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Abstract

As a preliminary overview, this work provides first a broad tutorial on the flu-

idization of discrete event dynamic models, an efficient technique for dealing with

the classical state explosion problem. Even if named as continuous or fluid, the

relaxed models obtained are frequently hybrid in a technical sense. Thus, there

is plenty of room for using discrete, hybrid and continuous model techniques for

logical verification, performance evaluation and control studies. Moreover, the

possibilities for transferring concepts and techniques from one modeling paradigm

to others are very significant, so there is much space for synergy. As a central

modeling paradigm for parallel and synchronized discrete event systems, Petri nets

(PNs) are then considered in much more detail. In this sense, this paper is some-

what complementary to [49]. Our presentation of fluid views or approximations

of PNs has sometimes a flavor of a survey, but also introduces some new ideas

or techniques. Among the aspects that distinguish the adopted approach are: the

focus on the relationships between discrete and continuous PN models, both for

untimed, i.e., fully non-deterministic abstractions, and timed versions; the use of

structure theory of (discrete) PNs, algebraic and graph based concepts and results;

and the bridge to Automatic Control Theory. After discussing observability and

controllability issues, the most technical part in this work, the paper concludes

with some remarks and possible directions for future research.

Published as:

M. Silva, J. Julvez, C. Mahulea, C.R. Vazquez, “On fluidization of discrete event

models: observation and control of continuous Petri nets,” Discrete Event Dynamic

Systems: Theory and Applications, vol. 21, no. 4, December 2011.. DOI: http:

//doi.org/10.1007/s10626-011-0116-9

∗The authors are with the Aragón Institute of Engineering Research (I3A), University of Zaragoza, Maria

de Luna 1, 50018 Zaragoza, Spain, {silva,julvez,cmahulea,cvazquez}@unizar.es.

1



1 Introduction

Real systems are not continuous, discrete or hybrid. Continuous, discrete or hybrid

are the models that we construct in order to represent them. According to the given

purposes, a system can be “viewed” at different moments through different models,

particularly during its life-cycle. In fact, models are always abstractions! For example,

contrary to what is usually claimed, a tank filled with pure water is not a continuous

system, because we know that the liquid is formed by molecules, so there is always

a discrete number (remember, nanotechnologies deal with matter on an atomic and

molecular scale). Moreover, molecules are formed by atoms. But XX century physics

tells us that atoms “can be divided” and it becomes difficult to classify the models at

the atomic level as discrete, continuous or hybrid in the classical sense1. In the same

line of thinking, classical predator-prey models (such as the basic model of Volterra-

Lotka) are based on a fluid view of systems in which the number of individuals is

discrete (even if many additional but abstracted features may distinguish them). As a

last example, among many, when visiting a large manufacturing plant, it is common

to hear the engineers using a kind of hydraulic terminology: levels, flows, etc. Having

said that, it should be noted that, by abuse of language, expressions such as continuous,

discrete or hybrid “systems” are lexicalized, but refer to models, i.e., they are “views”.

According to this accepted practice, models and systems are substantives frequently

used interchangeably, even if sometimes a precision is truly needed. Engineers are

more interested in pragmatism than ontology (essences), and the manipulation of “fluid

(or continuous) views” of systems is a useful and classical approach.

The mathematics for continuous dynamic systems, particularly for control, goes

back more than three centuries [160]. At the intersection of Automatic Control, Op-

erations Research and Computer Science, the formalization of discrete event dynamic

“views” is more recent. Very roughly speaking it can be said that such views were

really developed during the second half of the past century2.

In many human made systems, for example in telecommunications, manufactur-

ing, logistics, transportation, work-flow management or distributed computation, the

conceptually “more appropriate” kind of formal representation belongs to the class of

Discrete Event Dynamic Systems (DEDS). But this “natural” formalization may suffer

from the well known state explosion problem. Then transformation and structural tech-

niques (where the initial conditions play the role of a parameter) may be of interest,

but they do not offer complete solutions for all imaginable cases. One of the more sim-

ple and classical “fluid” relaxation is that of transforming Linear Integer Programming

Problems (IPP, computationally NP-hard) into Linear Programming Problems (LPP, of

polynomial time complexity), a proof that to fluidize has been in general an invalu-

able intellectual resource to construct more abstract or coarse models. The main goal

is to make computational problems for large-scale systems decidable or much more

tractable.

Fluidization techniques try to obtain semi-decision or approximate solutions for

1Think, for example, in models of atoms based on wave-particle duality or the uncertainty principle

(Bernard Pullman, The Atom in the History of Human Thought, Oxford Univ. Press, 1998).
2Before electronic computers became a reality, it is clear that the foundations of Theoretical Computer

Science go back to the 1930s with the works of Alan Turing. Moreover, in 1928 Claude Shannon applied

Boolean Algebra while developing Switching Theory. Even some years before, in the electromechanical

domain, Leonardo Torres Quevedo’s chess player was driven by an automata. Furthermore, it is clear that,

for example, the pioneering works of Markov and Erlang belong to the first decades of the XX century. Nev-

ertheless, Automata Theory or Queueing Theory (Operations Research in a broader sense), are identifiable

bodies of literature defined by the foundational research of the 1950’s and 1960’s.
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qualitative and quantitative analysis of complex models, instead of exact solutions of

(over)simplified “views” of the original system. Fortunately, the quality of the approxi-

mation usually improves with the size of the population in the system being considered,

while at the same time the computational savings with respect to the discrete underly-

ing model become much more significant.

Frequently the fluid approximation provides some useful insights into the potential

behavior of the real system under consideration, even if the size of the populations

is not “too big”. In other words, fluidization may allow to get tractable approximate

solutions to be achieved by providing some “educated guess” about behaviors (instead

of a very precise evaluation of an artificially over simplified model). Anyhow it is

particularly relevant to remember once again that, in essence, any model is just an

approximation of a certain reality. Obviously, part of the price paid for fluidization

is that, in general, certain properties cannot be considered in a fluid framework, for

example, mutual exclusion.

Coarsening by fluidization is a frequently practised relaxation technique, but there

are several others. Among these, decomposition techniques (the idea of “divide and

conquer”) or Lagrangian relaxations, which employ duality properties of dynamic sys-

tems, especially useful in optimization problems. Rather than alternative, these latter

relaxation techniques may be seen as complementary approaches in the struggle against

computational complexity.

A formalism is a conceptual framework that enables a kind of formal model of

systems to be obtained, allowing some mathematically-based techniques for the spec-

ification, development and verification. Its use in engineering is grounded on the ex-

pectation of contributing to the quality and robustness of a design by performing ap-

propriate mathematical analysis. For instance, ordinary differential equations consti-

tute a formalism for the modeling of the dynamic behavior of continuous models with

lumped parameters. In view of the long life cycle of a given system (during which

it is conceived, analyzed from different perspectives, implemented and operated), and

the diversity of application domains, it seems desirable to have a family of formalisms

rather than a collection of unrelated or weakly related formalisms. Following Thomas

Kuhn’s ideas (The Structure of Scientific Revolutions, 1962), a paradigm is “the total

pattern of perceiving, conceptualizing, acting, validating, and valuing associated with

a particular image of reality that prevails in a science or a branch of science”. For us,

a modeling paradigm is a conceptual framework that allows formalisms to be obtained

from some common concepts and principles, with the consequent economy, coherence

and synergy in development, among other benefits.

In this paper, fluid or continuous Petri nets are not seen as isolated formalisms, but

as part of a broad modeling paradigm for DEDS, the Petri nets paradigm [156, 157].

Based on the expression of concurrency and synchronization, locality of states (places)

and actions (transitions) is a basic issue for Petri nets. One of the main consequences

is the possibility of approaching the design, analysis and implementation of parallel

and synchronized, eventually distributed, systems using bottom-up (by composition of

lower level modules) and top-down (by refinement of very abstract or upper level de-

scriptions) approaches, in an arbitrary interleaved manners. Petri Net (PN) models can

then be presented as flat or structured descriptions, in the latter case just by keeping

track of the way they are constructed, a degree of freedom of the modelers and users.

Structuring is in any case an essential issue when dealing with the modeling and anal-

ysis of complex systems.

Among the most cited advantages of PN models is their representability in graph-

ical terms, but it is improper to limit them to a graphical formalism because they can
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be also described straightforwardly in a textual way, which may be convenient for very

large models. Useful for the modeling, analysis and synthesis of concurrent and dis-

tributed systems formalized as discrete [22, 49, 89, 136, 147, 149, 163], the conceptual

centrality of PNs in the framework of DEDS is confirmed when considering that they

have been defined from quite different perspectives [156]: axiomatically (by C. A. Petri

himself), through the Vector Addition System, through the Theory of Regions of a

labeled graph (encoding the set of nodes-global states), or from Linear Logic (non-

monotonic logic of Girard), to give some examples.

The introduction of continuous Petri nets (CPNs) goes back to 1987 [47]. R. David

explicitly states (see [49], p. IX) that the source of inspiration was the fluidization of

models for the performance evaluation of production lines. It is simply coincidence

that, at the same meeting in Zaragoza a systematic use of Linear Programming tech-

niques for the structural analysis of Petri nets was proposed, working with the funda-

mental or state equation of the net system [151] (a revised version in [26]). In fact this

second proposal can be rephrased as just relaxing Integer Programming Problems into

Linear Programming Problems in order to obtain necessary or sufficient conditions for

qualitative properties, or bounds for quantitative ones. The main difference between

both approaches is that, being more conceptual, R. David and H. Alla fluidize at the

net level, while in the second case, being more technical, fluidization is applied at the

level of equations. In perspective, the advantage of the approach of our colleagues

from Grenoble was the possibility of describing the transient behavior of timed mod-

els, a topic in which we did not take an interest until around a decade later. On the

other hand, the advantage of our approach is that the possible consideration of the fun-

damental equation in the integer domain may be very important in order to improve the

analysis of the discrete event models.

Fluidization of PN models is mainly considered here at the level of transitions,

leading to the fluidization of places in their pre- and post-conditions. When only some

transitions are fluidized, the PN model is said to be hybrid [49, 53]. Close to this idea,

a different class of hybrid PNs has been called Fluid PNs [86, 162], a formalism in

which the marking of some places is relaxed into the non-negative real numbers in the

framework of a stochastic model. In general, partial relaxations are used in very diverse

conceptual frameworks and application domains, for example, in data communication

networks. Their packet-level granularity is sometime abstracted into a packet-train

granularity, i.e., clusters of closely-spaced packets are replaced by “packets trains”

(see, for example, [116]). In the cited framework of PNs, hybrid abstractions may be

used, for example, to represent “platoons” of vehicles in road traffic problems, these

being formed due to the synchronization imposed by traffic lights [169]. In order to

deal with similar problems, Batches PNs were defined for the modeling and analysis

of bottling lines [50, 51]. In this case, the previous kind of formalism is enriched with

additional primitives. First-Order Hybrid Petri Nets (FOHPNs) represent an alterna-

tive definition of a timed PN based hybrid formalism. Using LPP techniques, in [11]

some on-line control and structural optimization problems are considered; even a multi-

class production network described with a queueing network is considered in the FOH-

PNs framework. Another hybrid PN extension is Differential Petri Nets, which admit

negative-real markings [52].

If all transitions of a discrete PN are fluidized, the net model is said to be fluid or

continuous, but even in that extreme case the formalism is most frequently technically

hybrid. In this work we concentrate on fluid or continuous Petri Nets, formalisms that

are particularly appropriate for modeling many Large Scale Networks. Moreover, a

good understanding of continuous PNs is a fundamental issue for improving the un-

4



derstanding of most hybrid PN formalisms. Nevertheless, certain PN based hybrid

formalisms use a different approach to incorporate some continuous part, particularly

Differential Predicate Transitions PNs [33, 34]. Using the same kind of approach em-

ployed in hybrid automata (see, for example, [4]), the essential difference is that the

discrete dynamics are described with Petri nets.

The present work is structured as follows: In section 2 a broad panorama is traced,

presenting a few important paradigms used for formal modeling and analysis of large

and distributed DEDS. One of the goals is to highlight the fact that despite the apparent

diversity at first sight, there exist many common features, and there are many possi-

bilities of enriching the different perspectives through the incorporation or adaptation

of concepts and techniques initially developed in other paradigms. Fortunately, this

transfer of concepts and techniques is particularly interesting in the case of derived

fluid models. Sections 3 and 4 introduce continuous Petri Nets (CPNs) as untimed, i.e.,

fully non-deterministic, and timed formalisms, respectively. The relationship between

the properties of (discrete) PNs and the corresponding properties of their continuous

approximation is considered at several points. Even if fluidization leads to more ef-

ficient techniques for analysis, it should be emphasized that the expressive power of

timed CPNs (TCPN) (under infinite server semantics) is surprisingly high, because

they can simulate Turing Machines [138]. This means that certain important properties

such as marking coverability or the existence of a steady-state are undecidable.

Among the main technical problems that we review are the observation (section

5) and control (section 6) of TCPNs. In particular, a blend of techniques belonging

to PNs and (continuous and hybrid) Automatic Control theories is used, emphasizing

some structural (graph and algebraic) concepts and results. The control problems con-

sidered are mainly of the set-point or state-targeting type (where the distributed state

is the marking), or state-tracking control. For example, if the time duration is mini-

mized in the transfer from an initial to a given state, the problem is analogous to the

scheduling problem in which the goal is to minimize the make span in the correspond-

ing discrete model. Enforcement of some safety constraints, e.g., deadlock-freeness

or generalized mutual exclusion constraints, may be previously considered using PN

based techniques. This overview ends with some concluding remarks (section 7).

2 Fluidization: a common coarsening approach for dif-

ferent DEDS modeling paradigms

The purpose of this section is to provide a quick, probably over-ambitious, overview of

the field. More than two decades ago, in the Fleming report about Future directions in

control theory: a mathematical perspective, it was stated that [63]:

there exist no formalisms for DEDS mathematically as compact or com-

putationally as tractable as the differential equations are for continuous

systems, particularly with the goal of control.

Certainly the field is much more mature today, as it can be readily verified by

looking at the thousands of published works and their applications to real problems.

Nevertheless, it can be said that the same basic operational formalisms remain today,

and considerable diversity still prevails in the DEDS arena. Therefore, the idea in this

section is to “open the window” in order not to limit the perspective to the Petri nets

paradigm, but to show fluidization as a broad tendency. The goal is to highlight the
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existence of similarities and potential synergies among different modeling paradigms,

and to suggest that many concepts and techniques can be borrowed from one modeling

paradigm to improve or approach others.

Fluid approximations of discrete event dynamic models may be obtained as a limit

case through a continuous state relaxation of the discrete model. Roughly speaking, the

coarse representation given by fluid models is obtained by abstracting the movement

of discrete entities: the new focus deals with the change of the aggregated flows, the

use of hydrodynamic metaphors being frequent (stock-levels and flows). This leads to

reasonable results when the loads are large enough and the stochastic fluctuations may

be neglected in relative terms, as it may happen, for example, under heavy traffic condi-

tions. Therefore, the relation between the discrete model and its relaxed approximation

is an important topic. Alternatively, fluid models may also be directly introduced with-

out paying much attention to the possible relation with an underlying discrete model,

i.e., assuming from the very beginning, at the modeling stage, that for the problem be-

ing considered a fluid model provides a “good enough abstract view” of the expected

behaviors. The first set includes fluid formalisms derived from Queueing Networks

(QNs, sec. 2.1), Stochastic Petri Nets (SPNs) or Markovian Process Algebra (MPAs,

sec. 2.3). The second group comprises other well-known formalisms such as Stochas-

tic Flow Models (SFMs) or Forrester Diagrams (FDs, also expressively called Stock

and Flow Diagrams) (sec. 2.2). In all cases, considering very simplified historical

traces, PNs will be considered as a co-existing paradigm. Thus, no special subsection

is explicitly devoted to them here. Nevertheless, they are usually taken as a reference,

while we emphasize the convenience of dealing with multi-paradigm views.

2.1 Queueing Networks and fluid views

The history of Queueing Theory goes back to the beginning of the XX century with

the pioneering works of A. K. Erlang for telecommunication networks. Queues were

defined originally in order to deal with resource contention among independent jobs,

e.g., problems of congestion in traffic engineering. Pioneering works on Queueing

Networks go back to the late 1950s (J. Jackson, 1957) and the beginning of the sixties.

In parallel, Petri Nets were introduced by C. A. Petri at the beginning of the 1960s

[137], as a fully non-deterministic (untimed) conceptual framework to logically model

and analyze concurrency and synchronization in DEDS. Perceived as a System Theory

by Petri (initially axiomatic), this field was called Systemics by A. Holt in the historic

MAC Project of MIT [60], and the marked bipartite diagrams representing the systems

were baptized Petri Nets. Until the mid 1970s, this was mainly related to the framework

of parallel programming. Notions of time in order to compute performance or depend-

ability were added to PNs around two decades later, at the beginning of the 1980s. In

the PN paradigm, time has been introduced for different purposes (for example, time in-

tervals in order to deal with some qualitative or quantitative real-time properties [126];

or in a possibilistic fashion to handle uncertainty, or preferences, using fuzzy sets [29]).

For performance evaluation and optimization, different semantics have also been de-

fined, providing the probability density functions (pdfs) for service times and defining

some probabilistic routing (even under some fairness constraints). The most current

practice is to assume random policies for queues (places), services (usually associated

to transitions that become stations, were servers operate) and routing (at conflicts) (for

more elaborate disciplines, see [1]).

Since the eighties, the evolutions of QN and PN theories and applications have in

part been such that they simultaneously address an increasingly overlapping class of
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problems. Nevertheless, it is very important to state that from a historical perspective

the conceptual driving forces have been rather different. It can be said that from the

beginning QNs focused on providing high level primitives that simultaneously supply

the user with simple yet expressive building blocks and restrict the models that can

be specified to those that can be analyzed in a relatively efficient way [171]. Very

roughly speaking, in a sense QNs develop in a bottom-up approach. One important

limitation of the initial proposals of QNs was the absence of a general construct to

deal with synchronizations. However at the end of the 1970s, with the emergence of

parallel and distributed systems, the need for synchronization became evident. For

example, to describe cooperation relationships, such as the assembly of parts A and B

into a new reality or par-begin/par-end constructs, and competition relationships, such

as the sharing of servers among two different production lines, or the need for several

resources in order to advance production. The reaction was to provide a bunch of

specific, ad hoc extensions (for example, including diverse forms of synchronization

in Extended Queueing Networks, EQNs [20, 70, 143]). Proceeding in this way, EQNs

began to use a variety of specific primitives to handle synchronizations and resource

constraints, sometimes with a clear redundancy in basic objects. For example, passive

resources and customers reside in different kinds of nodes, or different nodes are used

to model a join and a resource acquisition (see fig. 1). Finally, let us remark that

stochastic Petri nets with weighted arcs, i.e., non-ordinary nets, can be used for the

modeling of bulk arrivals and bulk services [105] with deterministic size of batches

(given by the weights of the arcs).

In this respect, it can be pointed out that a great diversity and specificity of primi-

tives may be convenient in order to develop concise and possibly elegant models, but

this abundance tends to make formal reasoning and theory construction difficult. An

ideal solution to conciliate reasoning capabilities and practical expressivity consists in

having a minimal number of basic primitives in terms of which richer derived ones can

be constructed. In contrast to QNs, the basic PN formalism is quite austere: only two

simple and somewhat orthogonal primitives are identified (transitions and places). In

a sense, it can be said that PN theory develops in a top-down way, giving primarily

attention to the logical properties of fully non-deterministic models. In other words,

PN formalisms are based on a few basic principles leading to great descriptive power,

while QNs are based on several expressive blocks (with rich semantics, dealing with

relatively sophisticated queues and server disciplines and also routing policies), a cat-

alogue that increases under a more problem oriented perspective, resulting from prac-

tical needs. An initial comparison of QNs and timed PNs models for performance

evaluation is provided in [171], were emphasis is put on notation (what models can be

expressed and suitability for representing a class of models) and evaluation efficiency

(what can be computed and computational effort required).

In historical terms, the bridges between these two overlapping families of models

for performance evaluation have been fruitful. For example, synchronization has been

introduced in QNs in a more restricted but systematic way when dealing with Fork Join

QN with Blocking (FJQN/B, a class of models with the structure of strongly connected

Marked Graphs, a well-understood subclass of PNs) [46], or to derive performance

solution techniques on the PN side by adapting techniques from the QN field. The

latter include performance bounds, mean value analysis, response time approximations

or tensor based computations [10]. The same efficiency can be expected for their fluid

approximations: timed fluid PNs may benefit from borrowing concepts and techniques

from fluid QNs, while the problems in fluid PNs may also influence developments in

fluid QNs.
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Figure 1: A stochastic Petri net and the corresponding extended queueing network

The first book dealing with fluid approximations of QNs was by G.F. Newell [133].

Recognizing that queueing theory was originated to deal with practical problems and

that the literature was already very large, the preface of the book stated that:

. . . as a tool for analysis of practical problems, it remains in a primitive

state; perhaps mostly because the theory has been motivated only superfi-

cially by its potential applications... Queueing theory became very popu-

lar, particularly in the late 1950s, but its popularity did not center so much

around its applications as around its mathematical aspects... The literature

grew from “solutions looking for a problem” rather than from “problems

looking for a solution”.

Mathematicians working for their mutual entertainment will discard a prob-

lem either if they cannot solve it, or being soluble it is yet trivial. An engi-

neer concerned with the design of a facility cannot discard the problem...

he must do the best he can. The practical world of queues abounds with

problems that cannot be solved elegantly but which must be analysed nev-
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ertheless. The literature on queues abounds with “exact solutions”, “exact

bounds”, simulations models, etc.; with almost everything except common

sense methods of “engineering judgment”.

These strong statements written in 1971 can be understood to have the intention of

promoting (forty years ago!) an interest in fluid approximations for QN systems! The

general acceptance of fluidization by the QN community was a slow process, being

delayed some two decades following Newell’s basic proposition.

Fluid limit equations can be derived from discrete QN equations by using natu-

ral extensions of the well-known law of large numbers and the central limit theorem

from probability theory. More precisely its analogues in stochastic processes theory

are the Functional Strong Laws of Large Numbers and, dealing with distributions, the

Functional Central Limit Theorem (also known as Donsker Theorem). In both cases,

the idea is to study the convergence of a sequence of stochastic processes to another

stochastic process, generating simple approximations (see, for example, [174]). These

approximations have been used in order, for example, to compute performance, analyze

stability, or optimize the behavior of QNs models.

Fluid approximations may be perceived as being, in a general sense, (continuous

or hybrid) dynamical systems associated with QNs. The fluid relaxed model may be

deterministic only if the functional strong law of large numbers or similar results are

used [36]. Roughly speaking, in this case arrival and service processes are replaced by

their intensities, i.e., expectations or average values. Nevertheless, even if providing

a simplified view, the deterministic approximation may exhibit very complex behav-

iors. For example, as pointed out in [23], deterministic fluid QN models need not have

unique solutions, since they might bifurcate. Moreover, as will be mentioned later,

when interpreting some continuous PNs as fluid EQNs, undecidability issues can even

appear!

Among the topics considered in the QN literature, questions related to the quality of

the approximation are important. When fluctuations cannot be neglected with respect

to average values (for example, because the population is not truly that “big”), the fluid

model should be described in terms of stochastic differential equations. In this latter

case the noise in the differential equations partially reflects the stochastic variability in

the behavior of the original discrete QN. These stochastic differential equations may

be obtained by means of the functional central limit theorem or similar results.

The literature on fluid QNs has been very extensive since the 1970’s. While a

complete overview is outside the scope of this work, we would refer as examples

to various books [23, 37, 104, 106] or articles [3, 45, 128, 129]. The parametric opti-

mization and dynamic control (sometimes referred to as scheduling for the underlying

discrete model) of the fluid approximate model are important problems (see for ex-

ample [44, 109, 117, 131]). Among the many potential interests of fluid models is the

analysis of the stability of discrete QNs (in PN terms, the idea of boundedness). This is

a topic that in the mid 1990s was already stated to have (in certain cases) “achieved a

striking success by providing a complete answer to the question of stability of stochas-

tic networks” (page 4 in [9]), frequently irrespective of the particular discipline being

applied to the queues. There is a significant amount of works dealing with fluid ap-

proaches and stability (among those non previously cited, for example [19, 58, 66]).
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2.2 Direct fluid models of systems that can “naturally” be seen as

DEDS

In many natural and technological systems the consideration of discrete event models

may be conceptually the more faithful view. Nevertheless, models being abstractions,

fluid views may be better suited for stability analysis, performance evaluation, sensitiv-

ity analysis or optimization, to give some examples. As already said, fluid models may

be deterministic (first-moment approximation) or stochastic. Nevertheless, the basic

pattern of the systems of equations is organized around the simple “mass balance or

accounting principle”: the rate of accumulation, e.g., of customers in queues, is equal

to the difference of incoming and outgoing flows.

Even if conceptually thought of as continuous, those models are usually technically

hybrid (among other reasons, because of upper bounds on capacities or non-negativity

at the level of “reservoirs”). From a System Theory point of view, the peculiarities

of models are in the definition of the input and output flows. Among an infinity of

possibilities, they can be linear, piece-wise constant (as it occurs with CPN under fi-

nite server semantics), piece-wise linear (as occurs with CPNs under infinite server

semantics), or bilinear (as frequently occurs in population dynamic problems, where

products of predators and preys appear, a server semantics that appears in CPN by the

discoloring of colored PNs [153]).

It is easy to see that in many cases, “similar” kinds of approaches are taken as the

basis for defining classes of successful models of dynamical systems. For example,

Compartmental Systems (CS) are composed of a finite number of subsystems (com-

partments), interacting by exchanging nonnegative quantities of material and energy

among the compartments and with the environment [17, 172]. Similar to that of QNs

but “from the beginning” a continuous perspective, compartmental “views” of systems

are used in biology, medicine and ecology, among many other application fields. The

system is governed by laws of transfer and conservation, while the state variables are

constrained to remain nonnegative over the system trajectories. A compartmental sys-

tem can be represented as a graph. A Compartmental Network (CN) has compartments

as nodes, and has a peculiar interpretation associated to it. The level (or amount of

material) of each compartment, xi, changes according to the input and output flows

through the arcs, i.e., ẋi =
∑

k fki −
∑

j fij .

In compartmental systems, generation of matter is forbidden. Hence, in the case

of linear systems (ẋ(t) = A · x(t) +B · u(t)), all the eigenvalues of A have a non-

positive real part and so the systems are either asymptotically or marginally stable.

If it is a closed system, then 1 · A = 0 (thus, A is singular), and then 1 · x(t) is

constant. That is, the system is strictly conservative. Otherwise, there are losses (e.g.,

evaporation) in the system.

The flows in CNs can be defined according to different semantics [172]: (pure)

donor controlled, when fij depends only on xi (fij = aij · xi in the linear case);

(pure) recipient controlled, when fij depends only on xj (fij = bij · xj in the linear

case); donor and recipient controlled, if fij depends on both, xi and xj (for example,

fij = cij ·xi ·xj). Pure recipient controlled systems are not positive systems according

to [62]. In an unforced, i.e., non-controlled, linear donor system, A is a Metzler ma-

trix (non-diagonal elements are non-negative) and for any non-negative initial state the

variables remain always non-negative, i.e., x ≥ 0 is a redundant constraint. As with

QNs, the compartmental systems “view”, has been considered for performance evalua-

tion (transient and steady state), sensitivity and stability analysis or control design (for

the last two see, see for example [74, 88]).
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Compartmental and PN systems are considered in [154]. Due to the existence of

synchronizations (joins or rendez-vous, and arc weights), it can be said that the struc-

ture of PNs is richer. Nevertheless, considering the semantics associated to the net-

works, in PNs there is a problem in representing recipient controlled compartmental

systems in a “natural” way (because in PNs the flows are defined according to the

marking of places at the precondition, not the marking of the subsequent places).

Using the same kind of “mass balance principle”, in Stochastic Flow Systems (or

Stochastic Fluid Systems) [30] both the arrival (or incoming) flow process and the

service (or outgoing) process are random, normally assumed to be independent of each

other. As in compartmental systems, x(t) represents the level of a set of reservoirs

at time t, while controls may be applied to regulate the amount of flows. In this case,

graphs illustrate flows, reservoirs and their connections. The key point is how equations

are written, something for which there is a significant degree of freedom. In order

to address optimization problems or sensitivity analysis, exogenous and endogenous

events should be considered (the former referring to changes in the defining process, the

latter characterizing points were the state of the system enters a certain region). In this

framework, Infinitesimal Perturbation Analysis (IPA) has been successfully explored

in several cases in order to optimize the behavior of the system (see, for example,

[159, 177]).

As a third and last approach, let us mention System Dynamics. This is a modeling

and analysis (basically bounded to simulation) methodology that began to be consol-

idated in parallel with Petri nets, in the 1960’s. Jay W. Forrester started the System

Dynamics Group at MIT, from which Systems Dynamics arose [64, 65]. Abstracting

the possible discrete “nature” of the system under consideration, as in CNs or SFMs,

systems are modeled as continuous or hybrid, now using two kinds of diagrams. Here

we do not explicitly deal with the methodological aspects, but only to point out the

existence of the so called Forrester Diagrams (FDs), also expressively known as Stock

and Flow Diagrams. This kind of diagram allows the quantitative modeling of the re-

lationships between the parts by means of a catalogue of symbols which correspond to

a classical hydrodynamic interpretation of the system (see fig. 2).

The stocks correspond to the name of state variables in systems, while their val-

ues are the levels (stocks accumulate “material” coming from material channels); the

valves determine the speed of the material flow through material channels (solid lines);

the required information is transmitted instantaneously by means of information chan-

nels (dashed lines); auxiliary variables correspond to intermediate steps in the calcu-

lation of functions associated to the valves; the clouds represent sources and sinks; the

interaction of the system with the exterior is represented by exogenous variables; the

delays can affect the material of information transmission but they do not increase the

modeling power of the formalism.

Elements of comparison between FDs and CPNs are provided in [90, 92]. At the

structural level, as in EQNs, the variety of symbols in FDs contrasts with the frugality

of basic symbols in PNs. Additionally, in FDs there exist not only material flows, but

also graphical representations of information flows. Concerning the interpretation of

the graph, as in compartmental systems (or SFMs, where noise is also considered) there

is considerable freedom in defining the flows through arbitrary functions. In contrast,

in CPNs the flow functions will be constrained by the particular server semantics (finite,

infinite, population or product, etc.), using only local state variables in the precondition

of the transition. Roughly speaking, if CNs, FDs and SFMs have increased expressivity

in defining the “flows” quantitatively, the explicit presence of synchronizations in PNs

makes the expression of simple tasks more natural as the assembly of two kinds of
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Figure 2: A continuous Petri net, the corresponding FD model and the basic compo-

nents of a FD model. Observe that the simulation of the synchronization t3 in the FD

is rather “obscure”.

parts.

To conclude, let us point out that (E)QNs, CNs, FDs or SFMs were directly defined

as evolving in the time domain. Nevertheless, (C)PNs were primarily defined as fully

non deterministic models, without any concept of time. This may be of particular in-

terest in order to check some properties such as the potential presence of deadlocks, or

the existence of other time independent constraints in behavior, e.g., certain synchronic

distances or mutual exclusions.

However, the point here is not to focus on the differences among paradigms, but

rather the reverse: in the end the different formalisms generate systems of equations

that share some structural elements and there is a clear potential for transfering/adapting

concepts and techniques.

2.3 Stochastic Process Algebras and fluid views

Returning to basic paradigms for modeling DEDS, let us consider Process Algebras

(PAs), a formal paradigm created within the Computer Science community. If PNs

were mainly defined to express “concurrency and synchronization”, PAs base their

basic modeling view on “components and composition” (let us say, a generalization

of products of automata). Like PNs, PAs have been formally defined in a top-down

manner, first without time, and in a second step adding the time dimension. Very
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recently, a lustrum ago, timed-fluid process algebras began to be explored.

From a historical perspective the three most classical process algebras are: Cal-

culus of Communicating Systems (CSS) [127], Communicating Sequential Processes

(CSP) [84], where local variables and the message passing paradigm of communica-

tion is adopted, and Algebra of Communicating Processes (ACP) [18], where the alge-

braic features are emphasized, introducing the noun phrase “process algebra”. These

proposals belong to an enormous set in which assumptions may sometimes differ very

little, something which may puzzle outside observers of the field’s evolution as in the

case with QN and PN paradigms.

Work on stochastic PAs originated at the University of Erlangen at the beginning of

the 1990s. Roughly speaking, they extend the untimed model with stochastic timings,

and several proposals flourished during the first half of 1990s. They include [80]: TIPP

(TImed Processes and Performance evaluation), PEPA (Performance Evaluation Pro-

cess Algebra), MPA (Markovian Process Algebra), and EMPA (Extended Markovian

Process Algebra).

Informally, it can be said that Petri Nets are to Stochastic Petri Nets (SPNs) what

Process Algebras are to Stochastic Process Algebras (SPAs). SPNs were defined during

the first half of the 1980s, while SPAs began to be defined one decade afterwards.

Underlying both kinds of extensions are the goals of modeling and analysis of the

functional behavior and performance characteristics of parallel and distributed DEDS.

The goals in the first process algebras were defined so as to provide semantics for

programming languages involving parallel constructions. This fact together with the

textual programming style of defining models meant that the interest in process algebra

was mostly confine to the Computer Science community.

If fluid or continuous PNs had a clear existence by the beginning of the 1990s [47,

48], fluid PAs began to be defined in the second half of the first decade of this century,

i.e., about a decade and half later. Among these, PEPA [81] is a basic Markovian PA in

which the basic components are sequential processes (finite automata), while parallel

composition is only supported at the top level. Its fluid-flow approximation considers

large scale models of massively repeated sequential components. The small set of

combinators in PEPA contains prefix and choice, representing a sequential behavior

and a choice, and cooperation, that defines synchronizations. Moreover, with hiding

it is possible to abstract aspects of the components’ behavior (roughly speaking, this

is the “parallel” in PNs to silent, immediate, non-observable... transitions). Among

other constraints on fluidization, components of the same type do not cooperate, i.e.,

synchronize. In a study related to chemical reactions, Cardelli (see, for example [28])

considers the fluidification of other SPAs. As with fluid QNs or continuous PNs, the

basic goal is to look for a set of coupled ordinary differential equations (ODEs) as the

underlying mathematical representation of the approximated behavior.

As in automata, in the PA paradigm the representation of the state is symbolic, a

fact which is not appropriate for fluidization. As it is well-known, in PNs (particularly

in Place/Transition nets, P/T nets), the distributed state is given by a numerical vector,

the marking. Following this line of thinking, in [81] a numerically aggregated represen-

tation scheme is defined for PA expressions with replicated components. It explicitly

introduces integer counters to define the state space, dealing with a state representation

in numerical vector form which can be subject to a fluid-flow approximation. Obtained

by aggregating all identical non-synchronized sequential components, the structure of

the model is based on a so called activity matrix (its dimension being the number of

activities by the number of distinct local derivatives), and timing is defined through a

rate function per transition. Obviously the activity matrix is nothing more than the inci-
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dence matrix of an underlying Petri Net (were activities are transitions and derivatives

are places). This obvious fact has been recognized sometime later [54, 67]. Addi-

tionally, due to constraints on the subclass of considered process algebra models, the

underlying Petri nets are State Machine Decomposable, an ordinary, i.e., no weights

on the arcs, net subclass that is structurally bounded. Moreover, assuming interactions

as being like those existing in computer networks, a bounded capacity law was consid-

ered in PEPA from the beginning. Components cannot perform activities any faster by

cooperation, so the rate of a shared activity is the minimum of the apparent rates of the

activity in the cooperating components. Therefore, the underlying CPN considers the

so called infinite server’s semantics for the fluid model (in subsequent works dealing

with signalling pathways, borrowing terminology from chemistry, the law of mass ac-

tion was added [39], replacing the minimum operator by the product, as in population

dynamics [153]). A very positive point about this connection is that analysis and con-

trol of PEPA models can immediately use PN theory and techniques, and vice versa (a

goal expressed in [57, 82], when comparing the expressiveness of PEPA and bounded

SPN models). Extensions of this subclass of PA models can be found in [76] where

more than constructing a limiting-deterministic approximation, higher order moments

(in particular, variances) are estimated. This is necessary for guessing the accuracy of

the fluid-flow approximation in a given situation.

2.4 Some remarks on the sketched landscape

The present section makes a long trip flying over the big forest (do not translate this last

word into Latin, to avoid certain confusions) of fluid models of discrete event dynamic

systems. As a summary of some of the ideas:

• Starting from DEDS views based on “customers-services” relationships (QNs),

expressing “concurrency and synchronization” (PNs), or “components and com-

position” (PAs), the fluid models have similar kinds of structure, with meaningful

graphical representation.

• In essence, most of the considered DEDS models and their fluid relaxations di-

rectly reflect a bipartite structure: queues in QNs, places in PNs or storages

(tanks) in FDs are “containers”, while stations in QNs, transitions in PNs or

valves in FDs deal with “activities” (in the QN case by agents identified as

servers). Roughly speaking, this represents a consumer/production logic, a fea-

ture needed for manufacturing, communications, logistics, distributed computa-

tions, transportation (road traffic), chemical-reactions, biological or ecological

systems, to give some examples. The distributed state is (partially) represented

by the number of customers in QNs, tokens in PNs or levels in FDs in the model.

• The presence of synchronizations (joins and arc-weights in PNs) and very dif-

ferent stochastic interpretations (where the QNs literature is richer) are the more

significant peculiarities of the particular kind of equations in fluid models.

• In PNs, the state is always considered in a distributed and numerical way, as

opposite to the central and symbolic view (single global state-variable) provided

by automata or Markov chains. This is also the reason why fluid PA models pass

through an intermediate PN representation.

• The accuracy of the approximation depends on the structure of the model, the

timing, the initial state and the performance metrics of interest.
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• Under appropriate stability conditions, the classical robustness of closed-loop

control, i.e., reduction of sensitiveness, can more easily exploit the fluid approx-

imation than those required for pure performance evaluation problems.

• The considered fluid models (“approximate or not”) are technically (peculiar)

hybrid systems, due to upper/lower bounds on actions and states, or to flow def-

initions as those in which a minimum operator is employed (as in the so called

infinite server semantics in continuous PNs).

• In many cases, in sound theories to deal with fluid approximation of large scale

DEDS, it would be important to have not only a timed approximation, but also an

untimed one, i.e., assuming full non-determinism, where pure logical properties

of the system can be studied (such as deadlock freeness or liveness, structural

boundedness-stability, synchronic properties...).

Once models of QNs, PNs or PAs are fluidified, or CSs, SFMs or FDs are con-

sidered, the kind of (stochastic) equations that can be obtained have many structural

peculiarities in common. In other words, the study of those fluid models may apply

to broader frameworks than the precise DEDS modeling paradigm from which they

originate. Perhaps one way of understanding this important fact is as follows: if all

the performance models use exponential probability density functions (pdfs), the lower

level models reduce to Markov Chains, and the mentioned proximity among fluid ap-

proximations can be “easily accepted”. If the pdfs are non exponential, under high

utilization probability of servers (heavy traffic. . .), functional central limit theorems

will “uniform” the stochastic kind of fluid models; for really very large populations,

deterministic differential equations may be truly appropriate. In some sense, an idea

of this kind is expressed in [75], where a global reflection on the proper mathematical

setting for systems of the type being considered is explained. Presented from a manage-

ment/operations research perspective as an extension of classical linear programming

models (static and deterministic, appropriated for very long terms), Harrison introduces

time dimension and random behaviors, identifying the existence of resources, buffers,

activities and “materials” (units of flow). The formalism introduced is called Stochas-

tic Processing Networks, its roots lying in the classical Activity Analysis, began in the

1950s.

The quantity of works on fluid QNs today is impressive. At the other extreme, the

more recent approach to fluidization of DEDS concerns PAs, which goes through a

numerical PN-based representation. In a very simplistic way, the communities of QNs,

and following that lines, considering in fact a subclass of PNs, the community of PAs

pay important attention to the justification of the fluid models using the functional law

of large numbers and functional central limit theorems. Most frequently the results

concern populations growing to infinity, while time is kept finite. Alternatively, in

the context of PNs the consideration of steady-state (time going to infinite) for big

(but bounded) populations has been studied (see sec. 4.6). For QNs there is a great

abundance of studies concerning stability or optimization (parametric and dynamic)

issues. In PNs the extensive use of structure theory (see, for example [158]) to deal with

functional properties for the underlying non-deterministic discrete model is a peculiar

feature, while some bridges to automatic control concepts and techniques have been

explored (see, for example, hereafter the sections 4 and 5).
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3 Fluidification of untimed net models

After the previous broad perspective, let us now concentrate on Petri nets. This section

presents the formalism of continuous Petri nets and its behavior in the untimed frame-

work. It deals with basic concepts, as lim-reachability and desired logical properties,

and relates them to those ones of the discrete systems.

3.1 Basic concepts and definitions

In the following, it is assumed that the reader is familiar with Petri nets (PNs) (see [49,

132, 149] for an introduction). The usual PN system will be denoted as 〈N ,M 0〉,
where N = 〈P, T,Pre,Post〉 is the net structure:

• P and T are disjoint and finite sets of places and transitions;

• Pre and Post are |P | × |T | sized, natural valued, incidence matrices. The net

is said to be ordinary if Pre and Post are valued on {0, 1};

and M0 ∈ N|P |
≥0 is the initial (discrete) marking. A continuous system 〈N ,m0〉 is

understood as the fluid relaxation of all the transitions of a discrete system. The main

difference between continuous and discrete PNs is in the firing count vector and conse-

quently in the marking, which in discrete PNs are restricted to natural numbers, while

in continuous PNs are relaxed to non-negative real numbers, e.g., m0 ∈ R|P |
≥0 . Observe

that uppercase M represents the marking of a discrete net system, while lowercase m

represents the marking of a continuous net system. In the following, it will be assumed

that all the components of the firing count vector are non-negative real numbers, what

implies a full relaxation of the system. The marking of a place of a continuous system

can be seen as an amount of fluid stored in the place, and the firing of a transition can

be considered as a flow of fluids going from the set of its input places to the set of

its output places (in general, fluids can be created or destroyed by firing a transition,

because any local conservation of material is required).
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Figure 3: (a) Autonomous continuous system (b) Lim-Reachability space

Given a node v ∈ P ∪ T , its preset, •v, is defined as the set of its input nodes,

and its postset, v•, as the set of its output nodes. For example, in the PN of fig. 3(a),
•t2 = {p2, p3}, while p3

• = {t2}. These definitions can be naturally extended to

sets of nodes. A transition t is enabled at m if for every p ∈ •t, m[p] > 0. In
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other words, the enabling condition of continuous systems and that of discrete ordinary

systems can be expressed in an “analogous” way: every input place should be marked.

Notice that to decide whether a transition in a continuous system is enabled or not, it

is not necessary to consider the weights of the arcs going from the input places to the

transition. However, the arc weights are important to compute the enabling degree of a

transition which, for continuous nets, is defined for a given marking m as

enab(t,m) = min
p∈•t

m[p]

Pre[p, t]
(1)

The enabling degree of a transition represents the maximal amount in which the

transition can be fired in a single occurrence. In this section no policy for the firing

of transitions is imposed, that is, a full non-determinism is assumed for the order and

firing amounts in which transitions are fired.

The firing of t in a certain amount α, with 0 < α ≤ enab(t,m) leads to a new

marking m′, and it is denoted as m αt−→m′. It holds m′ = m + α · C[P, t], where

C = Post− Pre is the token flow matrix (incidence matrix if N is self-loop free),

and C[P, t] is the column of C devoted to transition t. Hence, as in discrete systems,

the state (or fundamental) equation

m = m0 +C ·σ, m,σ ≥ 0 (2)

summarizes the way the marking evolves. As it will be discussed, for discrete models

the state equation M = M0 +C · σ, M ,σ ≥ 0 provides a necessary condition for

a marking to be reachable, however it is not a sufficient condition since it can contain

spurious solutions, i.e., non reachable solutions.

The support of a vector v ≥ 0 is ‖v‖ = {vi|vi > 0}, the set of positive ele-

ments of v. Right and left natural annullers of the token flow matrix are called T-

and P-semiflows, respectively. A semiflow is minimal when its support is not a proper

superset of the support of any other semiflow, and the greatest common divisor of its

elements is one. As in discrete nets, when yT · C = 0, y > 0 the net is said to be

conservative, and when C · x = 0, x > 0 the net is said to be consistent.

P-semiflows lead to three different concepts: a) the P-semiflow itself which is a

non-negative vector (y ≥ 0, yT · C = 0); b) the conservation law induced by the

P-semiflow, i.e., if ∃y 
 0 then, by the state equation, it holds that given an arbitrary

m0, yT ·m0 = yT ·m for every reachable marking m; c) the subnet generated by the

places in the support of the P-semiflow (Py = ‖y‖, Ty = •Py∪Py
•), a P-conservative

component. On the other hand, T-semiflows also admit three views: a) the non-negative

vector that is a right annuller of the incidence matrix (x ≥ 0, C · x = 0); b) the

potentially cyclic behaviours induced by the T-semiflow. i.e., if ∃x 
 0 that is fireable

from m0 then, by the state equation, m0
σ−→m0 with σ being a firing sequence whose

firing count vector equals x; c) the subnet generated by the transitions in the support

of the T-semiflow (Tx = ‖x‖, Px = •Tx ∪ Tx
•).

For example, the PN in fig. 1 has several P-semiflows and one of them is a vector

y with zero elements except y9 = y13 = 1, i.e., ‖y‖ = {p9, p13}. Observe that, from

the initial marking in the figure, m[p9] + m[p13] = 1 for any reachable marking m.

Alternatively, observe that one of the T-semiflows is the vector with all elements equal

to 1 excepting components 3 and 5 that are equal to 0. Thus, if all transitions are fired

excepting t3 and t5, the final marking that is reached is the same as the initial one.

Therefore, the PN has a T-semiflow corresponding to this sequence x with all elements

equal to 1 excepting x3 = x5 = 0.
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A set of places Σ is a siphon if •Σ ⊆ Σ•. A set of places Θ is a trap if: (a)

Θ• ⊆ •Θ; and (b) for each place p ∈ Θ the firing of any t ∈ •p enables at least

one t ∈ p•. Condition (b) is always satisfied in CPNs and in ordinary discrete PNs.

For non-ordinary discrete PNs, condition (b) is satisfied if a non-blocking condition

is true [22]3. Therefore, for ordinary nets or if the non-blocking condition is ignored,

a trap in N is a siphon in the reverse net N r , i.e., the resulting net of reversing all

arcs. In discrete nets, initially marked traps cannot be emptied. More formally, let

Θ = ‖y‖ be a trap, if yT · M0 ≥ 1 then yT · M ≥ 1 for any reachable marking

M . Symmetrically, initially empty siphons cannot get marked, i.e., let Σ = ‖y‖ be a

siphon, if yT ·M0 = 0 then yT ·M = 0 for any reachable marking M .

For the same PN in fig. 1, Θ = {p5, p7} is a trap since Θ• = {t5} ⊆ {t3, t5} = •Θ,

while Σ = {p9, p10, p13} is a siphon since: •Σ = {t9, t10} ⊆ {t9, t7, t10} = Σ•.

The definitions of subclasses that depend only on the structure of the net are also

generalized to continuous nets. For instance, in choice free nets (CF) each place has

at most one output transition. In equal conflict nets (EQ) all conflicts are equal, i.e.,
•t ∩ •t′ 6= ∅ ⇒ Pre[P, t] = Pre[P, t′] (for instance transitions t3 and t4 in fig. 1

are in equal conflict). Moreover, a net N is said to be proportional equal conflict if
•t ∩ •t′ 6= ∅ ⇒ ∃q ∈ R>0 such that Pre[P, t] = q · Pre[P, t′]. A net N is said to

be mono-T-semiflow (MTS) if it is conservative and has a unique minimal T-semiflow

whose support contains all the transitions.

3.2 Fireable sequences, reachability sets and a necessary condition

for fluidization

In order to illustrate the firing rule in a continuous system, let us consider the system

in fig. 3(a). The only enabled transition at the initial marking is t1 whose enabling

degree is 1. Hence, it can be fired in any real quantity going from 0 to 1. For example,

firing by 0.5 would yield marking m1 = [0.5 0.5 1 0]T . At m1 transition t2 has

enabling degree equal to 0.5; if it is fired in this amount the resulting marking is m2 =
[0.5 0.5 0 0.5]T . Both m1 and m2 are markings reachable with finite firing sequences,

or simply reachable markings.

For a given system 〈N ,m0〉, the set of all markings that are reachable by a finite

number of firings is denoted as RS(N ,m0). Interestingly this set is convex [142].

Proposition 1 Let 〈N ,m0〉 be a continuous PN system. The set RS(N ,m0) is con-

vex, i.e., if two markings m1 and m2 are reachable, then for any α ∈ [0, 1],
αm1 + (1− α)m2 is also a reachable marking.

Notice that in a continuous system any enabled transition can be fired in a suf-

ficiently small quantity such that it does not become disabled. This implies that ev-

ery transition is fireable if and only if a strictly positive marking is reachable (equiv-

alently, there exists no empty, i.e., unmarked, siphon). From this, realizability of

T-semiflows can be deduced [142], and therefore behavioral and structural synchronic

relations [148,150] coincide in consistent continuous systems in which every transition

is fireable at least once. In particular, defining boundedness and structural bounded-

ness as in discrete systems (a system is bounded iff k ∈ N exists such that for every

3For each place in the trap, the minimum weight of the input arcs is greater than or equal

to the minimum weight of its output arcs, i.e., ∀p ∈ Θ such that •p 6= ∅ it holds that

minti∈
•p Post[p, ti] ≥ minto∈p• Pre[p, to].
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reachable marking m ≤ k · 1, and it is structurally bounded iff it is bounded with ev-

ery initial marking), it is immediate to see that both concepts coincide in continuous

systems in which every transition is fireable. And, as in discrete systems, structural

boundedness is equivalent to the existence of y > 0 such that y · C ≤ 0 (see, for

example, [22, 158]).

Assume that the initial marking of a given system 〈N ,m0〉 is a vector of non-

negative integers, i.e., m0 ∈ N|P |
≥0 . Obviously, if m is a marking that is reached by

firing transitions in discrete amounts, i.e., as if the system was discrete, then m is also

reachable by the system as continuous just by applying the same firing sequence. Thus

RSD(N ,m0) ⊆ RS(N ,m0) where RSD(N ,m0) is the discrete reachability set, i.e.,

the set of markings reachable by the system as discrete. An immediate consequence of

this is that boundedness of the continuous system is a sufficient condition for bound-

edness of the discrete system.

A marking is said to be lim-reachable if it can be reached with a possibly infinite

firing sequence. More formally:

Definition 2 [142] Let 〈N ,m0〉 be a continuous system. A marking m ∈ R|P |
≥0 is

lim-reachable, if a sequence of reachable markings {mi}i≥1 exists such that

m0
σ1−→m1

σ2−→m2 · · ·mi−1
σi−→mi · · ·

and lim
i→∞

mi = m.

The lim-reachable space is the set of lim-reachable markings, and will be denoted

lim-RS(N ,m0). Fig. 3(b) depicts lim-RS(N ,m0) of the system in fig. 3(a). It is

not necessary to represent the marking of place p1 since m[p1] = 1 −m[p2] (p1 and

p2 define a token conservation law). The set of lim-reachable markings is composed

of the points inside the prism, i.e., the interior points, the points in the non shadowed

sides, the points in the thick edges and the points in the non circled vertices.

Let us consider again the system in fig. 3(a) with initial markingm0 = [0.5 0.5 0 0.5]T .

The firing of t3 in an amount of 0.5makes the system evolve to marking [0.5 0.5 0.5 0]T

from which t2 can be fired in an amount of 0.25 leading to marking [0.5 0.5 0 0.25]T .

Now, the markings of places p1, p2 and p3 are the same as those of the system at m0,

but the marking of p4 is half of its marking at m0. As transitions t2 and t3 are further

fired, the marking of p4 approaches 0. Notice that the marking reached in the limit

[0.5 0.5 0 0]T corresponds to the emptying of an initially marked trap Θ = {p3, p4},

fact that can not occur in discrete systems. Thus, in continuous systems traps may not

trap! From the point of view of the analysis of the behaviour of the system, it is inter-

esting to consider this lim-reachable marking, since it is the one to which the state of

the system may converge.

For any continuous system 〈N ,m0〉, the differences between RS(N ,m0) and

lim-RS(N ,m0) are just in the border points of their convex spaces. In fact, it holds

that RS(N ,m0) ⊆ lim-RS(N ,m0) and that the closure of RS(N ,m0), i.e., all the

points in RS(N ,m0) plus the limit points of RS(N ,m0), is equal to the closure of

lim-RS(N ,m0) [99].

As in discrete systems, a continuous system 〈N ,m0〉 is said to deadlock if a mark-

ing m ∈ RS(N ,m0) exists such that enab(t,m) = 0 for every transition t; the

system is live if for every transition t and for any marking m ∈ RS(N ,m0) a succes-

sor m′ exists such that enab(t,m′) > 0; and a net N is structurally live if ∃m0 such

that 〈N ,m0〉 is live.
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Figure 4: Two MTS systems that behave in very different ways if seen as discrete or as

continuous.

The fact that RSD(N ,m0) ⊆ RS(N ,m0) might involve the loss of some prop-

erties of the discrete system, e.g., the new reachable markings might make the system

live or might deadlock it. The system in fig. 4(a) deadlocks as discrete after the fir-

ing of transition t1. However, it never gets completely blocked as continuous unless

an infinitely long sequence is considered. On the other hand, the system in fig. 4(b)

is live as discrete but gets blocked as continuous if transition t2 is fired in an amount

of 0.5. This non-fluidizability of discrete net systems with respect to the deadlock-

freeness property (also with respect to liveness because they are MTS nets), that may

be surprising at first glance, can be easily accepted if one thinks, for example, on the

existence of non-linearizable differential equations systems (for example, due to the

existence of a chaotic behavior).

It must be pointed out that a system can be fluidizable with respect to a given

property, i.e., the continuous model preserves that property of the discrete one, but

not with respect to other properties. Thus, the usefulness of continuous relaxations of

discrete models depends not only the systems being studied but also on the properties

to be analyzed.

Interestingly, the set lim-RS(N ,m0) can be easily characterized if some common

conditions that can be checked in polynomial time are fulfilled [142].

Proposition 3 Let 〈N ,m0〉 be consistent and such that each transition can be fired at

least once. Thenm ∈ lim-RS(N ,m0) iff there exists σ > 0 such thatm = m0 +C · σ.

Hence, if a net is consistent and the system has no empty siphon at m0, then the

set of lim-reachable markings is fully characterized by the state equation. This im-

mediately implies convexity of lim-RS(N ,m0) and the inclusion of every spurious

discrete solution in lim-RS(N ,m0). Recall that m is said to be a spurious discrete

solution if m is solution of the state equation, i.e., there exists σ ∈ N|T |
≥0 such that

m = m0 +C · σ, but m is not reachable, i.e., m 6∈ RSD(N ,m0). Fortunately, as

it will be shown in the next section, every spurious solution in the border of the con-

vex set lim-RS(N ,m0) can be cut by adding some implicit places (more precisely

the so-called cutting implicit places [42]) what implies clear improvements in the state

equation representation. Improvements in the computation of performance bounds for

discrete PNs is considered in [26].

If 〈N ,m0〉 is not consistent or some transitions cannot be fired, lim-RS(N ,m0)
can still be characterized by using the state equation plus a simple additional constraint
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concerning the fireability of the transitions in ‖σ‖. The set RS(N ,m0) can also be

fully determined by adding one further constraint related to the fact that a finite firing

sequence cannot empty a trap [99] (in contrast to infinite sequences which might empty

initially marked traps as shown in this section).

3.3 Liveness conditions for continuous systems

Liveness and deadlock definitions can be straightforwardly extended for the concept of

lim-reachability.

Definition 4 Let 〈N ,m0〉 be a continuous PN system.

• 〈N ,m0〉 lim-deadlocks if a marking m ∈ lim-RS(N ,m0) exists such that

enab(t,m) = 0 for every transition t;

• 〈N ,m0〉 is lim-live if for every transition t and for any markingm ∈ lim-RS(N ,m0)
a successor m′ exists such that enab(t,m′) > 0;

• N is structurally lim-live if ∃m0 such that 〈N ,m0〉 is lim-live.

Notice that although lim-deadlocks may only be reached in the limit, they highlight

an important system weakness: they allow the system to reach a marking in which all

transitions have either 0 or infinitely small enabling degrees.

As discussed in the previous subsection, the state equation provides a full char-

acterization of the lim-reachable markings for consistent nets with no empty siphons.

This allows one to use the state equation to look at m0 for deadlocks, i.e., markings at

which every transition has at least one empty input place. Consider the net in fig. 5 with

m0 = [10 11 0]T . It is consistent (with x1 = [1 1]T as its only minimal T-semiflow)

and conservative (with y1 = [1 0 1]T and y2 = [0 1 1]T as minimal P-semiflows).

At any potential lim-deadlock marking m, both transitions t1 and t2 must be disabled,

i.e., at least one input place per transition is empty. Thus, transition t1 is disabled iff

m[p1] = 0 or m[p2] = 0, and transition t2 is disabled iff m[p1] = 0 or m[p3] = 0.

Hence, at a lim-deadlock marking m it holds m[p1] = 0∨ (m[p2] = 0∧m[p3] = 0).
As stated, this problem might be directly associated to a satisfiability problem, which

has exponential complexity. Alternatively, deadlock-freeness can be straightforwardly

expressed as a set of non-linear (bi-linear) equations. Let us define PreΣ and PostΣ

as |P | × |T | sized matrices such that:

• PreΣ[p, t] = |t•| if Pre[p, t] > 0, PreΣ[p, t] = 0 otherwise

• PostΣ[p, t] = 1 if Post[p, t] > 0, PostΣ[p, t] = 0 otherwise.

Equations {yT ·CΣ ≤ 0, y ≥ 0} where CΣ = PostΣ −PreΣ define a generator

of siphons (Σ is a siphon iff ∃y ≥ 0 such that Θ = ‖y‖, yT ·CΘ ≤ 0) [61, 158].

Proposition 5 The following system:

• m = m0 +C ·σ, m,σ ≥ 0, {state equation}
• yT ·CΣ ≤ 0,y ≥ 0, {siphon generator}
• yT ·m = 0, {empty siphon at m}
• yT ·Pre ≥ 1, {at least one input place per transition}

has no solution iff the continuous net system is deadlock-free.
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Proposition 5 is derived from the statements that correspond to each constraint of

the linear system. The existence of a reachable marking, in which a siphon that contains

at least one input place per transition is empty, is a necessary and sufficient condition

for non-deadlock-freeness. Notice that if the last constraint yT ·Pre ≥ 1 is removed,

then activity in some transitions is allowed, and hence the existence of solution for the

remaining constraints represent a necessary and sufficient condition for non-liveness.

p3

11

10

t1

p1

t2
p2

2

2

Figure 5: A continuous MTS system that integrates a discrete spurious deadlock m =
[0 1 10]T , reachable through the firing sequence 5t1, 2.5t1, 1.25t1, . . ..

The set of places {p2, p3} in fig. 5 is the support of an initially marked P-semiflow,

and therefore both places cannot be emptied simultaneously. This implies that a dead-

lock occurs iff p1 is emptied. The markingm = [0 1 10]T can be obtained as a solution

of the state equation with σ = [10 0]T as firing count vector. Thus given that the sys-

tem satisfies the conditions of Proposition 3, m is lim-reachable, i.e., the continuous

system lim-deadlocks. Notice that p1 is a trap (•p1 = p1
•) that was initially marked

and can be emptied by an infinite firing sequence. However, it is well known that

initially marked traps cannot be completely emptied in discrete nets. Thus, m is a spu-

rious solution of the state equation if we consider the system as discrete. An important

question is now: How to search for and to remove (discrete) spurious solutions, i.e.,

non-reachable markings?

Let us define PreΘ and PostΘ as |P | × |T | sized matrices such that:

• PreΘ[p, t] = 1 if Pre[p, t] > 0, PreΘ[p, t] = 0 otherwise

• PostΘ[p, t] = |•t| if Post[p, t] > 0, PostΘ[p, t] = 0 otherwise.

Equations {yT ·CΘ ≥ 0, y ≥ 0} where CΘ = PostΘ−PreΘ define a generator

of traps (Θ is a trap iff ∃y ≥ 0 such that Θ = ‖y‖, yT ·CΘ ≥ 0) [61, 158]. Hence,

given m we can check in polynomial time a sufficient condition for a solution of the

state equation to be spurious:

Proposition 6 Given m ∈ N|P |
≥0 (m = m0 +C · σ, m,σ ≥ 0), if

• yT ·CΘ ≥ 0,y ≥ 0, {trap generator}
• yT ·m0 ≥ 1, {initially marked trap}
• yT ·m = 0, {trap empty at m}

has solution, then m is a discrete spurious solution.
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The result of Proposition 6 follows directly from the fact that ‖y‖ is a trap that has

been emptied. Fortunately, there exist techniques to cut spurious solutions of the state

equation [42]. Let us show how the spurious solution m = [0 1 10]T can be cut by

adding a place that in discrete net is implicit. Recall that a place is said to be implicit

if it is never the unique place that forbids the firing of its output transitions, i.e., it does

not constraint the behavior of the sequential net system.

Since p1 is an initially marked trap, its marking must satisfy m[p1] ≥ 1. This

equation together with the conservation law m[p1] +m[p3] = 10 leads to m[p3] ≤ 9.

This last inequality can be forced by adding a slack variable, i.e., a cutting implicit

place q3, such that m[p3]+m[q3] = 9. Thus, q3 is a place having t2 as input transition,

t1 as output transition and 9 as initial marking. The addition of q3 to the net system

renders p2 implicit (structurally identical with higher marking) and therefore p2 can

be removed without affecting the system behavior. In the resulting net system, m =
[0 1 10]T is not any more a solution of the state equation, i.e., it is not lim-reachable

and then the net system does not deadlock as continuous.

Notice that in continuous systems, deadlock markings are always in the borders of

the convex set of reachable markings and hence, discrete spurious deadlocks can be cut

by the described procedure. This way, the addition of cutting implicit places improves

the quality of the continuous net as an approximation of the discrete one by eventually

increasing the number of P-semiflows and traps. Notice that such an addition creates

more traps that might be treated similarly (if they are the cause of spurious solutions)

in order to improve further the quality of the continuous approximation.

It must be pointed out that the concept of limit-reachability in continuous nets pro-

vides an interesting approximation to discrete nets in the sense that lim-liveness of the

continuous system is a sufficient condition for liveness of the discrete one [142]:

Proposition 7 Let 〈N ,m0〉 be a bounded and lim-live system. Then, N is structurally

live and structurally bounded as a discrete net.

From Proposition 7 it is clear that any necessary condition for a discrete system to

be structurally live and structurally bounded, is also necessary for it to be structurally

lim-live and bounded. In particular rank theorems [141] establish necessary liveness

conditions based on consistency, conservativeness and the existence of an upper bound

on the rank of the token flow matrix, which is the number of equal conflict sets. These

are equivalence relations, and the sets of all the equal conflict and proportional equal

conflict sets are denoted by SEQS (e.g., the set {t3, t4} in fig. 1 is an equal conflict

set) and SPEQS (e.g., the set {t3, t4} in fig. 1 is a proportional equal conflict set for

any weights of the arcs connecting p4 to t3 and t4) respectively. The following rank

theorem [142] establishes a necessary condition for lim-liveness:

Proposition 8 Let 〈N ,m0〉 be a bounded and lim-live system. Then, N is consistent,

conservative and rank(C) < |SPEQS|.

In discrete EQ systems another rank theorem provides a full characterization of

structural liveness and structural boundedness [161]. For continuous EQ systems this

result can be extended leading to a full characterization of lim-liveness and bounded-

ness of polynomial time complexity [142]:

Proposition 9 A continuous EQ system 〈N ,m0〉 is lim-live and bounded iff:

• N is consistent, conservative, rank(C) = |SPEQS| − 1 and
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Clients Servers Semantics of the transition

Many Many infinite server semantics

Many Few finite server semantics

Few Few discrete transitions

Few Many discrete transitions

Table 1: A qualitative approach to the fluidization of a transition [155]

• The support of every P-semiflow is marked ( 6 ∃yT ≥ 0,yT ·C = 0,y ·m0 = 0).

Let us finally notice that there exist transformation techniques, namely equalization

and release, that convert non EQ systems into EQ ones and, under some conditions,

preserve non (structural) liveness. While equalization hardens the enabling conditions

of the transitions to make them equal, release weakens such conditions. Thus, these

transformations allow to obtain some sufficient liveness conditions for non EQ systems

out of the ones known for EQ systems (see [141] for details).

4 Fluidization of Timed net models

This section introduces the notion of time in the continuos Petri net formalism pre-

senting the most used firing semantics. Then, the main focus will be on infinite server

semantics. Some basic properties such that the monotonicity of steady-state throughput

or the relation of liveness with untimed model is considered. Even if some properties

are undecidable, a model checking technique is also mentioned. Finally, some consid-

erations on how can be improved the approximation are done considering the removing

of spurious solutions, the addition of noise, or the definition of ad-hoc server semantics.

4.1 Conceptual framework and server semantics

If a timed interpretation is included in the continuous model, the fundamental equation

explicitly depends on time: m(τ) = m0 +C · σ(τ), which, through time differentia-

tion, becomes ṁ(τ) = C · σ̇(τ). The derivative of the firing sequence f (τ) = σ̇(τ)
is called the (firing) flow, and leads to the following equation for the dynamics of the

timed CPN (TCPN) system:

ṁ(τ) = C · f (τ). (3)

Depending on how the flow f is defined, different firing semantics can be obtained.

In general, transitions are interpreted as stations (in QN terminology), where servers

and clients meet. Thus, “a priori” the most appropriate firing relaxation depends on the

relative number of servers and clients in the discrete model that we want to approxi-

mate. Very roughly speaking, assuming that there may be “many” or “few” of each

of them, fluidization can be considered for clients, for servers or for both. Table 4.1

represents qualitatively the four possible cases. If the number of clients is “small”

(Few-Few and Few-Many in Table 4.1), the system is not too much “crowded”, the

transitions “should” remain discrete and the fluidization may be unsuitable. If there are

many clients and few servers (Many-Few) the relaxation is only at the level of clients,

and the so called finite server semantics may provide a good approximation. On the

other hand, in the case of many clients and many servers (Many-Many), a continuous

24



model with the so called infinite server semantics seems reasonable, since there are so

many servers that there is no need to make them explicit.

Let us assume that a constant λj is assigned to each transition tj . For finite server

semantics, if the markings of the input places of tj are strictly greater than zero (strongly

enabled), its flow will be constant, equal to λj , i.e., all servers work at full speed. Oth-

erwise (weakly enabled), the flow will be the minimum between its maximal firing

speed and the total input flow to the empty places (hence, λj represents the product

of the number of servers in the transition and their speed). This corresponds to the

constant speed of [2], where the flow of a transitions tj is:

fj =











λj , if ∀pi ∈ •tj ,mi > 0

min

{

min
pi∈•tj |mi=0

{

∑

tq∈•pi

fq·Post[tq,pi]
Pre[pi,tj ]

}

, λj

}

, otherwise
(4)

The dynamical system corresponds to a piecewise constant system; a switch occurs

when the set of empty places changes and the new flow values must ensure that the

marking of all places remains positive. Many examples using this semantics are given

in [49] while a net system using both semantics is studied in [123].

Observe that Equation (4) is not defining completely the flow when there are con-

flicting transitions. In such a case, a resolution policy should be specified, otherwise

many solutions are possible [12]. Moreover, an important drawback of this semantics

is that it allows infinitely fast movement of tokens when several transitions in sequence

are weakly enabled. In the following, finite server semantics is only considered in

Subsection 6.7, the rest of the paper focuses on infinite server semantics.

In the case of infinite server semantics, the flow of transition tj is given by:

fj = λj · enab(tj,m) = λj · min
pi∈•tj

mi

Pre[pi, tj ]
, (5)

where λj is the firing rate of tj .

Like in Markovian PNs, i.e., discrete PNs with exponential firing times in all tran-

sitions [130], in continuous PNs under infinite server semantics, the flow through a

transition is proportional to its enabling degree. The dynamical system corresponds to

a piecewise linear system and switches occur due to the minimum operators. Never-

theless, more complex behaviors can be modeled. For example, in certain application

domains as road traffic systems different shapes may be convenient. In this case, it

is important to approximate the fundamental diagram expressing the relationship be-

tween the density of cars and the flow of cars in a given section of the road. Using

some additional places, the flow of a transition can be modeled as a piecewise linear

function of the marking of a given place [97]. For example, a three phases flow can be

easily represented: with an ascending phase, a constant phase (using self-loop places

around transitions) and a descending phase (using complementary places). In Timed

differentiable Petri nets (TDPNs) the idea is analogous to have two separate channels

(like in Forrester Diagrams): one devoted to define how tokens flow, i.e., the material

flow, and the other to fix the value of the flow, i.e., the information flow. In [138] it is

proved that TDPNs can be simulated by TCPNs, having equal modeling capabilities.

From a different perspective, an extension of the infinite server semantics is defined

in [83] where lower and upper bounds are given for the firing rates. The idea is that

using interval firing speeds the variability of the stochastic behavior of the underlying

discrete model can be taken into account in performance evaluation tasks.
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(b) The flow of transition t1 (see fig. 6(a)) is a

piecewise linear function of the marking of p1.

Figure 6: Modeling of the flow of a transition as a piecewise linear function of the

marking of a given place.
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TCPNs under infinite server semantics have the capability to simulate Turing ma-

chines [138], thus they have an important expressive power; nevertheless, certain im-

portant properties are undecidable (for example, marking coverability, submarking

reachability or the existence of a steady-state). Moreover, through discoloration of

colored nets, the minimum operator of infinite server semantics becomes a product

(population semantics) [153]. Being possible to define firing flows proportional to the

product of the marking of input, places chaotic models can be described, i.e., models

of deterministic dynamical systems that are extremely sensitive to initial conditions.

A model in which the time is associated to places has been introduced in [41].

Under some assumptions on the net structure and on the firing policy, it is equivalent

to a linear system in the (min,+) semiring. Unfortunately, basically marked graphs

can be studied in this algebra. Following this work, in [68] some results regarding

the steady-state have been proved for a particular class of deterministically timed nets

under a stationary routing (STAR), by which the behavior is constrained to be conflict-

free.

In the case of manufacturing or logistic systems, it is natural to assume that the

transition firing flow is the minimum between the number of clients and servers and,

finite server (or constant speed) or infinite server (or variable speed) are mainly used

[49, 155]. Since these two semantics provide two different approximations of the dis-

crete net system, an immediate problem is to decide which semantics will approxi-

mate “better” the original system. In [49], the authors observed that most frequently

the infinite server semantics approximates better the marking of the discrete net sys-

tem. Moreover, for mono-T-semiflow reducible net systems [100] under some general

conditions it is proved that infinite server semantics approximates better the flow in

steady state [123]. The result holds depending on an structural property defined from

the steady-state marking, a condition that is quite common in the case of production

systems. For population systems (predator/prey, biochemistry, . . .), the transition firing

flows are usually described by products of markings, and even more specific non-linear

functions (see, for example, [152] and [78]). In fact, the products can be obtained from

infinite server semantics while considering discoloration of colored PN models [152].

4.2 Logical properties in timed models versus untimed models

If the steady-state exists, from (3) and (5), ṁ = C ·fss = 0 is obtained (independently

of the firing semantics), where fss is the flow vector of the timed system in the steady

state, f ss = limτ→∞ f(τ). Therefore, the flow in the steady state is a T-semiflow of

the net. Deadlock-freeness and liveness definitions of untimed systems can be easily

extended to timed systems as follows:

Definition 10 Let 〈N ,λ,m0〉 be a timed continuous PN system and f ss be the vector

of flows of the transitions in the steady state.

• 〈N ,λ,m0〉 is timed-deadlock-free if fss 6= 0;

• 〈N ,λ,m0〉 is timed-live if f ss > 0;

• 〈N ,λ〉 is structurally timed-live if ∃m0 such that 〈N ,λ,m0〉 is timed-live.

Notice that if a timed system is not timed-live (timed-deadlock-free), it can be con-

cluded that, seen as untimed, the system is not lim-live (lim-deadlock-free) since the

evolution of the timed system just gives a particular trajectory that can be fired in the
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untimed system. This fact allows us to establish a one-way bridge from liveness con-

ditions of timed systems to untimed systems. The reverse is not true, i.e., the untimed

system can deadlock, but a given λ can drive the marking along a trajectory without

deadlocks, e.g., the system in fig. 4(b) deadlocks as untimed but is timed-live with

λ = [1 2]T (in particular fss = [1 1]T ). In other words, the addition of an arbitrary

transition-timed semantics to a system imposes constraints on its evolution what might

cause the timed system to satisfy some properties, as boundedness and liveness, which

are not necessarily satisfied by the untimed system [168]. The relationships among

liveness definitions are depicted in fig. 7.

by definition

by definition

untimed

timed

behavioral structural

lim−liveness

timed−liveness

lim−liveness

structurally

timed−liveness

structurally

Figure 7: Relationships among liveness definitions for continuous models

As an example, let us show how some conditions initially obtained for timed sys-

tems can be applied on untimed ones. It is known that if a MTS timed system 〈N ,λ〉
is structurally live for any λ > 0, then for every transition t there exists p ∈ •t such

that p• = {t}, i.e., p is persistent or conflict-free [101]. Let 〈N ,λ〉 be a timed system

containing a transition t such that for every p ∈ •t, |p•| > 1. According to the men-

tioned condition λ exists such that 〈N ,λ〉 is not structurally timed-live. Therefore N
is not structurally lim-live, since structurally timed-liveness is a necessary condition

for structurally lim-liveness (see fig. 7).

4.3 Infinite Server Semantics: Performance bounds for steady-state

The existence of the minimum operator in infinite server semantics induces three strongly

related concepts: a) the set of places defining the enabling degree of transitions is

known as configuration; b) the state space in which the configuration is the same is

known as region; c) at each region the dynamics are driven by a single linear system

which is also known as operation mode. More formally:

Definition 11 A configuration of a net N is a set of (p, t) arcs, one per transition,

covering the set T of transitions. Associated to a given configurationCk is the following

|T | × |P | configuration matrix:

Πk[t, p] =

{ 1
Pre[p,t] , if (p, t) ∈ Ck
0, otherwise

(6)

In the case of a TCPN system under infinite server semantics, at a given marking

m ∈ RS(N ,m0), the flow of a transition tj , given by (5), is defined by the marking of

an input place pi ∈ •tj , the one which gives the minimum. Let us notice that the reach-

ability set RS(N ,m0) of a TCPN system can be partitioned (except on the borders)

according to the configurations and inside each obtained convex region Ri(N ,m0)
the system dynamic is linear. Putting together (6), (5) and (3), the dynamic system

evolution inside a region Rk, called operation mode k as well, can be written as:
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ṁ(τ) = C · f (τ) = C ·Λ ·Π(m) ·m(τ), (7)

where Λ = diag(λ) is a diagonal |T | × |T | matrix containing the firing rates of tran-

sitions and the configuration matrix is Π(m) = Πk where Πk is the configuration

matrix associated to Rk (if m is on the border of two regions R1 and R2, any opera-

tion mode with CΛΠ1 or CΛΠ2 can be used since the same behavior is obtained).

Obviously, inside a region (whereΠ(m) is the current matrix) (7) is a linear system

and will be said that it is the kth linear system or the kth (operation) mode of the TCPN

system. To each configuration, an operation mode can be associated. The number of

modes (regions, configurations) is upper bounded by
∏

t∈|T | |•t| but some of them can

be redundant and can be removed [124].

A performance measure that is often used in discrete PN systems is the throughput

of a transition in the steady state (assuming it exists), i.e., the number of firings per

time unit. In the continuous approximation, this corresponds to the firing flow in steady

state. A classical concept in queueing network theory is the “visit ratio”. In Petri net

terms, the visit ratio of transition tj with respect to ti, v
(i)[tj ], is the average number

of times that tj is visited (fired), for each visit to (firing of) the reference transition ti.
Let us consider consistent nets without empty siphons at m0 (Prop. 3, ∃x ≥ 1,

C · x = 0 and 6 ∃y ≥ 0,yT · CΣ ≤ 0,yT · m0 = 0). In order to simplify the

presentation, let us assume that the net is MTS. Therefore, for any ti, fss = χi · v(i),

with χi the throughput of ti. The vector of visit ratios is a right annuler of the incidence

matrix C , and therefore, in MTS systems, proportional to the unique T-semiflow. For

this class of systems, the throughput can be computed using the following non-linear

programming problem that maximize the flow of a transition (in fact, any of them, since

all are related by the T-semiflow)

max f ss[t1]
s.t. mss = m0 +C · σ

f ss[tj ] = λj · min
pi∈•tj

{

mss[pi]
Pre[pi,tj]

}

, ∀ti ∈ T

C · fss = 0
mss,σ ≥ 0

(8)

where mss is the steady-state marking. A way to solve (8), which due to the minimum

operator is non linear, consists in using a branch & bound algorithm [100]. Relaxing

the problem to a LPP, an upper bound solution can be obtained in polynomial time,

although this may lead to a non-tight bound, i.e., the solution may be not reachable if

there exists a transitions for which the flow equation is not satisfied. If the net is not

MTS, similar developments can be done by adapting the equations in [38].

In the case of controlled systems, the LPP relaxation of (8) can be used to com-

pute an optimal steady-state assuming only flow reduction (the machines can only be

slowed down), f ≥ 0 and the steady-state flow should be repetitive, C · f = 0. If all

transitions are controllable, it can be solved by introducing some slack variables in or-

der to transform the inequalities derived from the minimum operator in some equality

constraints. These slack variables are used after to compute the optimal steady-state

control [122]. For example, let us consider the following LPP:

29



max k1 · f − k2 ·m− k3 ·m0

s.t. m = m0 +C · σ (a)

fi = λi ·
(

m[pj ]
Pre[pj ,ti]

)

− v[pj , ti], ∀pj ∈ •ti, v[pj , ti] ≥ 0 (b)

C · f = 0 (c)

m,σ,f ≥ 0

(9)

where v[pj , ti] are slack variables. The objective function represents the profit that has

to be maximized where k1 is a price vector w.r.t. steady-state flow f , k2 is the work in

process (WIP) cost vector w.r.t. the average markingm and k3 represents depreciations

or amortization of the initial investments over m0. Using the slack variables v, the

optimal control in steady-state for a transition ti if it is controllable, i.e., it permits

a control ui > 0, is just ui = min
pj∈•ti

v[pj , ti]. Therefore, this control problem (a

synthesis problem) seems easier than the computations of performance (an analysis

problem) even if, in general, is the opposite. Controllability issues will be considered

from a dynamic perspective in section 6.

4.4 Infinite server semantics: monotonicity and paradoxes

According to (5), it is obvious to remark that being the initial marking of a contin-

uous net system positive, the marking will remain positive during the (unforced or

non-controlled) evolution. Hence, it is not necessary to add constraints to ensure the

non-negativity of the markings. On the other hand, according to (5) as well, two ho-

motheticity properties are dynamically satisfied:

• if λ is multiplied by a constant k > 0 then identical markings will be reached,

but the system will evolve k times faster;

• if the initial marking is multiplied by k, the reachable markings are multiplied

by k and the flow will also be k times bigger.

Unfortunately, infinite server semantics has not only “good” properties and some

counterintuitive behaviors or “paradoxes” appear. For example, it could be thought

that, since fluidization relax some restrictions, the throughput of the continuous system

should be at least that of the discrete one. However, the throughput of a TCPN is

not in general an upper bound of the throughput of the discrete PN; moreover, if only

some components of λ or only some components of m0 are increased the steady state

throughput is not monotone in general [155].

Two monotonicity results of the steady-state throughput are satisfied under some

general conditions [123]:

Proposition 12 Assume 〈N , λi,mi〉, i = 1, 2 are MTS TCPNs under infinite server

semantics that reach a steady-state. Assume that the set of places belonging to the arcs

of the steady state configuration contains the support of a P-semiflow for m ∈ [m,m]
and λ ∈ [λ,λ]. Then for all m1,m2 ∈ [m,m] with m1 ≤ m2 and for all λ1,λ2 ∈
[λ,λ] with λ1 ≤ λ2, the steady state flows satisfy f1 ≤ f2.

Let us consider the mono-T-semiflow TCPN in fig. 8(a) under infinite server se-

mantics with λ1 = λ3 = 1 and m0 = [15 1 1 0]T . Different modes can govern the

evolution of the system at steady-state. For example, if 0 < λ2 ≤ 0.5, the flow in
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Figure 8: A mono-T-semiflow net and its “fluid” throughout in steady-state. Observe

that it is not smooth, and that increasing λ2 > 0.5 the throughput is counterintuitive

(faster machine, slower behavior).

steady-state is f1(τ) = m1(τ), f2(τ) = m4(τ) and f3(τ) = m3(τ), respectively.

Therefore, C2 = {(p1, t1), (p4, t2), (p3, t3)} is the steady-state configuration and the

set of places {p1, p4, p3} gives the flow. Since it contains the support of a P-semiflow

(p1 + 4 · p3 + p4) the steady-state flow is monotone (fig. 8(b)). Increasing λ2, the

steady-state configuration becomes C3 = {(p4, t1), (p2, t2), (p3, t3)}, i.e., the set of

places governing the evolution becomes {p4, p2, p3}, that is the support of a P-flow

(p2 − 3 · p3 − p4), not a P-semiflow, and monotonicity may not hold (fig. 8(b)).

4.5 Infinite server semantics: analyzing by model checking

Born in the Computer Science milieu, model checking techniques are very popular

for formal verification of DEDS (see for example [40], the ACM Turing Award of

2007). Given a model and a specification, model checking tests automatically whether

the model meets the specification or not. Herein we deal with continuous systems,

therefore we need a “discrete view”. For a TCPN system under infinite server semantics

formal analysis starts by embedding the TCPN system into a piecewise affine (PWA)

system and then into a finite transition system based on discrete abstractions (finite

quotients). The obtained quotient is iteratively analyzed and refined by employing

convexity properties of affine systems in full-dimensional polytopes [107].

Let us assume that P is a user-defined set of strict linear inequalities over marking

m, including all the affine functions in m necessary to define the full-dimensional

regions Ri. Two kinds of interesting problems can be formulated as:

• Construction of safe sets: let us assume a given set of initial markings defined as

the conjunction of predicates from a set P0 ⊆ P . The problem is to find a subset

of the reachability set that cannot be reached by trajectories of TCPN originating

in the initial set.

• Initial set satisfying Linear temporal logic (LTL) specification: given an LTL

formula over P , find a set of initial markings of TCPN from where all possible

trajectories satisfy the formula.
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The basic idea for the formal verification of PWA systems is based on the results in

[73]. Given two adjacent polytopes, it is shown that there exists a trajectory penetrating

from one to another in finite time if and only if there exists a vertex on the common

facet at which the projection of the vector field on the outer normal of the facet pointing

from the first to the latter is strictly positive. Moreover, it is proved also that an affine

system has a trajectory contained in a full dimensional open polytope for all time if

and only if the affine system has an equilibrium inside the polytope. Therefore, solving

both problems of TCPN reduces to checking nonemptiness of polyhedral sets.

A fully automated procedure is proposed in [108] for both problems. Since the

procedure basically reduces to search on a graph, the complexity is dependent on the

number of nodes, each node corresponding to a region in the obtained partition. Thus,

the bottleneck is resulting from the refinement procedure because after each refinement

the number of discrete states in the transition system is increasing.

4.6 On the approximation by fluidization

Fluid PNs are usually considered as relaxations of original discrete models. In fact,

the definitions for the most usual semantics for timed continuous PNs were inspired

by the average behavior of high populated timed discrete PNs [49, 139]. Nevertheless,

the dynamic behavior of a timed continuous PN model does not always approximate

that of the corresponding timed discrete PN. Then, it is important to investigate the

conditions that lead to a valid relaxation, from the performance evaluation perspective.

In some sense, this subsection deals with the legitimization of the so called infinite

server semantics (introduced in subsect. 4.1) and the consideration of some issues

that affect the quality of the approximation. The following subsection considers a few

techniques for improving the approximation.

Let us consider Markovian Petri nets (MPN), i.e., stochastic discrete Petri net with

exponential delays associated to the transitions and conflicts solved by a race policy

[130]. The approximation of the average marking of an ergodic (thus with home states)

MPN, by that of the corresponding TCPN under infinite server semantics (ISS), was

first considered in [140], later more deeply studied in [165]. In this last work it is

concluded that the approximation holds when the utilization factor is high, usually

when the number of active servers of transitions (the probability of being enabled) is

large as well, and the system mainly evolves inside one marking region, i.e., for each

synchronization, a single place is almost always constraining the throughput. Errors

in the approximation may appear due to the existence of sychronizations: arc weights

(in non-ordinary nets) and joins (rendez-vous). The reason is that the flow definition

for the TCPN does not accurately describe the throughput in these cases. In fact, the

approximation is perfect for ordinary Join-Free Petri nets.

Let us provide an intuitive reasoning for this. As previously stated, M and Enab
refer to the discrete MPN, while m and enab refer to the continuous model, TCPN.

Suppose that, at some time, the marking of the TCPN approximates the average mark-

ing of the MPN, i.e., m ∼ E{M}. Given an arc with weight k connecting a place pj to

a transition ti, the expected enabling degree of ti in the MPN would beE{Enab(ti)} =
E{⌊M [pj ]/k⌋}, which is different than the enabling degree in the TCPN enab(ti) =
m[pj ]/k ∼ E{M [pj ]}/k, due to the presence of the operator ⌊ · ⌋ (in ordinary arcs

k = 1, thus ⌊M [pj]/k⌋ = M [pj ]). Similarly, given a synchronization ti with two

input places {pj, pk}, the expected enabling in the MPN would be E{Enab(ti)} =
E{min(M [pj],M [pk])}, which is not equal to the enabling in the TCPN enab(m[pj ],m[pk]) ∼
min(E{M [pj]}, E{M [pk]}), because the “expected value” and the “min” operators
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Figure 9: a) Cycle net with arc weights. b) Marked graph that evolves through different

regions.

Table 2: Throughput and its approximation for t1 of the net of fig. 9(a).

k = 1 \ q = 1 2 4 8 16

MPN, χ[t1] 0.50 0.40 0.32 0.26 0.22

TCPN, f [t1] 0.50 0.50 0.50 0.50 0.50

q = 4 \ k = 1 2 4 8 16

MPN, χ[t1] 0.32 0.80 1.76 3.78 7.68

TCPN, f [t1] 0.50 1.00 2.00 4.00 8.00

do not commute (also seen in the context of performance evaluation of throughput

bounds [27]). Consequently, since the flow through the transitions depends on the en-

abling degree, a perfect approximation will not hold for future time. Nevertheless, ap-

proximation errors do not accumulate when the steady state marking of the continuous

model is asymptotically stable (because the deviations of the MPN from its expected

behavior, which is similar to that of the TCPN, vanish with the time evolution). There-

fore, asymptotic stability is a necessary condition (together with liveness, otherwise,

the continuous system may die while the discrete is live) for the approximation of the

steady state.

Let us illustrate with an example how the arc weights introduce approximation

errors. Consider the MPN system of fig. 9(a) with timing rates λ1 = λ2 = 1, and

initial marking M 0 = [k · q 0]T , where k, q ∈ N+. This system, and its corresponding

TCPN, were evaluated for different values of k and q. The obtained values for the

throughput and flow of t1, at steady state, are shown in table 2. Note that, when k = 1,

i.e., the marking is relatively very small, the larger the weight of the input arc of t1,

i.e., q, the bigger the error between the throughput in the MPN (χ[t1]), and the flow in

the TCPN (f [t1]). Observe that the flow in the continuous model remains unchanged.

Actually, it is very important to remark that the differential equation describing the

behavior of the TCPN does not depend on q:

•
m = CΛΠ(m)m =

[

−q 1
q −1

] [

1 0
0 1

] [ 1
q

0

0 1

]

m =

[

−1 1
1 −1

]

m

(10)

On the other hand, when the arc weights are fixed but the initial marking is in-

creased, i.e., k is increased, the relative approximation error decreases (in such case,

E{⌊M [p1]/q⌋} ∼ E{M [p1]} for M [p1] >> q). Concluding: the relative errors in-

troduced by arc weights become smaller when the marking in the net is increased w.r.t.
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Table 3: Marking approximation of p3 for the MPN of fig. 9(b) (which is a marked

graph, so, state machine decomposable).

λ4 MPN TCPN TnCPN E{Enab(t4)} Prob(M ∈ Rss)
2 54.62 55 54.63 2.53 0.8433

1.5 53.87 55 53.88 3.22 0.661

1.2 51.16 55 51.17 3.88 0.413

1 29.97 55 30.73 4.93 0.036

those weights.

Now, let us illustrate how the joins also introduce approximation errors. The MPN

system of fig. 9(b) was simulated with timing rates λ1 = λ2 = λ3 = 1 and differ-

ent rates for t4: λ4 ∈ {2, 1.5, 1.2, 1}. The corresponding TCPN models were also

simulated. The average markings at the steady state are shown in table 3 (columns

MPN and TCPN). The column TnCPN corresponds to the stochastic extension of the

TCPN obtained by adding some gaussian noise, something to be considered in sec-

tion 4.8. The column denoted as E{Enab(t4)} is the average enabling degree of t4
in the MPN at the steady state (∀ti ∈ T \ {t4} : E{Enab(t4)} < E{Enab(ti)} in

all the experiments, so this represents a lower bound for the number of active servers

in the transitions). The value in column Prob(M ∈ Rss) is the probability that the

marking is inside the region Rss, related to the steady state of the TCPN (equiva-

lently, the fraction of time that M(τ) is in Rss). Note that the lower the probability

that M (τ) belongs to Rss, the larger the difference (the error) between the MPN and

the TCPN, even if the average enabling degrees increase. On the other hand, a good

approximation is provided when the probability that M(τ) ∈ Rss is high, which

occurs for λ4 = 2. The approximation holds because, in this case, M (τ) mainly

evolves in one region Rss (in particular, E{min(M [p4],M [p5])} ∼ E{M [p4]} and

E{min(M [p2],M [p3])} ∼ E{M [p2]}), where the continuous model has an asymp-

totically stable steady sate marking.

An analogous approximation analysis has been recently achieved in the framework

of fluid process algebra (PEPA), deriving a functional limit theorem [55]. That ap-

proach is based on classic works where ordinary differential equations are used for

describing the transient behavior of the limit of a sequence of Markov processes [110].

The resulting theorem establishes that, with a randomly high probability, the relative

distance between the state of the discrete and of the fluid systems becomes arbitrarily

small, during a finite time interval, when the number of initial process-algebra com-

ponents is increased towards infinity. In Petri nets this would be expressed as ∀δ >
0, T < ∞: limk→∞Prob{ 1

k
||M (τ,M 0 · k)−m(τ,m0 · k)|| < δ| τ ∈ [0, T ]} = 1.

It is very important to remark that the analysis is restricted to a finite time interval. Nev-

ertheless, the approximation in finite time does not imply the approximation in steady

state (a more interesting issue from our perspective), specially when the initial num-

ber of components is increased leading to a larger transient behavior. In the PEPA
framework, the steady state approximation has been recently studied [77]. Assuming

a unique stationary state in the underlying Markov chain of the discrete model and the

existence of a globally asymptotically stable equilibrium point (called fixed point) in

the fluid one, it is showed that the relative distance between the steady state of both

systems becomes zero when the number of initial components is increased towards in-
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finity. The analysis becomes more complex if the stability precondition is not fulfilled.

Even more, the approximation may not hold.

Consider for instance the (discrete) PN system of fig. 9(b) with λ4 = 1 and initial

marking M0 = k · [5 5 55 5 5 5]T . For any k ∈ N+, the average steady state is

E{Mss} = k · [5 5 30 30 5 5]T (known by the system’s symmetry). On the other hand,

the steady state for the TCPN is mss = m0 = k · [5 5 55 5 5 5]T , since this is an

equilibrium point in the TCPN (but not the only one). Then, it is clear that the TCPN

system does not approximate the MPN for any value of k. In fact, the average relative

distance can be directly computed as 1
k
||M (τ,M0 · k) − m(τ,m0 · k)|| = 35.35,

∀k ∈ N+. On the other hand, considering a finite time interval T < ∞, it is always

possible to set a large enough value for k s.t. the average relative distance is arbitrarily

small during τ ∈ [0, T ]. Intuitively: increasing the initial marking makes the transient

behavior to be longer, so, when k → ∞ while T remains constant has a similar effect

that keeping k constant while T → 0 (thus M(T ) → M0, and m(T ) → m0).

A couple of different examples can be found in [153]. The first one is the “gam-

bler’s ruin problem”, represented as a stochastic Petri net. In this, a deadlock is reached

with probability one. Nevertheless, by multiplying the initial state by a factor k, and

given some particular rates (providing equal probabilities to the transitions in conflict),

the transient behavior, i.e., the average time to reach the deadlock, becomes larger with

a higher rate, of order of k2. Consequently, if a finite time interval is considered, the

two deadlocks of the (discrete) system may be ignored when k is too large. The sec-

ond example is the well known predator/prey model of Volterra-Lotka, which can be

modelled as a colored PN system. This model is fluidified leading to the product server

semantics. The discrete PN model is unbounded and non-live [134], while the contin-

uous is bounded and live! (the system describes an orbit in the phase portrait [153]).

Since the transient behavior of the discrete model may be very large, this can be ap-

proximated by the continuous model for a very long time. Nevertheless, sooner or later,

the discrete model will become non-live (all the predators will die), while the continu-

ous system will remain live. Even more, if all the predators die before the prey, these

can grow unboundedly, while the continuous approximation will remain bounded.

4.7 Improving the approximation: removing spurious solutions,

addition of noise, modification of the semantics

Since the approximation provided until now by a fluid PN is not always accurate, a

question that may arise is the possibility of improving such approximation by means of

modifying the continuous Petri net definition. Through this subsection, three different

approaches, for such improvement, will be discussed.

Removing spurious solutions. In subsection 3.3 it was pointed out that spurious

solutions become reachable markings in the autonomous continuous model, affecting

the quality of the fluidization. This is specially undesirable when the spurious solu-

tions represent deadlocks in the continuous PN while the discrete system is live. This

problem may also appear in the timed continuous model. Even in the case that the

spurious deadlock is not reachable by the TCPN system, i.e., it is reachable for the

autonomous continuous, but not for the timed continuous given the particular initial

marking and timing, the existence of such deadlock marking in the autonomous net

affects the dynamic behavior of the TCPN. In any case, removing spurious solutions

always represents an improvement of the fluidization, being specially important when

those are deadlocks or represent non-live steady states.
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Figure 10: Throughput for the MPN system of fig. 5 and its corresponding continuous

relaxations, for rates λ1 ∈ [0.4, 4], λ2 = 1 and initial marking a) M0 = [10 11 0]T and

b) M0 = [50 55 0]T . In all figures, TCPN ′ and TnCPN ′ represent the fluid models

in which the spurious deadlock has been previously removed. There is a discontinuity

in TCPN and TCPN ′ at λ1 = 2. c) Average transient behavior of the throughput at t1
for M0 = [10 11 0]T and λ1 = 2.

As an example, consider the MPN given by the net of fig. 5 with initial marking

M0 = [10 11 0]T and rates λ = [0.4 1]. As shown in subsection 3.3, this PN has

a spurious deadlock, which can be removed by eliminating the two (discrete) frozen

tokens from p2. This is equivalent to consider M ′
0 = [10 9 0]T as the initial marking.

The MPN and the corresponding fluid model TCPN have been simulated for both initial

markings M0 (with spurious deadlocks) and M ′
0, for different rates at t1 ranging in

λ1 ∈ [0.4, 4]. The throughput at t1, for both models, is shown if fig. 10(a). It can be

seen that the MPN is live for any λ1 ∈ [0.4, 4], furthermore, the throughput seems as

a smooth function of λ1. On the other hand, the continuous model with the original

m0 = M0 reaches the (spurious) deadlock for any λ1 ∈ (2, 4]. Note the discontinuity

at λ1 = 2 for the TCPN model with both initial markings, i.e., the continuous model

is neither monotonic nor smooth w.r.t the timing. Finally, it can be appreciated that the

TCPN provides a much better approximation when the spurious deadlock is removed

(with M ′
0), for any λ1 > 2 (for λ1 ≤ 2 there is no change in the TCPN).

Stochastic continuous PN. The approximation of the average marking of an er-

godic Markovian Petri net may be improved by adding white noise to the transitions

flow of the TCPN [165]. Intuitively speaking, the transitions firings of a MPN are

stochastic processes, then, the noise added to the flow in the TCPN may help to bet-
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ter approximate such stochastic behavior, which is particularly relevant at the synchro-

nizations. The model thus obtained (here denoted as TnCPN) is represented, in discrete

time, as: mk+1 = mk + C(ΛΠ(mk)mk∆τ + vk), with vk being a vector of inde-

pendent normally distributed random variables with zero mean and covariance matrix
∑

vk
= diag(ΛΠ(mk)mk∆τ).4

This modification is particularly relevant when the system evolves through different

regions, because in these cases, the continuous flow does not approximate the through-

put of the discrete transitions (remember that, in a join {p1i , .., pki } = •ti, the dif-

ference between E{Enab(ti)} = E{min(M1
i , ..,M

k
i )} and its continuous approx-

imation enab(ti) = min(m[p1i ], ..,m[pki ]) ∼ min(E{M [p1i ]}, .., E{M [pki ]}) may

become relatively important). The approximation is improved when the number of ac-

tive servers is increased, as already said, assuming asymptotic stability and liveness in

the continuous system (thus it is important to remove the spurious deadlocks).

An interesting issue is that the new continuous stochastic model approximates not

only the average value, but also the covariance of the marking of the original MPN.

Moreover, since the TnCPN model is actually the TCPN one with zero-mean gaussian

noise, many of the results known for the deterministic model can be used for analysis

and synthesis of the stochastic continuous one. Nevertheless, the addition of noise

cannot reduce the error introduced by arc weights.

For instance, consider again the MPN system of fig. 9(b). The corresponding

TnCPN was simulated for λ4 ∈ {2, 1.5, 1.2, 1}. The average steady state marking is

also shown in table 3. As it was pointed out in the previous subsection, the lower the

probability that Mk belongs to Rss, the larger the difference (the error) between the

MPN and the deterministic TCPN. On the other hand, the approximation provided by

the TnCPN system is good for all of those rates.

Now, consider again the MPN of fig. 5 with M0 = [10 11 0]T . The steady state

throughput of the MPN and its different relaxations is shown in fig. 10(a), for different

values λ1 ∈ [0.4, 4]. Note that the noise added to the TCPN makes this to reach the

spurious deadlock quickly and the approximation to the MPN does not hold since the

liveness precondition is not fulfilled. On the other hand, after removing the spurious

deadlock with M0 = [10 9 0]T (see subsection 3.3), the TnCPN approximates better

the MPN than the TCPN model. Fig. 10(b) shows the results of the same experiment

but with a bigger population. In this case, M0 = 5 · [10 11 0]T = [50 55 0]T and the

spurious solution is removed by considering the initial marking M ′
0 = [50 49 0]T (in

this case, six frozen tokens are removed from p2). Note that this marking is not equal to

five times the one used in the first case, i.e., M ′
0 6= 5 · [10 9 0]T , then the curve TCPN′

in fig. 10(b) is not in homothetic relation with that in fig. 10(a) (but the original TCPN

is). It can be observed in fig. 10(b) that now the continuous models provide a better

approximation than in the case of fig. 10(a), because the population is bigger. Finally,

fig. 10(c) shows the transient trajectory described by the average throughput of t1, for

the case M0 = [10 11 0]T and λ1 = 2. It can be observed, that not only the steady

state of the MPN is well approximated by the TnCPN′ (after removing the spurious

deadlock), but also the transient evolution.

Modification of the semantics. As already mentioned, the existence of arc weights

(a kind of lot-synchronization) affects the quality of the fluidification. A critical case

occurs when there exists a transition tj with a q-bounded input place pi ∈ •tj and

4For simulation purposes, in the state equation for mk+1, the noise vk is added only if mk+1 ≥ 0.

This means that very close to boundaries the system may be kept as deterministic. In fact, if the system is

crowded, i.e., m0 is big, the probability of getting mk+1 6≥ 0 is very low.
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the weight of the arc connecting them is q as well (in any case, since liveness is as-

sumed, the weight of the arcs cannot be larger than the bound of the corresponding

input places). Consequently, the marking at pi must be equal to its upper bound in

order to enable tj (the most basic example of this case is given in fig. 9(a) for k = 1,

where the TCPN fails in approximating the throughput of t1 when q >> 1). In this

situation, transition tj is enabled only at a few specific markings (in the example of

fig. 9(a), the worst case is found because t1 is enabled at only one marking) of the

autonomous reachability set. This enabling property is not captured by the continu-

ous relaxation, where tj is enabled whenever the places in •tj are marked, leading to

significant approximation errors, i.e., Enab(tj) = ⌊M [pi]/q⌋ = 0 for almost all the

markings, while in the TCPN enab(tj) = m[pi]/q > 0 whenever m[pi] > 0. In

order to improve the continuous approximation (for hybrid approximation other rea-

soning must be considered), the server semantics of the TCPN must be modified for

tj . A heuristic way for doing this, assuming {pi} = •tj , consists in the following ex-

pression: f [tj ] = λi(m[pi]/q)
q (this is obtained from a probabilistic relaxed view, in

which the probability of a token to be in pi is assumed as E{M [pi]}/q). This equation

is equivalent to f [tj ] = λim[pi]·(m[pi]
q−1/qq), which can be seen as the original ISS

but multiplied by the marking-dependent function (m[pi]
q−1/qq). This modification

may provide a better approximation. For instance, in the net in fig. 9(a) with k = 1 and

q = 4, the throughput of t1 obtained with this new semantic is 0.275, which is closer to

the throughput of the MPN (0.32) than that obtained with the ISS (0.5). Nevertheless,

further investigation is required in order to understand how and when the improvement

is achieved.

Another semantics-modification approach has been introduced in [114,115]. There,

in order to make the steady state of the continuous PN (mss) to coincide with that

of the MPN (Mss), the authors propose a modification of the firing rates λ of the

transitions in the continuous model. Two techniques are proposed: in the first one the

firing rates are defined as piecewise-constant, i.e., λ ∈ {λ1, ...,λr}, depending on

the configuration at which m(τ) belongs, while in the second case (called adaptive)

the firing rates are adjusted according to the instantaneous approximation error (in

particular, λ̇ = η · diag(βCT (Mss −m(τ)) + (1− β)(χss − f(τ)), with η > 0 and

β ∈ [0, 1] being decision parameters). Errors may appear in specific configurations,

called critical. For mono-T-semiflow nets, such critical regions can be avoided by

setting the firing rates with a suitable fix value, providing in this case a homothetic

approximation of the average steady state marking and throughput of the MPN, i.e.,

Mss = αmss and f ss = αχss.

5 Observability and observers

Reconstructing the state of a system from available measurements is a fundamental

issue in system theory which may be considered as a self-standing problem, or it can

be seen as a pre-requisite for solving a problem of different nature, such as stabiliza-

tion, state-feedback control, diagnosis, filtering, and others. In the case of CPNs, this

problem has been studied for both untimed and timed models under infinite server se-

mantics. In the case of untimed systems (see Section 5.4), the state estimation is con-

ceptually and methodologically closer to the one of discrete event systems since the

firing of transitions can be assumed/seen as sequential and the corresponding events

not appearing simultaneously. In this case, it is assumed that some events (transitions)

are not observable and the initial marking known. The problem is to estimate the pos-
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sible marking after each observable event (transition). For timed systems, the problem

has been studied mainly for infinite server semantics and, since the evolution can be

characterized by a set of switching linear differential equations, the state estimation

problem is more related to the linear and hybrid system theory. It is a better informed

model because of the time constraints, here it is assumed that the initial marking is

unknown. Measuring the amount of tokens is some places, the problem is to estimate

the current and initial marking of the net.

5.1 On three conceptual levels for timed systems under infinite

server semantics: observability, generic observability and struc-

tural observability

Three different concepts of observability can be defined for TCPN based on the knowl-

edge of the firing rate vector. Assuming a constant value for the firing vector and

measuring a subset of places, the “classical” observability problem is to estimate the

initial state/marking. In this case, the set of differential equations is fixed and the con-

cept is called observability in infinitesimal time. Observability criteria of piecewise

affine systems can be applied to TCPN since this is a subclass of those systems. It is

well known that the observability in this case is a more difficult problem that the one

of linear systems because not only the observability of continuous states is required,

but also that of the discrete states [14]. It should be always possible to say which is the

linear system governing the evolution.

Let us assume that we can attach some sensors to a set of places Po ⊆ P , the token

load of these places being measured at every time instant. Frequently, the marking of

some places are impossible to be measured either due to the fact that the sensor is too

expensive or because of the physical nature of the state. The problem is to estimate the

marking of the other places P \ Po. Going back to (7), the system considered here is

given by:

{

ṁ(τ) = Ai ·m(τ),m ∈ Ri

y(τ) = S ·m(τ)
(11)

where Ai = C ·Λ ·Πi and S is a |Po|× |P | matrix, each row of S has all components

zero except the one corresponding to the jth measurable place that is 1.

Definition 13 Let Σ = 〈N ,λ,m0〉 be a TCPN system with infinite server semantics

and Po ⊆ P be the set of measurable places. Σ is observable in infinitesimal time if it

is always possible to compute its initial state m0 in any time interval [0, ǫ), ∀ǫ > 0.

In many real systems, the possibility to estimate/observe the system for all possible

values of λ is an important problem. In this framework, structural observability is

defined and approaches based on graph-based arguments are used to study it.

Definition 14 Let Σ = 〈N ,λ,m0〉 be a TCPN system with infinite server semantics

and Po ⊆ P be the set of measurable places. Σ is structurally observable if it is always

possible to compute its initial state m0 in any time interval [0, ǫ), for all ǫ > 0 and for

all λ > 0.

Finally, if one wants to estimate the system not “for all” but “for almost all” pos-

sible values of firing rate, generic observability is defined. Also here, graph based

approaches are used. This concept is close and inspired from similar works on linear

structured systems [56].
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Figure 11: Choices and forks allow backward reasoning to observe the net system.

Attributions (in some cases) and joins are problematic.

Definition 15 Let Σ = 〈N ,λ,m0〉 be a TCPN system with infinite server semantics

and Po ⊆ P be the set of measurable places. Σ is generic observable if it is always

possible to compute its initial state m0 in any time interval [0, ǫ), for all ǫ > 0 and for

all λ > 0 outside of a proper algebraic variety of the parameter space.

Obviously, if a TCPN is structurally observable, it is generic observable and ob-

servable in infinitesimal time.

5.2 Observability criteria for infinite server semantics

The observability problem can be studied using graph based approaches or matrix

algebraic techniques. Let us see first which are the most important graph based ap-

proaches exploring how basic PN constructions (see fig. 11(a)-11(d)) affect the ob-

servability of the system. First, let us assume that the net system has only choices (fig.

11(a)) and forks (fig. 11(b)). If pi is measured, mi(τ) and its variation, i.e., ṁi(τ),
are known at every time moment τ . Because the net has no joins, the flow of each

output transitions tj of pi is the product of λj and mi. Knowing the derivative and the

output flows, the input flow of the unique (because attributions are not still allowed)

input transition tk can be estimated. Based on the definition of the firing semantics, fk
is the product between λk and the marking of •tk. Notice that |•tk| = 1 since there are

no joins. Obviously, the marking of •tk can be computed immediately. Observe that

this is a backward procedure: measuring pi,
•(•pi) is estimated in absence of joins and

attributions.

Therefore, if there exists a path from a place pi to a measured place pj not con-

taining any join or attribution then pi is structurally observable, i.e., observable for

any values of the firing rates of transitions belonging to the path pi to pj [98]. Hence,

for net systems without attributions and joins, measuring at least one place from each

terminal strongly connected p-component (a subnet generated by a set of places such

that there exists a path between each pair of places) the net system is structurally ob-

servable [124]. Therefore, it is also observable and generic observable.

Let us consider now attributions and see that this construction can lead to the loss

of observability. Assume the TCPN system in fig. 12(a) where p3 (an attribution place)

is the measured place. Writing down the differential equation we have:

ṁ3(τ) = λ1 ·m1(τ) + λ2 ·m2(τ) − λ3 ·m3(τ)

From the previous equation, λ1 ·m1(τ)+λ2 ·m2(τ) can be computed since the other

variables are known. Nevertheless, if λ1 = λ2, it will be impossible to distinguish be-

tween m1(τ) and m2(τ) and the system is not observable. In general, if there exist two

transitions with the same firing rate, each one on a different input path in the attribution
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(paths not containing any attribution or fork), the system is not observable [124]. Nev-

ertheless, this is not a general rule since the observability is a global property. Remark

also that the system is observable if p1 is measured even if λ1 = λ2 = λ3. In this case,

the attribution in p3 is “destroyed” since the output transitions of the measured places

can be removed without affecting the observability space [98].

Let us consider the TCPN is fig. 12(b) with λ = 1 and assume that p2 is measured.

Then m4 and m5 cannot be estimated directly, but their sum (a linear combination

of them) is computable (place p45 in the figure). Going backwards, m1 is estimated

and, even although m1 is an attribution, since m2 is measured, then m3 can also be

estimated. Using m3, now m4 is estimated and, through the linear combination of p45,

m5 as well. Therefore, by measuring p2 the system is structurally observable.

An explanation to the previous loss of observability in join free nets, i.e., linear

net models, is obtained by consideration of the transfer functions in Laplace domain.

The basic idea is that attributions introduce zeros in the transfer function. Therefore,

some pole-zero cancelations may appear, leading to the already mentioned loss of ob-

servability. Let us illustrate this with the TCPN system in fig. 13(a), assuming that

the attribution p1 is measured. The system is linear since the net is join-free. If we

consider that the input of the system is f4 and the output is m1, the transfer function

vector between the input flow in places and the output is:

Y(s) = 1

(s+ λ1)(s+ λ2)(s+ λ3)(s+ λ4)
HT (12)

where:

H =









(s+ λ2) · (s+ λ3) · (s+ λ4)
λ2 · (s+ λ3) · (s+ λ4)
λ3 · (s+ λ2) · (s+ λ4)

(λ2 · (s+ λ3) + λ3 · (s+ λ2))









(13)

Obviously, if λ2 = λ3 or λ4 = 2·λ2·λ3

λ2+λ3

there is a pole-zero cancellation in all

elements of vector Y(s). Therefore, when the net has an attribution, particular values

of λ exist such that the observability is lost.

Clearly, for a JF net, if the firing rates of the transitions are randomly chosen in

R>0, the probability to obtain this cancelation is null and the already introduced weaker

concept of observability appears: generic observability. This property is similar with

the observability in linear structured systems [56] and can be studied using graph-based

approaches. In fact, for self-loop free JF nets, the associated graph that is used in [43]

to characterize the generic observability of linear structured systems can be obtained

from the Petri net structure just removing all transitions, adding an arc from pi to pj
if pj ∈ (pi

•)
•

and adding a self-loop to each place [124]. If at least one place from

each terminal strongly connected p-component is measured, all states of the associated

graph are output connected and the net system is generic observable.

Concluding, for JF TCPN, i.e., the net subclass that defines linear systems, all

three concepts of observability can be easily characterized: (i) using the theory of lin-

ear systems for standard observability, i.e., the observability matrix should have full

rank (where the observability matrix of a system with dynamic matrix Ai is ϑi =

[ST (SAi)
T . . . (SA

|P |−1
i )T ]T [118]); (ii) the graph based results in [43] for generic

observability, i.e., for self-loop free nets, measuring one place from each terminal

strongly-connected p-componet; (iii) using graph based approach for structural ob-

servability of AF nets, i.e., measuring one place from each terminal strongly connected
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p-component, and, eventually, combining graph approaches with algebraic manipula-

tions for nets with attributions.

Finally, let us introduce joins (otherwise stated, rendez-vous). According to the

flow definition, in this case the system is not linear. Let us concentrate on infinitesimal

time observability. Obviously, observability of all linear systems (or operation modes)

is a necessary condition for the observability, but unfortunately it is not enough. It

may happen that the continuous state estimation fits with different discrete states, i.e.,

observing some places, it may happen that more than one linear system satisfies the

observation. For example, let us consider the TCPN in fig. 13(b) and p3 the only

measured place. This system has two modes corresponding to two linear systems. Let

us interpret why it is not observable using the previous graph approach. Assume that

the first mode is such that f3(τ) = λ3 ·m1. If we compute the backward path from p1
to p3 it is as if we ignore the arc (p2, t3). It is straightforward to see that p3t3p1t2p2
is obtained. On the other hand, for the second mode, the arc (p1, t3) is ignored and

the obtained path is: p3t3p2t1p1. Obviously, if λ1 = λ2, the same set of differential

equations is obtained and will be impossible to distinguish between two states [124].

For example, taking m1 = [1 2 0]T ∈ R1 \ R2 and m2 = [2 1 0]T ∈ R2 \ R1 both

have the same observations, what correspond to ϑ1 · m1 = ϑ2 · m2, were ϑi are the

observability matrices of the two operation modes.

Definition 16 Two operation modes 1 and 2 of a TCPN system are distinguishable if

for any m1 ∈ R1\R2 and any m2 ∈ R2\R1 the observation y1(τ) for the trajectory

through m1 and the observation y2(τ) for the trajectory through m2 are different on

the interval [0, ǫ) for all ǫ > 0.

If all pairs of modes are distinguishable, it is always possible to uniquely assign

an operation mode (corresponding to a configuration, also defining a region) to an

observed continuous state. Assuming that a pair of modes are observable, a LPP can

be proposed to check their distinguishability. Unfortunately, this LPP may suffer from

numerical problems since we have to find interior points of some regions and it is well

known that strict inequalities are problematic to be implemented. Let us consider the

following quadratic programming problem (QPP):

z = max βT · β
s.t. ϑ1 ·m1 − ϑ2 ·m2 = 0

β = m1 −m2

m1 ∈ R1

m2 ∈ R2

(14)

First, let us observe that if the feasible set of (14) is empty, operation modes are

distinguishable. If in QPP (14) z = 0, using the fact that both systems are observable,

i.e., ϑ1 and ϑ2 have both full rank, m1 = m2 is obtained. Therefore, there exist

no interior markings m1 ∈ R1 and m2 ∈ R2 with the same observation, i.e., ϑ1 ·
m1 = ϑ2 · m2, and the modes are distinguishable. Finally, if the solution is z > 0
we cannot say nothing about distinguishability of the modes. In this last case, for

a particular solution of (14) a small variation of m1 and m2 can be considered by

assuming constant flow during this small time interval. If ϑ1 ·∆m1 = ϑ2 ·∆m2 with

∆m1 = A1 ·m1 and ∆m2 = A2 ·m2 then the operations mode are undistinguishable.

Moreover, the exact solution of (14) is not necessary to be computed and if a feasible

solution with z > δ, with δ a small positive number, is found the search can be stopped.

An immediate criterium for observability is obtained [124]:
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Proposition 17 A timed continuous Petri net system 〈N ,λ〉 under infinite server se-

mantics is observable in infinitesimal time iff:

1. All pairs of modes are distinguishable,

2. For each mode, i.e., in each region, the associated linear system is observable.

Based on the previous observations, the checking of the observability of a net sys-

tem with joins is not a trivial task. For this reason, some results have been proposed in

order to “delete” the joins without affecting the observable space. After that, observ-

ability can be checked using only the observability matrix. This reduction can be done

under some general conditions if the net system is AF or EQ [124]. Notice that in the

case of AF nets, since the joins can be removed, the structural observability problem

is the same as for nets with forks and joins: one place from each terminal strongly

connected p-component should be measured.

A complementary observability problem is presented in [112]. For the discrete-time

model and measuring some places, the problem is to estimate the firing flow (speed) of

the transitions and not the marking of the other places. Since the flow of a transition

is the product between its firing rate (constant value) and the enabling degree, in some

cases, measuring places or transitions is equivalent. Anyhow, in order to compute the

flow through joins it is necessary to measure all of its input places. Moreover, we may

also have different markings that have the same firing flow.

5.3 Design of observers

JF nets lead to linear systems, for which, Luenberger’s observers [119, 135] are fre-

quently used. Such an observer for a PN with a single mode can be expressed as:
˙̃m = A · m̃+K · (z − S · m̃) where m̃ is the marking estimation, A and S are the

matrices defining the evolution of the marking of the system and its output in continu-

ous time, z is the output of the system, and K is a design matrix of parameters.

At a particular time instant, a continuous PN evolves according to a given operation

mode, i.e., linear system. Thus, an online estimation can be performed by designing

one (Luenberger) linear observer per each potential mode of the PN (in a similar way

to [95] for a class of piecewise linear systems) and selecting the one that accomplishes

certain properties. The “goodness” of an estimate can be measured by means of a

residual [13]. Let us use the 1-norm ||·||1, which is defined as ||x||1 = |x1|+. . .+|xn|.
The residual at a given instant, r(τ), is the distance between the output of the system

and the output that the observer’s estimate, m̃(τ), yields, i.e., r = ||S ·m̃(τ)−z(τ)||1.

In order to be selectable, the estimations of the observers must verify the following

conditions:

• The residual must tend to zero.

• The estimations of the places in a synchronization have to be coherent with the

operation mode for which they are computed.

Thus, at a given time instant, only coherent estimations are selectable. Moreover, a

criterion must be established to decide which coherent estimation is, at a given time in-

stant, the most appropriate. An adequate heuristics is to choose the coherent estimation

with minimum residual.

Consider the TCPN system in fig. 14. Let its output be the marking of place

p1, i.e., m[p1] = S · m, where S = [1 0 0]. The net has two configurations:

44



t1

t2

t3

p1 p2

p3

2

Figure 14: A net system with two operation modes. A deadlock is reachable by emp-

tying the siphon {p1, p3}

C1 = {(p1, t1), (p1, t2), (p3, t3)} and C2 = {(p1, t1), (p2, t2), (p3, t3)}. For the lin-

ear system corresponding to C1 m2 is not observable. However, for the linear system

corresponding to C2 the marking of all the places can be estimated. Let λ = [0.9 1 1]T

and m0 = [3 0 0]T . The marking evolution of this system is depicted in fig. 15(a).

One observer per operation mode will be designed. Let the initial state of observer

1 be e01 = [1 2]T and its eigenvalues be [−12+2·
√
3·i, −12−2·

√
3·i]. Since observer

1 can only estimate m1 and m3, the first component of its state vector corresponds to

the estimation of m1, and its second component to the estimation of m3. For observer

2, let the initial state be e02 = [1 0 2]T and its eigenvalues be [−15, −12 + 2 ·
√
3 ·

i, −12− 2 ·
√
3 · i]. The evolution of the coherent estimation with minimum residual

is shown in fig. 15(a).
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Figure 15: The marking evolution is given by (m[p1], m[p2], m[p3]). (a) The esti-

mate of the minimum residual and coherent observer is (omcr1, omcr2, omcr3) . (b)

The estimate of the observer that makes use of a simulation is (obss1, obss2, obss3).

The resulting estimation can be improved by taking into account some consider-

ations. When the first system switch happens, the estimation becomes discontinuous
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and, what is more undesirable, the estimation for the marking of p3 becomes worse.

A similar effect happens when the second system switch occurs. Another undesirable

phenomenon is that, after the first switch, the estimation of m2 just disappears (since it

is unobservable in configuration C1).

One way to avoid discontinuities in the resulting estimation, is to use the estimation

of the observer that is going to be filtered out in order to update the estimation of the

observer that is not going to be filtered out. This estimation update must be done when

a system switch is detected. In order not to lose the estimation of the marking of a place

when it was “almost perfectly” estimated (recall the case of m2 when the first switch

happened) a simulation of the system can be launched. The initial marking of this

simulation is the estimation of the system just before the observability of the marking

is lost. Such a simulation can be seen as an estimation for those markings that are not

observable by the observer being considered. The simulation should only be carried out

when an estimation for all the places exists and the residual is not significant. Fig. 15(b)

shows the evolution of the estimation obtained by this strategy.

One of the main advantages is that the residual does not increase sharply when the

mode of the system changes. Another interesting feature is that the use of a simulation

allows one to estimate the marking of places that in some modes are in principle not

observable: in fig. 15(b) it can be seen that the marking of p2 can be estimated, even

when it is unobservable due to configuration C1 being active.

5.4 Observability and observers in other fluid models

Observability and state estimation problems in systems modeled by a continuous PN

have been studied also in the case of untimed models or assuming a timed finite server

semantics. Anyhow, the studied problems are a little bit different in both cases. Never-

theless, in both cases it is assumed that the initial marking is known (and not unknown

as in previous section) and the set of transitions is partitioned in two: observable and

unobservable transitions (hence transitions are observed and not places). Obviously,

given a sequence of observed transitions, it is impossible to uniquely determine the

actual marking, hence a set of markings will be the solution. This set is called the set

of consistent markings and contains all markings in which the system may be given the

actual observation.

In [125], untimed CPN are considered. When an observable transition fires, its fir-

ing quantity is measured and the problem is to obtain the set of consistent markings. It

is proved that, under certain assumptions on the unobservable subnet, the set of con-

sistent markings is convex. The main idea of an iterative algorithm to compute it is to

start from each vertex of the previous set and compute the vertices of some polytopes.

Taking the convex hull of all new vertices, the new set of consistent markings is ob-

tained. The computational complexity of the algorithm is exponential because requires

the computation of vertices, but the compact representation as a convex polytope is a

real advantage.

Somehow related to the previous one, the problem of fault diagnosis is clearly a

main issue in many engineering applications because of the practical need of ensuring

the correct and safe functioning of systems. Using the characterization of the set of

consistent markings and the algorithm to compute it, the problem of fault detection

for systems modeled by untimed CPN has been recently addressed [145, 146]. Three

diagnosis states have been considered: N - the fault has not occurred; U - the fault

may have occurred or not (uncertain state); and F - the fault surely occurred. Given

an observation, the diagnosis state is computed solving two LPPs. The main advantage
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of fluidification for fault diagnosis is that it enables to deal with more general Petri

net structures than that considered in discrete approaches [24, 69]. In particular, the

unobservable subnet needs not be acyclic.

In the case of TCPN under finite server semantics, the problem has been considered

in [120]. Once again, it is assumed that the initial marking is known but no observation

is available. Thus the observation problem reduces to determining the set of markings,

in which the net may be at a given time. This problem is similar to that of time-

reachability for continuous models. It is shown under which conditions the reachability

set of the timed net under finite server semantics coincides with that of the untimed one.

A procedure to compute the minimum time ensuring that the set of consistent markings

is equal to the reachability set of untimed system is given for some net classes.

6 Controllability and control

Controllability is an important property in every kind of dynamic system. It is related

to the capability of being driven in a certain desirable way. Continuous Petri nets are re-

laxations of discrete Petri nets, but at the same time, they are continuous-state systems

(in fact, they are technically hybrid systems in which the discrete state is implicit in

the continuous one). In this way, it seems natural to consider two different approaches

for the controllability and control concepts: 1) at the discrete level, the extension of

control techniques used in discrete PN ’s, such as the supervisory-control theory (for

instance, [71,85,87]) and 2) at the fluidized level, the application of control techniques

developed for continuous-state systems. Usually, the control objective in the first ap-

proach is to meet some safety specifications, like avoiding forbidden states, by means

of disabling transitions at particular states. The objective of the second approach con-

sists in driving the system, by means of a (usually) continuous control action, towards

a desired steady state, or state trajectory (see, for instance, [35]). Regarding continuous

Petri nets, most of the specific works that can be found in the literature deals with the

second control approach applied to the infinite server semantics model.

Like in discretePNs, the control action is applied through the transitions. This may

only consist in the reduction of the flow, because transitions (machines for example)

should not work faster than their nominal speed. A partition of the transitions set

T is made, leading to sets of controllable (Tc) and uncontrollable (Tnc) transitions.

The control vector u ∈ R|T | is defined s.t. ui represents the control action on ti.
Assuming infinite server semantics, since ui represents a reduction of the flow, then

0 ≤ ui ≤ λi · enab(ti,m). The behavior of a forced (or controlled) continuous Petri

net can be described by the state equation:

ṁ = CΛΠ(m)m−Cu

subject to 0 ≤ u ≤ ΛΠ(m)m and ∀ti ∈ Tnc, ui = 0.
(15)

Enforcing a desired target marking in a continuous PN is analogous to reaching an

average marking in the original discrete model (assuming that the continuous model

approximates the discrete one), which may be interesting in several kinds of systems.

This idea has been illustrated by different authors. For instance, in [6] it was proposed

a methodology for the control of open and closed manufacturing lines. The control

actions consist in modifying the maximal firing speeds of the controlled transitions. It

was also illustrated how the control law can be applied to the original discrete Petri net

model (a T-timed model with constant firing delays). This approach has been used in

[111] and [103] as well, in the same context of manufacturing lines. A related approach
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was presented in [166], for a stock-level control problem of an automotive assembly

line system originally modeled as a stochastically timed discrete Petri net [59]. The

resulting scheme allows to control the average value of the marking at the places that

represent the stock-level, by means of applying additional delays to the controllable

transitions.

For continuous PNs under infinite server semantics, controllability is considered

in sections 6.1-6.3, while different control approaches are recalled in sections 6.4-6.6.

Section 6.7 is devoted to a control technique for systems under finite server semantics.

6.1 On controllability: from the classical concept to bounded input

controllability

The control objective considered here consists in driving the system, by applying a

control law, towards a desired steady state, i.e., a set-point control problem, frequently

addressed in continuous-state systems. This control objective is related to the classical

controllability concept, according to which a system is controllable if for any two states

x1,x2 of the state space it is possible to transfer the system from x1 to x2 in finite time

(see, for instance, [35]).

Few works have addressed the study of controllability in the context of continuous

Petri nets. For instance, in [5] it is studied for linear nets (Join-Free nets), pointing out

that the classical rank condition is not sufficient (detailed in subsection 6.3). In [91] the

controllability was studied for Join-Free continuous nets from a different perspective,

by characterizing the set of markings that can be reached and maintained. Nevertheless,

those results are difficult to extend to general subclasses of nets, where the existence of

several regions makes the general reachability problem untractable.

Despite those results, in [122] it was pointed out that TCPN systems are frequently

not controllable according to the classical controllability concept, due to the marking

conservation laws imposed by P-flows. In detail, if y is a P-flow then any reachable

marking m must fulfill yTm = yTm0, defining thus a state invariant. Nevertheless,

the study of controllability “over” this invariant is particularly interesting. This set

is formally defined as Class(m0) = {m ∈ R|P |
≥0 |BT

y m = BT
y m0}, where By is a

basis of P-flows, i.e., BT
y C = 0. For a general TCPN system, every reachable marking

belongs to Class(m0).
Another issue that appears in TCPN systems is the nonnegativeness and bounded-

ness of the input, i.e., 0 ≤ u ≤ ΛΠ(m)m. Considering these issues, an appropriate

local controllability concept was proposed in [164]:

Definition 18 The TCPN system 〈N ,λ,m0〉 is controllable with bounded input (BIC)

over S ⊆ Class(m0) if for any two markings m1,m2 ∈ S there exists an input

u transfering the system from m1 to m2 in finite or infinite time, and it is suitably

bounded, i.e., 0 ≤ u ≤ ΛΠ(m)m, and ∀ti ∈ Tnc ui = 0 along the marking trajec-

tory.

6.2 Controllability if all the transitions are controllable: consis-

tency

The controllability in continuous PNs, when all the transitions are controllable, de-

pends only on the structure of the net. Intuition for this can be gained by rewriting the

state equation as:

ṁ = C ·w (16)
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Figure 16: Two TCPN systems with identical P-flows. The shadowed areas correspond

to the sets of reachable markings. Only the system (b) is consistent and controllable

over Class(m0).

where the innovation vector w = ΛΠ(m)m − u can be seen as an auxiliary input.

The constraints for u are transformed into 0 ≤ w ≤ ΛΠ(m)m. In this way, given

a marking m1 ∈ Class(m0), if ∃σ ≥ 0 such that Cσ = (m1 − m0) then m1 is

reachable from m0. This can be achieved by setting w = ασ (with a small enough

α > 0), so the field vector results ṁ = Cασ = α(m1 − m0) which implies that

the system will evolve towards m1 describing a straight trajectory (assuming that the

required transitions can be fired from this marking, what always happens if m is a

relative interior point of Class(m0)).

Consider for instance the TCPN of fig. 16(a) and the markings m0 = [2 3 1 1]
T

,

m1 = [1 3 2 1]
T

and m2 = [2 1 1 3]
T

. Since this system has 2 P-semiflows (involving

{p1, p3} and {p2, p4} respectively), the marking of two places is sufficient to represent

the whole state. For this system ∃σ ≥ 0 such that Cσ = (m1 −m0), but ∄σ ≥ 0

such that Cσ = (m2 −m0), so, m1 is reachable but m2 is not. The shadowed area

in fig. 16(a) corresponds to the set of reachable markings, note that it is the convex

cone defined by vectors c′1 and c′2, which represent the columns of C (here restricted

to p1 and p2).

This structural reachability reasoning leads to a simple and full characterization of

controllability [164]:

Proposition 19 Let 〈N ,λ,m0〉 be a TCPN system in which all the transitions are con-

trollable. The system 〈N ,λ,m0〉 is BIC over the interior of Class(m0) iff the net

is consistent. Furthermore, the controllability is extended to the whole Class(m0) iff

(additionally to consistency) there exist no empty siphon at any marking inClass(m0).

Conditions of propositions 3 (regarding lim-reachability) and 19 are equivalent (the

non existence of empty siphons is equivalent to the fireability of all the transitions).

Note that the controllability does not depend on the timing λ.

The key condition here is consistency, i.e., ∃x > 0 such that C ·x = 0. Remember

that a reachable marking m ≥ 0 fulfills m = m0 +C ·σ with σ ≥ 0, which implies

BT
y m = BT

y m0 (equivalently, m ∈ Class(m0)). On the opposite sense, if the net
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is consistent then ∀m ≥ 0 s.t. BT
y m = BT

y m0 (i.e., m ∈ Class(m0)) it exists

σ ≥ 0 s.t. m = m0 + C · σ, thus m is reachable (assuming σ is fireable). A very

informal and intuitive explanation is that consistency permits movements of marking

in any direction inside the reachability space (see fig. 16(b)), i.e., if there exists σ such

that m1 = m0 + C · σ, under consistency any σ′ = σ + k · x ≥ 0, permits the

reachability of m1.

Consider again the TCPN system of fig. 16(a). By using the proposition 19 it can

be verified that this TCPN is not controllable over Class(m0), because the net is not

consistent. Now, consider the system of fig. 16(b). In this case, for any marking

m ∈ Class(m0), the vector (m −m0) is in the convex cone defined by the vectors

c′1, c′2 and c′3; which occurs due to the consistency of the net and implies that m is

reachable from m0). Moreover, since at the border markings of Class(m0) there are

not unmarked siphons then, according to the proposition 19, the system is BIC over

Class(m0).

6.3 Controllability with uncontrollable transitions over stationary

states

Systems with uncontrollable transitions are not controllable over Class(m0), even for

consistent nets. In this case, a smaller set of markings need to be considered. This

idea was explored in [91], where a set named Controllability Space (CS), over which

the system is controllable, was characterized for Join-Free nets. Nevertheless, this

set depends on the marking, thus its characterization for general subclasses of nets

is difficult. The existence of several regions makes the general reachability problem

untractable. For practical reasons, the controllability was studied in [164] over sets of

equilibrium markings : mq ∈ Class(m0) is an equilibrium marking if ∃uq suitable

such that C(ΛΠ(mq)mq−uq) = 0. They represent the possible stationary operating

points of the original discrete system. These markings are particularly interesting,

since controllers are frequently designed in order to drive the system towards a desired

stationary operating point.

Since inside each region Ri (defined in subsection 4.3) the state equation is linear

(Π(m) is constant), it becomes convenient to study, in a first step, the controllabil-

ity over equilibrium markings in each region and later over the union of them. This

approach is supported by the following proposition:

Proposition 20 Let 〈N ,λ,m0〉 be a TCPN system. Consider some equilibrium sets

S1, S2,..., Sj related to different regions R1, R2,..., Rj . If the system is BIC (in finite

time) over each one and their union
⋃j

i=1 Si is connected, the system is BIC over the

union.

The connectivity of the set of all the equilibrium markings in Class(m0) has not

been demonstrated for the general case. Nevertheless, in every studied system such

property holds.

As an example, consider the timed continuous marked graph of fig. 17 with Tc =
{t4} and λ = [1 1 1 2]T . There are four possible configurations according to the struc-

ture, but given the initial marking, one of them cannot occur. The polytope in fig.

17 represents the Class{m0}. Since the system has 3 P-semiflows, the marking at

{p1, p3, p5} is enough to represent the whole state. This is divided into the regions

R1, R3 and R4, related to the feasible configurations. The segments E1 = [m1,m2],
E3 = [m2,m3] and E4 = [m3,m4] are the sets of equilibrium markings in regions
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Figure 17: TCPN system with its E. Transition t4 is the only controllable one. There

are four possible configurations: C1 = {(p2, t2), (p4, t3)}, C2 = {(p3, t2), (p4, t3)},

C3 = {(p2, t2), (p5, t3)} and C4 = {(p3, t2), (p5, t3)}, however, C2 cannot occur from

the given m0 because p3 and p4 cannot concurrently constrain t2 and t3, respectively.

Equilibrium sets depend on the timing, but regions do not.

R1, R3 and R4, respectively. Since the union of E1, E3 and E4 is connected, if the

system were BIC over each Ei (this will be explored in a forthcoming example) then,

according to Proposition 20, the system would be BIC overE1∪E3∪E4. For instance,

the system could be driven from m3 to m1 and in the opposite sense.

In a given region Ri the TCPN system is linear and time-invariant, then some of

the classical results in control theory can be used for its analysis. Null-controllability

(controllability around the origin) of this kind of systems with input constraints was

studied in [21]. Recalling from there, if a linear system ẋ = Ax + Bu, with input

constraint u ∈ Ω (called the set of admissible inputs), is controllable then the con-

trollability matrix Contr(A,B) = [BAB ...An−1B] has full rank (equivalently,

∀x1,x2: ∃z s.t. (x2 −x1) = Contr(A,B) · z). Furthermore, if 0 is in the interior of

Ω then the previous rank condition is also sufficient for null-controllability. Otherwise,

if there are inputs that can be only settled as positive (or negative) then the control-

lability depends also on the eigen-structure of the state matrix. These results can be

adapted to TCPNs. For this, the state equation of a TCPN is firstly transformed in

order to represent the behavior around an equilibrium marking mq , i.e., the evolution

of ∆m = m − mq . As a consequence, some transformed inputs ∆u = (u − uq)
can be settled only as nonnegative while others can be settled as either positive or neg-

ative. The set of transitions related to this last kind of inputs is denoted as T i
cf ⊆ Tc.

Let us denote as E∗
i the set of all equilibrium markings in a region Ri s.t. ∆u[T i

cf ]

can be settled as either positive or negative (equivalently, [ΛΠim
q]j > uq

j > 0 for all

tj ∈ T i
cf ). In this way, it can be proved that if a TCPN is controllable over a set E∗

i then

∀m2,m1 ∈ E∗
i : ∃z s.t. (m2−m1) = Contr((CΛΠi),C[Tc]) ·z. This condition is

only necessary, as already pointed out in [5], because the existence of input constraints.

Furthermore, a system is controllable (in finite time) over E∗
i if ∀m2,m1 ∈ E∗

i : ∃z
s.t. (m2 − m1) = Contr((CΛΠi),C[T i

cf ]) · z. This sufficient condition is also

necessary if T i
cf = Tc (but not if T i

cf ⊂ Tc). Note that now the controllability depends
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not only on the structure of the net, but also on the timing [164].

For instance, consider the region R3 in the system of fig. 17. For this, T 3
cf = {t4}.

Since T 3
cf = Tc then the span condition introduced above is sufficient and necessary for

controllability. In this case, it can be verified that the system is BIC over E∗
3 = E3.

Consider now the same system but with λ4 = 1 instead of λ4 = 2. In this case,

T 3
cf = ∅ (this set depends on the timing), then we cannot use the same sufficient

condition. Nevertheless, it is still fulfilled that ∀m2,m1 ∈ E∗
3 : ∃z s.t. (m2−m1) =

Contr((CΛΠ3),C[Tc]) · z. Therefore, the controllability matrices do not provide

enough information for deciding whether the system is BIC or not over E∗
3 . By using

another results from [164], it can be proved that the system is not BIC with λ4 = 1,

what leads to the conclusion that the controllability is a timing-dependent property.

6.4 Control when all the transitions are controllable

Through the following paragraphs and subsection 6.5, a few control techniques, pro-

posed in the literature for continuous Petri nets, will be recalled. Similar to the set-point

control problem in state-continuous systems, the control objective here consists in driv-

ing the system towards a desired target marking (a steady state, here denoted as md).

This desired marking can be selected, in a preliminarily planning stage, according to

some optimality criterion [155], e.g., maximizing the flow as in subsection 4.3. Most

of the work done on this issue is devoted to centralized dynamic control assuming that

all the transitions are controllable. We will firstly present those control techniques that

require to control all the transitions, while a couple of techniques (gradient-base and

pole assignment), where uncontrollable transitions are considered, will be presented in

the following subsection.

Fuzzy control [79]. The authors showed that the flow of a fluid transition, under

infinite server semantics with an implicit self-loop, can be represented as the output of

two fuzzy rules under the Sugeno model. It was proved that if the integral of the output

of each fuzzy rule converges to a finite value then the resulting global fuzzy system

(that represents the controlled flow) converges as well. Moreover, upper and lower

bounds of this convergence were derived. Based on that, a proportional fuzzy control

was proposed, proving convergence of the system to the desired output (the marking

of a place pj ∈ P , i.e., md[pj]), assuming that this is smaller than the initial upstream

marking, i.e., md[pj] ≤ m0[pi], ∀pi ∈ •pj , which is not the general case.

Control for a piecewise-straight marking trajectory. Dealing with the tracking con-

trol problem of a mixed ramp-step reference signal, this approach was firstly explored

in [93] for Join-Free nets and extended to general PNs in [94]. There, a high & low

gain proportional controller is synthesized, while a ramp-step reference trajectory, as

a sort of path-planning problem at a higher level, is computed. Let us detail the more

simple synthesis procedure introduced in [7]. Consider the line l connecting m0 and

md, and the markings in the intersection of l with the region’s borders, denoted as m1
c ,

m2
c , ...., mn

c . Define m0
c = m0 and mn+1

c = md. Then, ∀k ∈ {0, n} compute τk by

solving the linear programming problem (LPP):

min τk
s.t. : mi+1

c = mi
c +C · x

0 ≤ xj ≤ λjΠ
z
jimin{mi

c,i,m
i+1
c,i }τk

∀j ∈ {1, ..., |T |} where i satisfies Πz
ji 6= 0

(17)

The control law to be applied is thus w = x/τk (the model is represented as in

(16)), when the system is between the markings mk
c and mk+1

c . The time required for
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reaching the desired marking is given by τf =
∑n

k=0 τk. Feasibility and convergence

to mf were proved in [7].

In order to obtain faster trajectories, intermediate states, not necessarily on the line

connecting the initial and the target marking, can be introduced [94]. According to [7],

they can be computed by means of a bilinear programming problem (BPP). The idea is

to currently compute the intermediate markings mk
c , on the borders of the regions, that

minimizes the total time τf =
∑n

k=0 τk with some additional monotonicity constraints.

Finally, the same algorithm can be adapted in order to recursively compute intermediate

markings in the interior of the regions, obtaining thus faster trajectories.

Model predictive control (MPC) [121]. Here, two solutions were considered based

on the implicit and explicit methods (see, for instance, [16]). The evolution of the

timed continuous Petri net model (16), in discrete-time, is represented by the dif-

ference equation: m(k + 1) = m(k) + Θ · C · w(k), subject to the constraints

0 ≤ w(k) ≤ f(k) with f(k) being the flow without control, which is equivalent

to G · [wT (k),mT (k)]T ≤ 0, for a particular matrix G. The sampling Θ must be

chosen small enough in order to avoid spurious markings, in particular, for ensuring

the positiveness of the markings. For that, the following condition is required to be

fulfilled ∀ p ∈ P :
∑

tj∈p• λjΘ < 1.

By using this representation of the continuous PN, a MPC control scheme is de-

rived in [121]. The goal is to drive the system towards a desired marking md, while

minimizing the quadratic performance index

J(m(k), N) = (m(k +N)−md)
′Z(m(k +N)−md)

+
∑N−1

j=0 [(m(k + j)−md)
′Q(m(k + j)−md)

+(w(k + j)−wd)
′R(w(k + j)−wd)]

where Z, Q and R are positive definite matrices and N is a given time horizon. This

leads to the following optimization problem that needs to be solved in each time step:

min J(m(k), N)
s.t. : ∀j ∈ {0, ..., N − 1}, m(k + j + 1) = m(k + j) + Θ ·C ·w(k + j)

G ·
[

w(k + j)
m(k + j)

]

≤ 0

w(k + j) ≥ 0

(18)

In [121] it was shown that the standard techniques used for ensuring converge in

linear/hybrid systems (i.e., terminal constraints or terminal cost) cannot be applied in

continuous nets if the desired marking has zero components. Nevertheless, a particular

control law, guaranteeing asymptotic stability for all possible final states, was proposed.

Simulations showed that the horizon N is not required to be too large (actually, it is

well known in classical systems theory that if ∃N̄ s.t. ∀m0 and ∀N ≥ N̄ , the finite

and the infinite horizon controllers are equal). However, sometimes N is such that the

computational time needed to solve the optimization problem becomes larger than the

sampling period, making the implementation unfeasible.

An alternative MPC approach for this problem is the so-called explicit solution [16],

where the set of all states that are controllable is split into polytopes. In each polytope

the control command is defined as a piecewise affine function of the state. The closed-

loop stability is guaranteed with this approach. On the contrary, when either the order

of the system or the length of the prediction horizon are not small, the complexity of

the explicit controller becomes quickly prohibitive. Furthermore, the computation of

the polytopes sometimes is unfeasible.
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Proportional control synthesis with LMI [102]. The proposed control scheme con-

sists of a set of proportional (affine) control laws, one for each region. In detail, the

controlled flow is represented, in discrete time, by w(k) = F r(m(k) − md) + R,

where R is a vector and F r is a gain matrix computed for each region (the subindex r
denotes the r − th region). In each region, the control and the marking are required to

fulfill:

1. the input constraints: 0 ≤ w(k) ≤ f(k), where f (k) represents the flow without

control,

2. the region membership: m(k) ∈ P(Gr, gr), where P(Gr, gr) = {m|Grm ≤
gr} is the inequality representation of the r-th region (a polyhedral),

3. the existence of a contractive invariant set (in order to prove closed-loop stabil-

ity), which is stated as: x(k) ∈ P(Q,µ) → x(k + 1) ∈ P(Q, αµ), where

x(k) = (m(k) −md) is the current error, α < 1 and P(Q, αµ) = {x|Qx ≤
αµ} is the contractive set (so, the absolute error is monotonic decreasing).

The methodology consists in expressing the previous conditions as sets of linear matrix

inequalities (LMI), one set for each region. The solution of a LMI can be achieved in

polynomial time. Furthermore, convergence to the desired marking md is guaranteed.

The main drawback of this approach is that a LMI must be solved for each region,

but the number of these increases exponentially w.r.t. the number of synchronizations

(joins).

ON-OFF (minimum-time) control for persistent nets [173]. Stronger results may

be obtained when the problem is restricted to particular net subclasses. Accordingly,

the minimum-time control problem was solved in this work for persistent continuous

Petri nets (i.e., net systems where the enabling of any transition tj cannot decrease by

the firing of any other transition ti 6= tj). The solution is truly straightforward. First, a

minimal firing count vector σ s.t. md = m0 + Cσ is computed (σ is minimal if for

any T-semiflow x, ||x|| * ||σ||, where || · || stands for the support of a vector). Later,

the control law is defined, for each transition tj , as:

u[tj ] =

{

0 if
∫ τ−

0 w[tj ]dτ < σ[tj ]

f [tj ] if
∫ τ−

0 w[tj ]dτ = σ[tj ]

This means that if tj has not been fired an amount of σ[tj ], then tj is completely ON.

Otherwise, tj is completely OFF (it is blocked). It is proved that this ON-OFF control

policy drives the system towards md in minimum time. An intuitive reason for this is

that, for persistent nets, the firing order is irrelevant for reaching a marking. Thus, what

only matters is the amount of firings required, which is provided by σ.

Preliminary decentralized control techniques [8,170]. In order to deal with systems

having large net structures (many places and transitions), it seems natural to consider

decentralized and distributed control strategies. In a completely distributed approach,

the model can be considered as composed of several subsystems that share informa-

tion through communication channels, modeled by places. This problem has been

addressed in [8] for a system composed of two MTS subsystems asynchronously con-

nected through places. For each subsystem, a controller is designed. The mission of

each local controller is to drive its corresponding subsystem from its initial marking to

a required one, taking into account the interaction with the other subsystems. For this,

it is required that neighboring local controllers share information, related to the pos-

sibility of concurrently reaching the target marking in every subsystem. A consensus
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algorithm is proposed for that task. Feasibility and concurrent convergence are demon-

strated. In a second approach [170], the existence of an upper-level controller, named

coordinator, is allowed. This coordinator may receive and send information to the lo-

cal controllers, but it cannot apply control actions directly to the TCPN system. The

existence of such coordinator increases the capability of the local controllers, allowing

to consider wider classes for the net subsystems (they are assumed to be separately live

and consistent, but they are not restricted to particular net subclasses). Affine control

laws are proposed for local controllers. Feasibility and concurrent convergence to the

required markings are proved.

6.5 Control with uncontrollable transitions

Gradient-base control with uncontrollable transitions [113]. Here, the input control

actions consist in reducing the rates of the controllable transitions from their nominal

maximum values, which is equivalent to reduce the flow, as considered along this sec-

tion. Nevertheless, the goal of the control problem is slightly different, since it is no

longer required to drive the whole marking of the system to a desired value, but only the

marking of a subset of places (the output of the system). The analysis is achieved in dis-

crete time. Let us provide the basic idea for the case of a single-output system. Firstly,

a cost function is defined as v(k) = 1/2ǫ(k)2, where ǫ(k) denotes the output error. The

control proposed has a structure like: u(k) = u(k−1)−(s(k)s(k)T+αI)−1s(k)ǫ(k),
where the input u(k) is the rate of the controllable transitions and s(k) is the output

sensitivity function vector with respect to the input (the gradient vector ∇u y). The

factor α > 0 is a small term added to avoid ill conditioned matrix computations. The

gradient is computed by using a first order approximation method. One of the advan-

tages of this approach is that the change of regions (or configurations) is not explicitly

taken into account during the computation of the gradient. Furthermore, a sufficient

condition for stability is provided.

Pole assignment control with uncontrollable transitions [167]. In a first step, it

is assumed that the initial and desired markings are equilibrium ones and belong to

the same region. The control approach considered has the following structure: u =
u′
d +K(m − m′

d), where (m′
d, u′

d) is a suitable intermediate equilibrium marking.

The gain matrix K is computed, by using any pole-assignment technique, in such a

way that the controllable poles are settled as distinct, real and negative. Intermediate

markings m′
d, with their corresponding input u′

d, are computed during the application

of the control law (either at each sampling period or just at an arbitrary number of

them) by using a given LPP with linear complexity that guarantees that the required

input constraints are fulfilled. Later, those results are extended in order to consider

several regions. For this, it is required that the initial and desired markings belong to

a connected union of equilibrium sets, i.e., m0 ∈ E+
1 , md ∈ E+

n and ∪n
i=1E

+
i is

connected. Thus, there exist equilibrium markings m
q
1, ...,m

q
n−1 on the borders of

consecutive regions, i.e., m
q
j ∈ Ej ∩ Ej+1, ∀j ∈ {1, .., j − 1}. A gain matrix Kj ,

satisfying the previously mentioned conditions, is computed for each region. Then,

inside each jth region, the control action u = u′
d +Kj(m −m′

d) is applied, where

m′
d is computed, belonging to the segment [mq

j ,m
q
j+1], by using a similar LPP. It

was proved that this control law can always be computed and applied (feasibility).

Furthermore, convergence to the desired md was also demonstrated, whenever the

conditions for controllability are fulfilled and ∪n
i=1E

+
i is connected (see section 6.3).

The main drawback of this technique is that a gain matrix and a LPP have to be derived

for each region in the marking path.
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Table 4: Qualitative characteristics of control laws (assuming mf > 0). The following

abbreviations are used: config. (configuration), min. (minimize), func. (function), exp.

(exponential), compl. (complexity) and poly. (polynomial).

Technique Computational Optimality Subclass Tnc Stability

issues criterion

PW-straight a LPP for heuristic for all no yes

trajectory each config. min. time

MPC poly. compl. min. quadratic or all no under suf.

on |T |, N linear func. of m,u conditions

LMI a LMI for none all no yes

each config.

ON-OFF linear compl. minimum structurally no yes

on |T | time persistent

Gradient-based poly. compl. min. quadratic all yes under a suf.

on # outputs error condition

Pole-assignment a pole-assignment none all yes yes

for each config.

6.6 Preliminary comparison of control methods under infinite server

semantics

Having several control methods available for timed continuous PNs, a question that

may arise concerns the selection of the most appropriate technique for a given particular

system and purpose. There are several properties that may be taken into account, like

feasibility, closed-loop stability, robustness, computational complexity (for the synthe-

sis and during the application), etc.

Table 4 summarizes a few qualitative properties of some of the control methods de-

scribed above. Accordingly, provided a structurally persistent PN , the natural choice

will be an ON − OFF control law, since it does not exhibit computational prob-

lems, ensures convergence an provides the minimum-time transient behavior. For non-

persistent nets, MPC ensures convergence and minimizes a quadratic criterion. Never-

theless, when the number of transitions grows, the complexity may become untractable.

In such a case, control synthesis based on LMI or enforcing piecewise-straight trajec-

tories would be more appropriated. Finally, control laws based on gradient-descendent

and pole assignment methods are developed in order to deal with uncontrollable tran-

sitions. The synthesis of this last technique becomes tedious (but automatizable) when

several configurations appear in the system, since a pole assignment is required for

each configuration. This problem does not appear for the gradient based controller; on

the contrary, this technique does not guarantee convergence for the general case, while

the pole assignment does it.

Given a system with just few configurations and transitions, all of them being con-

trollable, most of the described control laws could be synthesized and applied to it, en-

suring convergence. In such case, the criterion for selecting one of them may be a quan-

titative one, like minimizing either a quadratic optimization criterion or the time spent

for reaching the desired marking. At the present moment, such quantitative comparison

has not been systematically made, but it is our intuition that the transient response of
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the mentioned techniques should be comparable (of the same order of magnitude), i.e.,

one technique could be the best for a TCPN system, while another technique could be

better for a slightly different model.

6.7 Control under finite server semantics

In contrast to ISS, under finite server semantics (FSS), the flow vector, f , is piece-

wise constant: it keeps constant until an event occurs, and events occur only when

places become empty. Between events, the system is said to be at a invariant behavior

state (IB - state) [49]. The concept of IB - state in FSS is similar to that of configu-

ration in ISS. At an IB - state the flows of transitions are constant and therefore the

markings of places increase or decrease linearly. Given a net N and a vector λ, the

flow vector under FSS just depends on the set of empty places. Hence, the number of

potential IB - states is equal to the number of sets of places that can be simultaneously

empty in the system. These differences entail that alternative techniques are required

for the control of systems under FSS. We will focus on optimal control problems.

As in ISS, a transition t is controllable when its flow can be slowed down in a

quantity that depends on the input, u[t], applied to it. The value u[t] is positive and

upper limited by λ[t]. The way of computing f is analogous to the one shown in

section 4.1 for FSS, being now the maximum flow allowed by t, λ[t]−u[t]. Hence, if

transition t is strongly enabled then f [t] = λ[t]− u[t]. If t is weakly enabled f [t] will

be computed considering λ[t] − u[t] the upper bound for the flow of t. If t is neither

strongly nor weakly enabled f [t] = 0. An alternative approach to control under FSS
is developed in [12] where the firing speed of transitions is a control variable what

allows to solve conflicts and optimization problems.

In the literature, there are several works dealing with optimal control in hybrid sys-

tems (remember that a CPN model under FSS is a particular class of hybrid system).

Most of them can be roughly divided into two groups: those using continuous-time

models (see, for example [32, 176]) and those using discrete-time models (see, for ex-

ample [15]). Regarding continuous-time models, the main considered issues are the

study of necessary trajectories to be optimal and the computation of optimal control

laws by means of Hamilton-Jacobi-Bellman equations or the maximum principle. With

respect to discrete-time models, a solution to optimal control problems was proposed

in [15]. A drawback of time-discretization is that the length of the sampling period is

not easy to define, since there often exists a trade-off between accuracy (short sampling

period) and computational speed (long sampling period).

An intermediate approach between continuous and discrete time models consists of

considering event-driven models. The evolution of an event-driven model is described

in terms of steps, where steps are associated to the occurrence of events, i.e., to a

place becoming empty in the case of continuous PNs. Each step contains the time

instant at which the event occurred as well as the system state at that instant. This

way, in contrast to usual discrete-time models, the time elapsed between events is not

necessarily constant. Event-driven models (for instance, see [144] for models based

on max-plus algebra) offer two interesting advantages: 1) Event-discretization does

not imply loss of accuracy: The marking evolution of a continuous PN under FSS
is linear between events, and so it can be determined from the marking of the net at

the event instants; 2) The number of steps is minimized: A step happens only when

it is really required (an event happens). The task of solving optimal control problems

by using event-driven models of continuous nets is greatly eased if the net system is

transformed to a Mixed Logical Dynamical (MLD) system [15]. The basic steps to
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transform a continuous PN into a MLD system are the following [96]:

1. Identify the potential IB - states of the continuous PN .

2. Describe the behavior of the PN under each IB - state.

3. Force that at least one place becomes empty at the occurrence of the next event.

Once a MLD system is obtained, it can be equipped with the objective function that is

desired to be optimized. This produces a Mixed Integer Linear Programming Problem

(MILP) whose objective function represents the pursued control goal, e.g., minimum-

time, minimum-effort, minimum-displacement, etc, and whose solution contains the

control actions that optimize the objective function [25]. Let us exemplify the event-

driven control through the net in fig. 14 with λ = [1.5 1 2]T and m0 = [6 0 0]T .

If no control action is applied to the system, it reaches a steady state marking with

null throughput, i.e., a deadlock marking. An interesting control problem for such

non live systems and for many manufacturing systems is to find control actions that

maximize the throughput in the steady state, thus deadlocks are avoided. Such a control

goal can be achieved by defining a MILP [96]. Notice that the considered system is

bounded and has a unique T-semiflow χ = 1. Hence, maximizing the throughput of

one transition in the steady state is equivalent to maximizing the throughput of any

of the three transitions. Let us assume that t3 is the only controllable transition. The

obtained control is u[t3] = 2 during 2.4 time units, which leads to m = [0 1.2 2.4]T .

At m the flow of all transitions is equal to 1. The control action required to keep m

constant is u[t3] = 1.

7 Some concluding remarks and open issues

The fluidization of discrete event dynamic models is a classical technique used from

the late sixties of the past century in the Queueing Network framework. As in Petri

Nets, Forrester Diagrams or Stochastic Flow Models, happens to be particularly inter-

esting for systems following production/consumption patterns. The material presented

here represents the warp of an approximation, where three different weaves are essen-

tial: the autonomous or fully non-deterministic view, rooted in Theoretical Computer

Science; the performance evaluation of unforced (or uncontrolled) models, strongly

related to classical Operations Research perspectives; and observation, control, and re-

lated problems, central to Control Theory. Not surprisingly, all three disciplines play

a major role in the arena of the formal study of DEDS. The explicit consideration of

the relationships of the fluid model and the underlying discrete event one is also a cru-

cial concern. For these reasons, aspects such as the legitimacy of the fluid relaxations

or their improvements (through the elimination of spurious markings, the addition of

noise to reflect the stochastic variability, or the convenience of the introduction of spe-

cial server semantics) are important.

Fluidization means a loss of fidelity with respect to the discrete model, but as shown

in this work, among the benefits is the substantial reduction in complexity of several im-

portant computational problems. For example, convexity is a property that, in general,

makes optimization problems easier. Under the consistency of the net and the non-

existence of empty siphons at the initial marking (that can be proved through LPPs),

the state-space is linearly described, which does not mean that the behaviors that can

be described are linear! Moreover, the ability to fire in isolation minimal T-semiflows

causes behavioral and structural synchronic relations to collapse (thus, for example, the
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bound of a place can be straightforwardly computed in polynomial time). Under the

above conditions, the analysis of reachability in untimed models, among other proper-

ties, is also solvable in polynomial time. Nevertheless, the introduction of time makes

things less simple. For example, under infinite server semantics, continuous Petri Nets

may simulate Turing Machines! Of course, this means that the theoretical expressive

power is very satisfactory, but now several properties (such as the existence of steady

state) are undecidable. Dealing with synthesis problems for timed models, and assum-

ing that a steady state exists (for example when using the final-value theorem with the

Laplace transform), the computation of the minimal marking for certain required cycle

times or some optimal steady state control actions are also polynomial time problems.

From a different perspective, the bridge to continuous control theory is also very chal-

lenging; nevertheless, PN structure theory based is the fact that if all transitions are

controllable, controllability can also be decided in polynomial time. Obviously, the

over-approximation that is fluidization entails that something is lost, but usually (par-

ticularly if the system is performance monotonic) the bigger the initial marking, the

smaller the errors produced by the relaxation.

Another benefit of fluidization is that the fluid model permits the use of infinitesi-

mal perturbation analysis providing algorithms for the gradients (derivatives) of sam-

ple performance functions [31]. This technique has been applied mainly to queueing

models, where performance metrics of delay and throughput are of primary interest.

Recently, the application of infinitesimal perturbation analysis to TCPN has been pro-

posed in [175] and [72] where the gradient of the throughput with respect to fluid flow

parameters is studied for marked graphs.

Even if the reader may be under the impression that there is a substantial amount of

accumulated knowledge available, we would like to point out that there are plenty of

fundamental issues that still require significant research efforts. Just to mention a few

examples:

• When is it reasonable to fluidize a discrete event dynamic (both as untimed and

as timed) model?

• Which is the most appropriate timing interpretation in order to approximate well

the underlying discrete model? (Otherwise stated: which is the best server se-

mantics for the problem under consideration?)

• Expressiveness of CPNs under infinite server semantics is high to the level of

being able to simulate Turing machines. But this this is also means the exis-

tence of undecidabilities. In which net subclasses may we have simultaneously

significant modeling and decidability power?

• For the different server semantics, what about the establishment of duality the-

ories between observation and control? Can the interleaving of graph and alge-

braic based techniques be made more symmetric (not only as a sign of beauty

and elegance, but also for practical purposes)?

• What about the efficient computation of sensitivity and optimization issues in

continuous models (IPA techniques and others)?

• Observability and controllability criteria for distributed systems are needed.

• How to design more efficient observers, with fewer elements?
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• What about the adequacy of continuous control laws for the underlying discrete

event dynamic model? What are the limitations?

• To what extent, the theory of discrete and continuous models can help in the

building of a more solid theory of hybrid systems? To what extent, the present

theories of hybrid systems can help to improve the understanding of these fluid

models, as already pointed out hybrid in a technical sense?

Of course, to most of the previous questions, elements of answers are already avail-

able, but there is a long way to cover, surely a beautiful travel to do in company.
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