λ(t15) = λ(t17) =
λ(t19) = λ(t20) = 10, λ(t1) = λ(t5) = λ(t6) = λ(t7) = λ(t11) = λ(t12) =
λ(t13) = λ(t16) = λ(t18) = λ(t21) = 1.

Computation of minimal P-T semiflows: SimHPN implements Alg.
3, proposed in [16] to compute the minimal P-semiflows of a Petri net. The

10

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15 t16

t17 t18

t19

t20

t21

p1p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23 p24

p25

p26

p27

p28

p29

p30

p31

p32

Figure 2: An assembly line with kanban strategy.

same algorithm applied on the transpose of the incidence matrix yields the
minimal T-semiflows of the net. Notice that P and T-semiflows just depend
on the structure of the net and not on the continuous or discrete nature of the
transitions. The result of applying the algorithm on the net in Fig. 2 is the set
of 12 minimal P-semiflows that cover every place, i.e., it is conservative, and the
set that contains the only minimal T-semiflow which is a vector of ones, i.e., it
is consistent.

Algorithm 3: Computation of minimal P-semiflows

1 Input: 〈N〉
2 Output: D
3 A:=C (m x n);
4 D:=Identity matrix of n rows
5 for i=1 to n do

6 Add to matrix [D|A] every row that is a positive linear combination

of couples of rows of [D|A] and are opposite (in sign) to the ith

column of A
7 Remove from [D|A] those rows in which the ith column of A is not

null
8 The rows of matrix D are the P-semiflows of the net

Throughput bounds: When all transitions are continuous and work under
infinite server semantics, the following programming problem can be used to
compute an upper bound for the throughput, i.e., flow, of a transition ([10]):

max{φj | µss = m0 +C · σ,

φss
j = λj · min

pi∈•tj

{

µss
i

Pre(pi,tj)

}

, ∀tj ∈ T,

C · φss = 0,
µss,σ ≥ 0}.

(3)

This non-linear programming problem is difficult to solve due to the minimum
operator. When a transition tj has a single input place, the equation reduces to
(4). And when tj has more than an input place, it can be relaxed (linearized)
as (5).

11

φss
j = λj ·

µss
i

Pre(pi, tj)
, if pi =

•tj (4)

φss
j ≤ λj ·

µss
i

Pre(pi, tj)
, ∀pi ∈

•tj , otherwise (5)

This way we have a single linear programming problem, that can be solved
in polynomial time. Unfortunately, this LPP provides in general a non-tight
bound, i.e., the solution may be non-reachable for any distribution of the tokens
verifying the P-semiflow load conditions, y ·m0. One way to improve this bound
is to force the equality for at least one place per synchronization (a transition
with more than one input place). The problem is that there is no way to know in
advance which of the input places should restrict the flow. In order to overcome
this problem, a branch & bound algorithm can be used to compute a reachable
steady state marking.

SimHPN implements such a branch & bound algorithm to compute upper
throughput bounds of continuous nets under infinite server semantics. For the
system in Fig. 2 with the mentioned m0 and λ the obtained throughput bound
for t1 is 0.3030. Given that the only T-semiflow of the net is a vector of ones,
this value applies as an upper bound for the rest of transitions of the net.

Optimal Sensor Placement:

Assuming that each place p can be measured at a different cost c(p) > 0
the optimal sensor placement problem of continuous nets under infinite server
semantics is to decide the set of places Po ⊆ P to be measured such that the
net system is observable at minimum cost. This problem can be seen as a Set
Covering Problem which is NP-hard in the strong sense [6]. For a set of places
Po, let KPo

be the set of observable places. It will be said that Po is covering
KPo

. The problem is to determine a set Poi with minimum cost such that the
covered elements contain all the places of the net.

Considering that n is the number of places, the brute force approach to
solve this problem is to try all subsets of places of size n, n − 1, · · · , 1. From
those subsets ensuring the observability of the continuous Petri net system,
the one with minimum cost is taken. In order to reduce the number of the
subsets, some graph-based properties can be used. The idea is to group the set
of places in equivalence classes such that only one place per class can belong to
the optimal solution. These equivalence classes are called threads and are the
places belonging to the maximally connected subnets finishing in an attribution
place (place with more than one input transitions) or in a join (transition with
more than one input place). Initially, all places of the net belong only to one
thread. The following algorithm can be used to reduce the number of elements
from threads.

These reductions preserve the optimality of the solution and the covering
problem can be started using the resulted threads. It is necessary to generate
all combinations taking at most one place from each thread and then check the
observability of the system. If the system is observable, the solution is kept if
has a cost lower than the candidate solution. A good choice is starting with
the first places of each thread and going backward since the following property
is true: if the system is not observable for the current set of measured places,
it is not necessary to advance in the threads because the system will not be
observable.

12

Algorithm 4: Reduce the places from threads

1 Input: 〈N , c〉
2 Output: threads
3 for every cycle of N without attributions and joins do

4 choose the place with minimum cost;
5 remove the other places from all threads.

6 Compute all maximal paths without joins and attributions that finish in
a measured place.

7 Eliminate all places belonging to the previous paths from all threads.
8 for each thread do

9 if ∃ a path from p to p′ and c(p′) > c(p) then
10 delete p′ from the thread.

11 Make the threads disjoint.

The algorithm is still exponential but the structural properties presented can
reduce drastically the number of observability checks. For the continuous nets
considered in this section, measuring all input places in join transitions the net
system is observable. This is also the solution of the optimal sensor placement
problem for any cost associated to transitions.

Optimal Steady-State: The only action that can be performed on a con-
tinuous Petri nets is to slow down the flow of its transitions. If a transition can
be controlled (its flow reduced or even stopped), we will say that is a controllable
transition. The forced flow of a controllable transition tj becomes fj−uj, where
fj is the flow of the unforced system, i.e. without control, and uj is the control
action 0 ≤ uj ≤ fj .

In production control is frequent the case that the profit function depends
on production (benefits in selling), working process and amortization of invest-
ments. Under linear hypothesis for fixed machines, i.e., λ defined, the profit
function may have the following form:

wT · f − zT ·m− qT ·m0 (6)

where f is the throughput vector, m the average marking, w a gain vec-
tor w.r.t. flows, zT is the cost vector due to immobilization to maintain the
production flow and qT represents depreciations or amortization of the initial
investments.

The algorithm used to compute the optimal steady state flow (and marking)
is very much alike the one used to compute the performance bounds, with the
difference that the linear programming problem that needs to be solved is:

max{wT · f − zT ·m− qT ·m0 | C · f = 0,
m = m0 +C · σ,

fj = λj ·
(

mi

Pre(pi,tj)

)

− v(pi, tj),

∀pi ∈ •tj , v(pi, tj) ≥ 0
f ,m,σ ≥ 0

(7)

where v(pi, tj) are slack variables. These slack variables give the control
action for each transition. For more details on this topic, see ([11]).

13

10

20

10

20

M

M-1

t 2
2

t 2
4

t 2
3

t 2
8

t 2
5

t 2
6

t 2
7

t 10

t 12

t11

t 9

t 1
1

t 1
2

t 1
5

t 1
6

t 1
8

t 1
4

t 1
3

t 1
7

t 2
1

p1
3

p1
1

p1
5

p1
8

p1
6

p1
7

p1
2

p1
4

p
9 p

11

p
13

p
14

p
12

p
15

p2
3

p2
1

p2
8

p2
5

p2
6

p2
7

p2
2

p2
4

p
10

Intersection 1 Intersection 2

Link

Figure 3: HPN model of 2 intersections connected by a link.

5 A traffic system

Here, a hybrid PN model, that represents a traffic system consisting of two (one-
way streets) intersections connected by a (one-way street) link, is introduced and
simulated. The proposed example is shown in fig. 3 (studied in [19] for control
purposes). In this, the dynamic of the vehicles is represented by continuous
nodes, while the traffic lights are modeled as discrete.

Let us firstly explain the model of one intersection. Places {p11, p
1
2} represent

the queues of vehicles before crossing the intersection 1. Cars arrive through
{t11, t

1
3}, being transitions of type ic constrained by self-loops {p13, p

1
4} that rep-

resent the number of servers (street lanes). Vehicles depart through t12 or t14
(type ic) when the traffic light enabled them, i.e., when there is a token in
p15 or p17, respectively. The traffic light for this intersection is represented by
nodes {p15, p

1
6, p

1
7, p

1
8, t

1
5, t

1
6, t

1
7, t

1
8}, which describe the sequence of the traffic light

stages. In this, the transitions are of type dd. A token in p15 means a green
signal for the queue p11, but red for p12.

Similarly, a token in p17 represents a green signal for the queue p12 but red
for p11. Places p16 and p18 represent intermediate stages when the traffic light is
amber for one queue but red for the other, so no car can cross the intersection.
Similarly, nodes with the superscript 2, i.e., {p2x, t

2
x}), represent the nodes of the

second intersection and its traffic light. In this, the place p29 and the transition
t29 (type dd) have been added in order to simulate the offset, i.e., the relative
time between the cycles of both traffic lights, which is given by the delay of t29.
The output flow of intersection 1 feeds the second one through a link, which
imposes a constant delay (given by the delay of t11). A detailed explanation
of the link model can be found in [19]. Let us just mention here that, due to
the traffic light, vehicles departing intersection 1 describe a bursting signal (like
platoons or batches of cars) that arrives to the second intersection through t21.

Let us consider the following delays: for {t15, t
1
6, t

1
7, t

1
8} the delays are

(20, 5, 20, 4) seconds (in the same order). For {t11, t
1
2, t

1
3, t

1
4} are (1, 1/3, 1/3, 1/5)

seconds, for {t21, t
2
2, t

2
3, t

2
4} are (1/3, 1/5, 1, 1/3) seconds, and for the link

14

0 100 200 300 400
0

10

20

30

40

50

time

ve
hi

cl
es

p
1
2

p
2
2

(a)

0 100 200 300 400
0

10

20

30

40

50

time

ve
hi

cl
es

p
2
2

p
1
2

(b)

Figure 4: Queue lengths at intersection 2 obtained with delays for {t25, t
2
7, t

2
9} as

a) {20, 20, 0.1} and b) {14, 26, 29}.

{t9, t10, t11, t12} are (1/10, 1/3, 30, 1/3) seconds (the link delay is θ11 = 30 sec-
onds). The initial marking is as described in fig. 3.

The goal in this example is to obtain, through simulations, suitable switch-
ing delays for the second traffic light, in order to reduce the queue lengths at
intersection 2. The parameters to optimize are the green periods (amber periods
are fixed and equal to θ26 = 5 and θ28 = 4), i.e., the delays of t25, t

2
7 , and the

offset represented by the delay of t29. Fig. 4 shows the evolution of the queues
for the first 400 seconds, for two cases: a) with green periods 20 seconds and no
offset, and b) with green periods 14 for the queue p21 and 26 for the queue p22 and
with an offset of 29 seconds. Note that the second combination of parameters
provide shorter queues. For this, the effect of the offset is very important. This
example shows that simulations based on hybrid PN models can provide infor-
mation about the optimal parameters for traffic lights (duration of stages and
offset), in order to improve the performance in neighboring traffic intersections.

6 A biochemical system

This section presents and simulates a biochemical system modeled by contin-
uous Petri nets. In most chemical models, the different amounts of chemical
substances are expressed in terms of concentrations rather than as whole num-
bers of molecules. This implies that the state of the system is given by a vector
of real numbers, where each component represents the concentration of a com-
pound. On the other hand, the dynamics of most reactions is driven by the mass
action law, what roughly implies that the speed of a reaction is proportional to
the product of the concentrations of the reactants. These facts make contin-
uous Petri nets under product semantics an appealing modeling formalism for
biochemical systems.

The net system in Fig. 5 models a signaling pathway described and studied
in [3]. More precisely, the net is a graphical representation of the Extracellu-
lar signal Regulated Kinase (ERK) signaling pathway regulated by Raf Kinase
Inhibitor Protein (RKIP). The marking of each place represents the concentra-
tion of the compound associated to it, and the transitions represent the different
chemical reactions that take place (see [3] for a more detailed description of the
pathway). Notice that, although the net has conflicts, the assumed product

15

ERK−PP

p2

p9

p8

p7 p5

p4 p11

p6 p10

p3

p1

t1 t2

t3 t4t8

t7 t5 t9 t10

t11

t6

Raf−1* RKIP

MEK−PP ERK RKIP−P RP

Raf−1*/RKIP

Raf−1*/RKIP/ERK−PP

RKIP−P/RP

MEK−PP/ERK

Figure 5: Petri net modeling the ERK signaling pathway regulated by RKIP.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
Binding of RKIP to Raf*

reaction time [sec]

co
nc

en
tr

at
io

n
of

 p
ro

te
in

s
[µ

M
]

Raf*
RKIP
Raf*−RKIP

Figure 6: Time evolution of Raf-1*, RKIP and their complex Raf-1*/RKIP.

semantics fully determines the flows of all continuous transitions, and therefore
it is not necessary to impose a conflict resolution policy.

Since the state of the system is expressed as concentration levels, every
transition is considered continuous and product server semantics is adopted.
The parameter λ estimated in [3] is λ = [0.53, 0.0072, 0.625, 0.00245, 0.0315, 0.8,
0.0075, 0.071, 0.92, 0.00122, 0.87]. As initial concentrations of the compounds
we take the following values: m0 = [2, 2.5, 0, 0, 0, 0, 2.5, 0, 2.5, 3, 0].

Figures 6 and 7 show the time evolution of some of the compounds in the
system along 40 time units. In particular, Fig. 6 shows the dynamics of Raf-
1*, RKIP and their complex Raf-1*/RKIP, and Fig. 7 shows the activity of
MEK-PP which phosphorylates and activates ERK. As discussed in [3], inten-
sive simulations can be used to perform sensitivity analysis with respect to the
variation of initial conditions.

16

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
Binding of MEK−PP to ERK−P

reaction time [sec]

c
o

n
c
e

n
tr

a
ti
o

n
 o

f
p

ro
te

in
s
 [
µ

M
]

ERK−P
MEK−PP
ERK−P−MEK−PP
ERK−PP

Figure 7: Activity of MEK-PP which phosphorylates and activates ERK.

7 Conclusions

This paper has presented a new MATLAB package, called SimHPN , that al-
lows us to perform several analysis and synthesis tasks on hybrid Petri nets
working under different server semantics. In particular, SimHPN provides
procedures to compute minimal P and T - semiflows, throughput bounds, opti-
mal steady state and optimal sensor placement.

Additionally, SimHPN is able of simulating hybrid Petri nets evolving un-
der infinite server and product semantics. The package is equipped with a
Graphical User Interface that offers a friendly interaction with the user.

References

[1] H. Alla and R. David. Continuous and hybrid Petri nets. Journal of
Circuits, Systems, and Computers, 8(1):159–188, 1998.

[2] F. Balduzzi, G. Menga, and A. Giua. First-order hybrid Petri nets: a model
for optimization and control. IEEE Trans. on Robotics and Automation,
16(4):382–399, 2000.

[3] K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer, B. McFerran, and
W. Kolch. Mathematical modeling of the influence of rkip on the erk
signaling pathway. In Corrado Priami, editor, Computational Methods in
Systems Biology, volume 2602 of Lecture Notes in Computer Science, pages
127–141. Springer Berlin, Heidelberg, 2003.

[4] R. David and H. Alla. Discrete, Continuous and Hybrid Petri Nets.
Springer-Verlag, 2010. 2nd edition.

[5] F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat.
Practice of Petri Nets in Manufacturing. Chapman & Hall, 1993.

[6] M.R. Garey and D.S. Johnson. Computers and Interactability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

17

[7] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and
synthetic biology. In M. Bernardo, P. Degano, and G. Zavattaro, edi-
tors, Formal Methods for Computational Systems Biology, Lecture Notes
in Computer Science, pages 215–264. Springer Berlin, Heidelberg, 2008.

[8] J. Júlvez and C. Mahulea. SimHPN: a MATLAB toolbox for continuous
Petri nets. In Proc. of the 10th Workshop on Discrete Event Systems, pages
24–29, Berlin, Germany, August 2010.

[9] J. Júlvez, C. Mahulea, and C.R. Vázquez. Analysis and Simulation of
Manufacturing Systems using SimHPN toolbox. In Proc. of the 7th IEEE
Conf. on Automation Science and Engineering, pages 432–437, Trieste,
Italy, August 2011.

[10] J. Júlvez, L. Recalde, and M. Silva. Steady-state performance evaluation of
continuous mono-T-semiflow Petri nets. Automatica, 41(4):605–616, 2005.

[11] C. Mahulea, A. Ramı́rez, L. Recalde, and M. Silva. Steady state control ref-
erence and token conservation laws in continuous Petri net systems. IEEE
Trans. on Autom. Science and Engineering, 5(2):307–320, 2008.

[12] C. Mahulea, L. Recalde, and M. Silva. Basic Server Semantics and Per-
formance Monotonicity of Continuous Petri Nets. Discrete Event Dynamic
Systems: Theory and Applications, 19(2):189 – 212, June 2009.

[13] M. Matcovschi, C. Mahulea, and O. Pastravanu. Petri Net Toolbox for
MATLAB. In 11th IEEE Mediterranean Conference on Control and Au-
tomation MED’03, Rhodes, Greece, July 2003.

[14] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[15] F. Sessego, A. Giua, and C. Seatzu. HYPENS: a Matlab tool for timed
discrete, continuous and hybrid Petri nets. In Application and Theory of
Petri Nets 2008, volume 5062 of Lecture Notes in Computer Science, pages
419–428. Springer-Verlag, 2008.

[16] M. Silva. Las Redes de Petri: en la Automática y la Informática. AC, 1985.

[17] M. Silva and L. Recalde. Réseaux de Petri et relaxations de l’integralité:
Une vision des réseaux continus. In Conférence Internationale Francophone
d’Automatique (CIFA 2000), pages 37–48, 2000.

[18] M. Silva and L. Recalde. Petri nets and integrality relaxations: A view
of continuous Petri nets. IEEE Trans. on Systems, Man, and Cybernetics,
32(4):314–327, 2002.

[19] C.R. Vázquez, H.Y. Sutarto, R. Boel, and M. Silva. Hybrid petri net model
of a traffic intersection in an urban network. In 2010 IEEE Multiconference
on Systems and Control, Yokohama, Japan, 09/2010 2010.

[20] A. Zimmermann and M. Knoke. Timenetsim - a parallel simulator for
stochastic petri nets. In Proc. 28th Annual Simulation Symposium, pages
250–258, Phoenix, AZ, USA, 1995.

18

[21] A. Zimmermann, D. Rodŕıguez, and M. Silva. A Two Phase Optimisa-
tion Method for Petri Net Models of Manufacturing Systems. Journal of
Intelligent Manufacturing, 12(5):421–432, October 2001.

19

