
An Automated Framework

for Formal Verification of

Timed Continuous Petri Nets

-draft-

Marius Kloetzer, Cristian Mahulea, Calin Belta, and Manuel Silva ∗

December 23, 2014

Abstract

In this paper, we develop an automated framework for formal verifi-
cation of timed continuous Petri nets (ContPN). Specifically, we consider
two problems: (1) given an initial set of markings, construct a set of un-
reachable markings, (2) given a Linear Temporal Logic (LTL) formula
over a set of linear predicates in the marking space, construct a set of
initial states such that all trajectories originating there satisfy the LTL
specification. The starting point for our approach is the observation that
a ContPN system can be expressed as a Piecewise Affine (PWA) system
with a polyhedral partition. We propose an iterative method for analysis
of PWA systems from specifications given as LTL formulas over linear
predicates. The computation mainly consists of polyhedral operations and
searches on graphs, and the developed framework was implemented as a
freely downloadable software tool. We present several illustrative numer-
ical examples.

Published as:
M. Kloetzer, C. Mahulea, C. Belta, and M. Silva, ”An Automated Framework
for Formal Verification of Timed Continuous Petri Nets,” IEEE Transactions
on Industrial Informatics, vol. 6, no. 3, pp. 460 - 471, August 2010. DOI:
http://doi.org/10.1109/TII.2010.2050001

∗M. Kloetzer is with the Department of Automatic Control and Applied Informatics at the
Technical University ”Gheorghe Asachi” of Iasi, Romania, kmarius@ac.tuiasi.ro
C. Mahulea and M. Silva are with the Aragón Institute for Engineering Research (I3A), Univer-
sity of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain, {cmahulea,silva}@unizar.es
C. Belta is with the Department of Mechanical Engineering and the Division of Systems En-
gineering at Boston University, Boston, MA 02215, cbelta@bu.edu
This work was partially supported from grants NSF CNS-0410514 and NSF CNS-0834260
at Boston University and from grant CICYT - FEDER DPI2006-15390 at the University
of Zaragoza. The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no
224498.

1

http://doi.org/10.1109/TII.2010.2050001

1 Introduction

Discrete Petri nets (PN) are a powerful mathematical formalism with an ap-
pealing graphical representation, suitable for modelling, analysis and synthesis
of discrete-event systems. Their main feature is the capacity to graphically rep-
resent and visualize primitives such as parallelism, synchronization, and mutual
exclusion. Petri nets are successfully used in multiple complex automated and
distributed systems, such as manufacturing systems [2, 3, 4, 5, 6, 7], energy
or railway transport networks [8], and petro-chemical plants [9]. Such complex
systems have to satisfy a broad area of objectives, including safety and live-
ness requirements. Formal methods provide rich specification languages, such
as temporal logics, to express such requirements, and algorithms, such as model
checkers, to verify the satisfaction of the specifications. Despite its usefulness
from a conceptual point of view, formal verification of Petri nets is in general
a hard problem, mainly because most “realistic” Petri nets have very large the
state-spaces.

A general approach when dealing with state explosion problems is to use
abstraction techniques for constructing computationally manageable quotients.
In the case of discrete PN with a time interpretation, the construction of a state
space abstraction using the concept of “state-classes” have been introduced in
[10, 11]. This technique allows to represent the state graph of a timed PN,
while preserving marking and complete traces, and therefore it is suitable for
reachability analysis and model checking. Another way of tackling the state
explosion problem in discrete systems is the approximation by fluidification
[12, 13], which leads to a so-called fluid Petri net. This approximation technique
is not new and has been applied in many other discrete formalisms such as
queuing networks leading to fluid queuing networks [14, 15, 16]. The fluid model
has the advantage that many design and analysis techniques based on integer
linear programming problems correspond to linear programming problems, hence
they have polynomial time complexity.

Although fluidification proves its advantage by reducing the computation
complexity in problems of practical interest [13, 17], even basic properties of
continuous timed net models are undecidable [18]. For timed continuous PN,
two firing semantics are mainly encountered in literature: finite and infinite
server semantics [12, 13, 19]. The problem of formal verification of fluid PN was
considered in the case of finite server semantics [20]. However, it was recently
proven that continuous Petri nets systems with infinite server semantics provide,
in general, a better approximation of the underlying discrete net [21]. Since a
ContPN is a subclass of hybrid systems, it can be modelled as a discrete hybrid
automaton [22]. However, for better exploiting the structural properties of Petri
nets (e.g., continuous vector field at the region borders), we limit our attention
only to ContPN systems instead of considering general hybrid systems. On the
other hand, this implies that the obtained results cannot be extended to any
hybrid system.

In this paper we develop an approach for performing formal analysis of timed
continuous Petri nets with infinite server semantics. As far as we know, the
proposed framework is the first one of this kind. More specifically, we provide
algorithmic solutions to two general problems: (1) given an initial set of mark-
ings, construct a set of unreachable markings; and (2) given a Linear Temporal
Logic (LTL) formula over a set of linear predicates in the marking space, con-

2

struct a set of initial states such that all trajectories originating there satisfy the
LTL specification. This paper extends the results from [1] by providing more
technical details, a description of the software implementation, and by applying
the developed framework to two very challenging Petri net problems: (1) find-
ing timed implicit arcs, and (2) finding initial markings from where the system
reaches deadlock.

Technically, the approach presented in this paper is based on the Piece-
wise Affine (PWA) representation of the dynamics of a deterministically timed
continuous Petri net with infinite server semantics. As part of the solution,
we develop an iterative procedure for analyzing PWA systems, which starts by
embedding a PWA system into an infinite transition system, and continues by
constructing a finite quotient of this transition system. Then, the obtained
quotient is iteratively analyzed and refined until a termination condition is en-
countered. The formal analysis problem we solve for PWA systems relates to
[23], where a richer class of hybrid affine systems is analyzed only against reach-
ability properties. Temporal logic analysis problems for PWA systems are also
studied in [24] (in continuous time) and [25] (in discrete time). However, in
these works, the refinement is based on an (approximate) implementation of
the bisimulation algorithm, and on the computation of the Pre image of sets
through the vector fields of the system. In this paper, the iterative refinement
is achieved through simple cuts, and resembles our previous work [26] for multi-
affine systems and rectangular sets. Thus, our approach can be regarded as
incorporating techniques from abstraction and analysis of continuous systems
into tools for analyzing Petri nets. The framework described in this paper was
implemented in Matlab as a freely downloadable software tool [27].

Formal analysis of hybrid systems using model checking techniques has been
studied by the computer science community using the so called linear hybrid au-
tomata (LHA) [28, 29]. This is an autonomous non-deterministic model mainly
used for simulation and verification of hybrid systems. Recently some results
have been obtained related to the equivalence between PWA and LHA systems
[30]. It is shown that every PWA system can be written as a LHA system
and the obtained LHA system can generate all trajectories of the PWA system.
Unfortunately more trajectories are obtained making the solution of the formal
analysis based on the equivalent LHA an over-approximation of the solution
obtained using the original PWA formulation.

The remainder of the paper is organized as follows. After some prelimi-
naries concerning Petri nets, transition systems and temporal logic (Section 2),
Section 3 formulates the addressed problems and outlines the main ideas for
solving them. Section 4 translates the initial problems to PWA formulations,
while Section 5 deals with formal analysis of PWA systems such that the pro-
posed problems are solved. Some aspects regarding the implementation and
complexity are given in Section 6. Section 7 applies the developed approaches
to two important problems concerning timed continuous Petri nets, and Section
8 formulates some concluding remarks.

3

2 Preliminaries

2.1 Timed Continuous Petri Nets

Definition 2.1 [Continuous Petri Net System] A Continuous Petri Net (ContPN)
system is a pair 〈N ,m0〉, where N = 〈P, T,Pre,Post〉 is a net structure and

m0 ∈ R
|P |
≥0 is the initial marking. P is the set of places, T is the set of tran-

sitions, and Pre,Post ∈ N|P |×|T | are the pre and post incidence matrices,
respectively. �

Let pi, i = 1, . . . , |P | and tj , i = 1, . . . , |T | denote the places and transitions.
For a place pi ∈ P and a transition tj ∈ T , Preij and Postij represent the
weights of the arcs from pi to tj and from tj to pi, respectively. Each place pi
has a token load denoted by mi ∈ R≥0. The vector of all token loads is called

marking, and is denoted by m ∈ R
|P |
≥0 . The preset and postset of a place or

transition x ∈ P ∪ T are denoted by •x and x•, and represent the input and
output transitions and places of x, respectively. More specifically, if tj ∈ T ,
•tj = {pi ∈ P |Preij > 0} and tj

• = {pi ∈ P |Postij > 0}. Similarly, if pi ∈ P ,
•pi = {tj ∈ T |Postij > 0} and pi

• = {tj ∈ T |Preij > 0}.
It is important to note that the marking of a ContPN can take real non-

negative values, while in discrete Petri Nets (PN) only natural values are pos-
sible. In fact, this is the only difference between a continuous and a discrete
PN.

Example 2.2 Let us consider the ContPN in Fig. 1. For this net, P =
{p1, p2, p3, p4}, T = {t1, t2, t3},

Pre =









2 0 0
0 1 0
0 0 1
2 1 0









, Post =









0 1 1
1 0 0
1 0 0
0 0 3









.

P re41 = 2 means that there exists an arc from p4 to t1 of weight 2. Post43 =
3 signifies that there exists an arc from t3 to p4 of weight 3. •p1 = {t2, t3} and
p1

• = {t1}. �

A transition tj ∈ T is enabled at m if and only if ∀pi ∈ •tj , mi > 0. Its
enabling degree is

enab(tj,m) = min
pi∈•tj

{

mi

Preij

}

, (1)

which represents the maximum amount in which tj can fire. An enabled tran-
sition tj can fire in any real amount 0 ≤ α ≤ enab(tj,m), leading to a new
marking m′ = m+αC·j , where C = Post−Pre is the token-flow matrix and
C ·j is its jth column. If m is reachable from m0 through a finite sequence σ, a
state (or fundamental) equation can be written:

m = m0 +C · σ, (2)

where σ ∈ R
|T |
≥0 is the firing count vector, i.e., σj is the cumulative amount of

firing of tj in the sequence σ.

4

Definition 2.3 The set of all reachable markings from m0 is called reachability
set, and it is denoted by R(N ,m0). For simplicity, notation R will be used when
there is no confusion on N and m0. In the case of a ContPN system, R is a
convex set [13]. �

Definition 2.3 is trivially extended when a whole set Π0 of initial markings
is specified, by R(N ,Π0) =

⋃

m0∈Π0
R(N ,m0).

A ContPN is bounded when every place is bounded, i.e., ∀pi ∈ P, ∃bi ∈ R≥0

with mi ≤ bi at any reachable markingm. Right and left non negative annullers
of the token flow matrix C are called T- and P-semiflows, respectively. If non
negativity is not required, the annullers are called T- and P-flows.

If a timed interpretation is included in the model, the fundamental equation
depends on time: m(τ) = m0 +C · σ(τ), which, through time differentiation,
becomes ṁ(τ) = C · σ̇(τ). The derivative of the firing sequence f(τ) = σ̇(τ) is
called the (firing) flow, and leads to the following equation for the dynamics of
the ContPN :

ṁ(τ) = Cf (τ). (3)

Definition 2.4 [Timed Continuous Petri Net System] A Timed Continuous
Petri Net system is a pair 〈N ,λ,m0〉, where 〈N ,m0〉 is a continuous Petri net

system and λ ∈ R
|T |
≥0 is the firing rate vector. �

From now on, we will refer only to timed continuous Petri Nets, and, with
a slight abuse of notation, we will denote them by ContPN.

This paper deals with infinite server semantics, which was shown to provide
a good approximation of the underlying discrete net for a broad class of systems
[21]. Under this semantics, the flow of transition tj is given by:

fj(τ) = λj enab(tj,m(τ)), (4)

where λj is its firing rate and the enabling function is given by (1). From (3),
(4), and (1), it can be easily seen that a ContPN system with infinite server
semantics is a piecewise linear system with polyhedral regions and everywhere
continuous vector field. In other words, the dynamics of the markings are given
by:

ṁ(τ) = Aim(τ), m ∈ Ri, i ∈ I, (5)

where Ai ∈ R|P |×|P |, Ri is a polyhedral set, and I is a set of labels for the
modes of the piecewise linear system (see [31] for more details).

Example 2.5 Consider the ContPN in Fig. 1 with m0 = m(0) = [1, 5.25, 0.75, 5.5]T

and λ = [1, . . . , 1]T . Transition t1 has two input places, p1 and p4 and t2 has
also two input places: p2 and p4. According to (4) and (1), the flows through
the transitions of the system are given by

f1(τ) =

{

λ1 ·
m1(τ)

2 , if m1(τ)
2 ≤ m4(τ)

2

λ1 ·
m4(τ)

2 , if m1(τ)
2 ≥ m4(τ)

2

,

f2(τ) =

{

λ2 ·m2(τ), if m2(τ) ≤ m4(τ)
λ2 ·m4(τ), if m2(τ) ≥ m4(τ)

,

and f3(τ) = λ3 ·m3(τ).

5

3

3

p1

t1

p2

p4

t2 t3

2

2

p

Figure 1: A (timed) continuous Petri Net ContPN.

This net has two token conservation laws (P-semiflows):

m1(τ) +m2(τ) +m3(τ) = m1(0) +m2(0) +m3(0) = 7
m1(τ) + 4m3(τ) +m4(τ) = m1(0) + 4m3(0) +m4(0) = 10

(6)

Since each place appears in at least one P-semiflow, the net system is bounded.
Substituting (4) into (3) leads to the piecewise linear representation (5). For
example, one of the modes in this representation of the system is described by
R1 : {m1

2 ≤ m4

2 , m2 ≤ m4}, and

A1 =









−1 1 1 0
0.5 −1 0 0
0.5 0 −1 0
−1 −1 3 0









�

The number of regionsRi of a ContPN system is upper bounded by
∏

ti∈T |•ti|,
and in the case of a bounded net system they are closed polytopes. For a
given initial marking, some places can be implicit [17] (given a ContPN sys-
tem 〈N ,m0〉, pj ∈ •ti is implicit if and only if ∄m ∈ R(N ,m0) such that
mj

Preji
< mk

Preki
∀pk ∈ •ti \ {pj}). For example, in the ContPN in Fig. 1

with m0 = [15, 3, 1, 0]T , p2 is an implicit place. Therefore, region R1 =
{m1

2 ≤ m4

2 ,m2 ≤ m4} is included in R3 = {m1

2 ≤ m4

2 ,m4 ≤ m2} since
m2 ≤ m4 is satisfied only as equality. In fact, R1 is a frontier of R3. Also,
R2 = {m4

2 ≤ m1

2 ,m2 ≤ m4} is included in R4 = {m4

2 ≤ m1

2 ,m4 ≤ m2} for
the same reason. In our approach we consider only the regions that are full-
dimensional polytopes in Rrank(C). Note that this is not a limitation, since at
the common border of two regions, the corresponding linear systems provide
the same vector field according to (4) and (1).

6

2.2 Transition systems and temporal logic

Definition 2.6 [Transition system] A transition system is a tuple T = (Q,Q0,→
,Π,�), where Q is a (possibly infinite) set of states, Q0 ⊆ Q is a set of initial
states, →⊆ Q×Q is a transition relation, Π is a finite set of atomic propositions,
and �⊆ Q×Π is a satisfaction relation. �

For an arbitrary proposition π ∈ Π, we define [[π]] = {q ∈ Q|q � π} as
the set of all states satisfying it. Conversely, for an arbitrary state q ∈ Q, let
Πq = {π ∈ Π | q � π}, Πq ∈ 2Π, denote the set of all atomic propositions satisfied
at q. An initialized trajectory or run of T starting from q ∈ Q0 is an infinite
sequence r = r(1)r(2)r(3) . . . with the property that r(1) = q, r(i) ∈ Q, and
(r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory r = r(1)r(2)r(3) . . . generates a
word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i). The set of all generated words
is called the language of T , and is denoted by L(T).

An equivalence relation ∼⊆ Q × Q over the state space of T is proposi-
tion preserving if for all q1, q2 ∈ Q and all π ∈ Π, if q1 ∼ q2 and q1 � π,
then q2 � π. A proposition preserving equivalence relation naturally induces
a quotient transition system T /

∼
= (Q/

∼
, Q0/∼,→∼

,Π,�
∼
). Q/

∼
is the quo-

tient space (the set of all equivalence classes), and the set of initial states is
Q0/∼ = {P ∈ Q/

∼
|Q0 ∩ h

∼
(P) 6= ∅}, where h

∼
: Q/

∼
→ 2Q is the concretiza-

tion map corresponding to ∼. The transition relation →
∼
is defined as follows:

for P1, P2 ∈ Q/
∼
, P1 →

∼
P2 if and only if there exist q1 ∈ h(P1) and q2 ∈ h(P2)

such that q1 → q2. The satisfaction relation is defined as follows: for P ∈ Q/
∼
,

we have P �
∼
π if and only if there exists q ∈ h(P) such that q � π. It is easy

to see that
L(T) ⊆ L(T /

∼
), (7)

The quotient transition system T /
∼

is said to simulate the original system T ,
which is written as T /

∼
≥ T .

In this work we consider system specifications given as formulas of a fragment
of Linear Temporal Logic (LTL) [32], called LTL−X, which we will simply denote
by LTL throughout the paper. A formal definition for the syntax and semantics
of LTL formulas is beyond the scope of this paper. Informally, LTL formulas are
recursively defined over a set of atomic propositions Π, by using the standard
boolean operators and a set of temporal operators. The boolean operators are:
¬ (negation), ∨ (disjunction), ∧ (conjunction), and the temporal operators that
we use are: U (“until”), � (“always”), ♦ (“eventually”). LTL formulas are
interpreted over infinite words over the set 2Π, such as those generated by the
transition system T from Definition 2.6. If φ1 and φ2 are two LTL formulas
over Π and w is a word produced by T , then formula φ1Uφ2 means that (over
the word w) φ2 will eventually become true, and φ1 is true until this happens.
Formula ♦φ1 means that φ1 becomes eventually true, whereas �φ1 indicates
that φ1 is true at all positions of w. More expressiveness can be achieved by
combining the mentioned operators.

Classical LTL allows for an additional temporal operator called “next”. We
do not allow for the “next” operator because, as shown in [33], it is meaningless
when abstracting a continuous system to a finite discrete one, as considered
in this paper. On the other hand, LTL−X (LTL without the “next” operator)
cannot distinguish between words with different numbers of finitely many con-
secutive repetitions of a symbol, e.g. π1π2π2π3 . . . satisfies exactly the same

7

formulas as π1π2π3
Given a transition system T and an LTL formula φ over its set of propo-

sitions, checking whether L(T) satisfies φ is called model checking. For finite
transition systems, there exist off-the-shelf tools for model checking [34]. Note
that if a proposition-preserving quotient T /

∼
satisfies φ, then by the language

inclusion (7), the initial transition system T also satisfies the formula.

3 Problem formulation and approach

Consider a ContPN system and let Π be a user-defined set of strict linear in-
equalities over its marking m, which will be simply called predicates. Formally,

each element of Π has the form πi = {m ∈ R
|P |
≥0 |c

T
i m+ di < 0}, with ci ∈ R|P |,

di ∈ R, ∀i = 1, . . . , |Π|. Without restricting the generality of the problem, we
assume that the set Π also includes all the affine functions in m necessary to
define the full-dimensional regions Ri.

Remark 3.1 For technical reasons that go beyond the scope of this paper, we
limit the specifications in the set of predicates Π to strict linear inequalities.
Also, we will regard the negation of any predicate from set Π as meaning mul-
tiplication with −1 of the corresponding inequality. This means that we only
include open halfspaces and full-dimensional polytopes. However, this assump-
tion does not seem restrictive from an application point of view. If the predicates
in Π model sensor information, it is unrealistic to check for the attainment of
a specific value due to sensor noise. Moreover, if a specific value is of interest,
it can be included in the interior of a polytope defined by other predicates. Our
formalism ignores markings of ContPN that lie on the hyperplanes obtained by
setting to zero the linear inequalities from πi, i = 1, . . . , |Π|. This fact leads to a
slightly increased conservativeness when solving the problems formulated in this
section only in the case when there are trajectories “disappearing” inside such
hyperplanes. Reducing this conservativeness would require a much more complex
and computationally slow embedding in Section 5, the gain being noticeable only
in the very particular (and unrealistic) mentioned situations.

Problem 3.2 (Construction of safe sets) Given a set of initial markings
defined as the conjunction of predicates from a set Π0 ⊆ Π, find a subset of
the reachability set that cannot be reached by trajectories of ContPN originat-
ing in the initial set.

Problem 3.3 (Initial set satisfying LTL specification) Given an LTL for-
mula over Π, find a set of initial markings of ContPN from where all possible
trajectories satisfy the formula.

To illustrate the importance of the formulated problems, in Section 7 we
will use the algorithm solving Problems 3.2 and 3.3 for providing solutions to
two open questions in the ContPN area, namely finding timed implicit arcs and
finding initial marking from where the system reaches a deadlock state. The
algorithm for solving Problems 3.2 and 3.3 was implemented in Matlab as a
freely downloadable software tool [27].

To fully specify Problems 3.2 and 3.3, we need to define the semantics of
an LTL formula over a continuous trajectory. A formal definition is given in

8

Section 5 through an embedding into a transition system. However, an informal
and intuitive definition can be given as follows: an evolving trajectory produces
the set of predicates from Π that are true at the current marking, with no
finite consecutive repetitions of the set of predicates, and with infinitely many
repetitions of the set of predicates satisfied by a region that is an invariant for
the trajectory. Note that this is consistent with our choice of LTL without the
“next” operator. For example, in Fig. 2, if the regions Ri satisfy the sets of
predicates Πi ⊆ Π, i = 1, . . . , 4, respectively, then the shown trajectory, starting
from m0 and converging to mf , generates the word Π1Π2Π4Π3Π3

Our approach to solving Problems 3.2 and 3.3 consists of two main steps.
The first step is required if the ContPN system has at least one P-flow, i.e.,
at least one left annuller of the incidence matrix. In this step, we compute a
set of linearly independent P-flows of ContPN and then construct a reduced
representation of the ContPN in the form of a piecewise affine system (PWA),
as in Section 4. Second, we perform formal analysis of the corresponding PWA
system based on discrete abstractions (finite quotients) and refinement, and by
employing convexity properties of affine systems in full-dimensional polytopes
[35, 36, 33], as shown in Section 5.

4 Derivation of the PWA for a ContPN

The token conservation laws (P-flows) introduce a number of |P | − rank(C)
dependent variables [31]. By removing these variables, a reduced system with a
piecewise affine behavior is obtained.

Let r = rank(C) and let By ∈ R(|P |−r)×(|P |) be a matrix whose rows form
a basis of P-flows, i.e., By ·C = By ·Ai = 0. Since By is a basis, rank(By) =
|P | − r, and By can be written in the form:

By =
[

R | I |P |−r

]

, (8)

where R ∈ R(|P |−r)×r. By pre-multiplying the state equation (2) by By, we
obtain:

By ·m = By ·m0 = b (9)

By considering m = [m′ m′′]T , with dim(m′) = r and dim(m′′) = |P | − r,
from (9) and (8) we obtain:

m′′ = b−Rm′ (10)

Let Q =

[

Ir | 0
R | I |P |−r

]

Equation (5) can be rewritten as:

[

ṁ′

ṁ′′

]

=

[

A11
i | A12

i

A21
i | A22

i

] [

m′

m′′

]

, (11)

such that rank
([

A11
i A12

i

])

= r. By pre-multiplying (11) by Q, we obtain:

ṁ′ = A11
i m′ +A12

i m′′, (12)

9

Figure 2: Reachability set of the ContPN in Fig. 1 withm0 = [1, 5.25, 0.75, 5.5]T

and λ = 1.

and according to (10):

ṁ′ = A11
i m′ +A12

i (b−Rm′) =

[

A11
i

−A12
i R

]

m′ +A12
i b (13)

Therefore, the piecewise linear dynamics (5) are equivalent with the piece-
wise affine dynamics (13) in a reduced dimension, plus some equalities (10).
For simplicity, we use a slight abuse of notation and denote the obtained PWA
system by:

ṁ(τ) = Aim(τ) + bi, m ∈ Ri, i ∈ I, (14)

with the implicit understanding that the state (marking) m has already been
reduced and Ai’s are the corresponding new system matrices. The regions Ri

and the set I are the same as in (5), with the observation that Ri are now
expressed using a smaller number of variables. The linear inequalities from
the set of specification predicates Π are also transformed accordingly, while the
predicate symbols remain the same. It is easy to see that, as in the piecewise
linear representation, the vector field of (14) is continuous everywhere.

The trajectories of the PWA system (14) produce words according to the
informal definition from Section 3. In the remainder of the paper, when we
refer to Problems 3.2 and 3.3, we assume that they are formulated for the PWA
representation (14) of the ContPN system.

Example 4.1 The net in Fig. 1 has two token conservation laws (P-semiflows)
given in (6), thus two variables are redundant. If m1 and m4 are chosen as free
variables, then a planar PWA representation of the form (14) can be constructed.
The reachability set in the reduced (m1,m4) - plane is sketched in Fig. 2. The
dynamics corresponding to region R1 (defined in Example 2.5) are given by:

[

ṁ1

ṁ4

]

=

[

−2 0
−1 −1

] [

m1(τ)
m4(τ)

]

+

[

7
3

]

(15)

�

10

5 Formal analysis of PWA representations of Con-

tPN

Assume there are M feasible sets of the form
∧|Π|

i=1((−1)jiπi), where j1, . . . j|Π| ∈
{0, 1}. Since the affine functions necessary to define the regions Rk are among
πi, i = 1, . . . , |Π|, each of these sets is a full dimensional polytope included
in the reachability set of the PWA system, and it corresponds to a feasible
combination of predicates from Π inside each region Rk. We denote these sets
by P1,P2,. . .,PM .

Definition 5.1 For the PWA system (14) and the set of predicates Π, the (in-
finite) embedding transition system is defined as

Temb = {Qemb, Qemb0 ,→emb,Πemb,�emb}, (16)

where Qemb =
⋃M

i=1 Pi, Qemb0 = Qemb, and Πemb = Π. The satisfaction rela-
tion is obviously defined as m �emb πi if and only if m verifies the strict linear
inequality πi. The transition relation is defined according to the following two
rules: (1) (m′,m′′) ∈→emb with m′ ∈ Pi, m

′′ ∈ Pj, Pi 6= Pj if and only if
the polytopes Pi and Pj are adjacent1 and there exists a trajectory m(τ)|[0,T]

of (14) (0 < T < ∞) such that m(0) = m′, m(T) = m′′, and m(τ)|[0,T] is
included in the closure of Pi

⋃

Pj; (2) (m′,m′′) ∈→emb with m′,m′′ ∈ Pi if
and only if there exists a trajectory m(τ)|[0,∞) of (14) such that m′ = m(0)
and m′′ = limτ→∞ m(τ). �

Note that the trajectories of Temb satisfy the informal definition from Section
3. Formally, we have:

Definition 5.2 The language L(Temb) of the transition system (16) is defined
as the set of all words produced by trajectories of the PWA system (14) repre-
senting the ContPN system. �

The embedding transition system (16) has infinitely many states and cannot
be model checked. To provide (conservative) solutions to Problems 3.2 and
3.3, we propose an iterative procedure that produces a finite quotient and then
refines it if necessary. At each step, the language of the obtained quotient
includes the language of Temb.

5.1 Construction and analysis of the quotients

Let ∼ be a polytopal proposition-preserving equivalence relation over Qemb that
does not violate the polytopes Pi, i = 1, . . . ,M . In other words, each equivalence
class in Qemb/∼ is a polytope included in exactly one of Pi, i = 1, . . . ,M . Ac-
cording to Definition 5.1, to compute the transitions of Temb/∼, we need to solve
the following two problems: (i) for all pairs of equivalence classes correspond-
ing to adjacent polytopes, decide if there is a trajectory of Temb penetrating
from one to another, and (ii) for all equivalence classes, decide if there exists a
trajectory of Temb for which the corresponding polytope is an invariant.

1Throughout the paper, we call two full dimensional polytopes in RN adjacent if their
closures share a facet that is a full dimensional polytope in RN−1.

11

For both problems (i) and (ii) above, we propose to use the computational
framework developed in [36]. In [36], it is shown that an affine system has a
trajectory contained in a full dimensional open polytope for all times if and
only if the affine system has an equilibrium inside the polytope. Therefore,
solving problem (ii) in a polytopal equivalence class reduces to checking the
non-emptiness of the polyhedral set given by the equations of the polytope
plus the equation setting the corresponding vector field to zero. In addition, in
[36], it is shown that, given two adjacent polytopes, there exists a trajectory
penetrating from one to another in finite time if and only if there exists a
vertex on the common facet at which the projection of the vector field on the
outer normal of the facet pointing from the first to the latter is strictly positive.
Recall that the vector field of our system is continuous everywhere, so the vector
fields of two affine systems on adjacent polytopes agree on the common facet. In
conclusion, solving both problems (i) and (ii) reduces to checking non-emptiness
of polyhedral sets, for which there exist several powerful tools [37].

Having a finite quotient Temb/∼, we can provide a (conservative) solution to
Problem 3.2 as follows. First, we define the set of initial states Qemb0/∼ as the
set of states of Temb/∼ that satisfy the predicates from Π0. Then, by using a
simple search on a graph, we find all states Qnr of Temb/∼ that are not reachable
from Qemb0/∼. Enabled by the language inclusion property (7), a solution to
Problem 3.2 can be presented in the form {m ∈ h

∼
(q) | q ∈ Qnr}, where h

∼
is

the concretization map defined in Section 2.2.
Problem 3.3 can be solved by model checking Temb/∼ from each initial state

using an off-the-shelf model checker. If the formula is satisfied at a state q of
Temb/∼, then, by the language inclusion property (7), all trajectories of Temb

(and of ContPN) starting at h
∼
(q) satisfy the formula. If we denote by Qs the

set of all initial states of Temb/∼ from which the formula is satisfied, then a set of
initial states of Temb (and of ContPN) from which the formula is satisfied is given
by {m ∈ h

∼
(q) | q ∈ Qs}. In our implementation, we used the LTL planning tool

developed in [33] and further improved in [38]. This is computationally more
attractive, because our algorithm reuses some computations from the previously
considered initial state, instead of completely reiterating a model checker for
each new initial state (for details, see [38]).

5.2 Iterative analysis and refinement

We first construct and analyze the “roughest” quotient Temb/∼, which corre-
sponds to partitioning with respect to predicates from the initial set Π, and
to the equivalence relation defined by m ∼ m′ if and only if there exists Pi,
i = 1, . . . ,M , such that m,m′ ∈ Pi. If the safe set is not large enough (or
empty) in Problem 3.2, or if the set of initial states is not large enough (or
empty) in Problem 3.3, then we construct “finer” quotients.

Example 5.3 For the ContPN from Fig. 1 with m0 = [1, 5.25, 0.75, 5.5]T and
λ = 1, if the set Π contains only the linear predicates necessary to define the
regions Ri, i = 1, 2, 3, 4, then the first quotient is shown in Fig. 3. If we are
interested in constructing a safe set (Problem 3.2), then it is easy to see that
this set is empty. However, this set becomes non-empty through refinement, as
shown below. �

12

Figure 3: The first quotient of the PWA system from Fig. 2.

We construct finer quotients by adding to the current set Π some new pred-
icates (from a set H), and then recomputing the new feasible polytopes Pi, as
explained at the beginning of Section 5. Let us denote by Temb/

H
∼

the quotient
obtained as in section 5.1, but corresponding to the set of predicates Π ∪ H
instead of Π (for simplicity and since no confusion is possible, we use the same
notation ∼ for the polytopal proposition-preserving equivalence relation, even if
it refers to a new partition). It is immediate to observe that Temb/∼ ≥ Temb/

H
∼
,

simply because the new partition2 is a subpartition of the one corresponding to
Temb/∼. Therefore, L(Temb/∼) ⊇ L(Temb/

H
∼
) ⊇ L(Temb), which means that by

using Temb/
H
∼

instead of Temb/∼ we can obtain less conservative solutions for
Problems 3.2 and 3.3.

We start with H = ∅, and for each pair of states qi, qj ∈ Qemb/∼, i < j, such
that (qi, qj) ∈→emb /

∼
and (qj , qi) ∈→emb /

∼
, a new predicate α is added to

H. This α denotes the halfspace whose supporting hyperplane has the following
property: it cuts the common facet of h

∼
(qi) and h

∼
(qj), such that it separates

(on this facet) the points where the vector field projection on the outer normal
of the common facet has positive and negative values, respectively. Assumption
i < j guarantees that we do not create two propositions for the same pair of
states of Temb/∼. Results from [36] guarantee that such a separation is possible
by a single linear predicate. For avoiding some new notations, we do not include
the explicit equation of α, and we just mention that its computation requires
only matrix multiplications. Our method of adding transitions between states
of the discrete quotients implies that α can help in increasing the difference
between L(Temb/∼) and L(Temb/

H
∼
), as explained next.

Assume that h
∼
(qi) and h

∼
(qj) are each split by α in two subpolytopes,

labelled in Temb/
H
∼

by q′i, q
′′
i , and q′j , q

′′
j , respectively. Note that q′i and q′′i are

adjacent, and each of them is adjacent with only one of q′j , q
′′
j (not with both),

and vice-versa. Assume that q′i is adjacent with q′j and q′′i is adjacent with
q′′j . Then, the above mentioned sign separation provided by α, and the way of

adding transitions from section 5.1, guarantee that in Temb/
H
∼

there exist either
transitions (q′i, q

′
j) and (q′′j , q

′′
i), or transitions (q′j , q

′
i) and (q′′i , q

′′
j). Therefore,

2The regions induced by the proposition-preserving equivalence relation at each step do
not really produce a partition of the state space. Because we consider only strict inequalities,
we “lose” points at each step.

13

we hope that Temb/
H
∼

is less conservative than Temb/∼ (this fact cannot be
guaranteed before testing transitions between q′i and q′′i , q

′
j and q′′j , respectively,

and these transitions are not resulting from properties of α, but from tests as
in section 5.1).

Note that there are infinitely many choices of predicates α yielding the same
separation of the common facet of h

∼
(qi) and h

∼
(qj). Alternatively, one can

focus on different splitting methods (instead of linear predicates), as long as the
same sign separation is enforced. The motivation for our choice of cutting is
three-fold. First, α is very easy to compute, and second, when splitting with
some additional linear predicates we use the same algorithms as before, but with
a larger input set Π. Third, we have the guarantee that the adjacent polytopes
from the partition exactly share facets (as needed for adding transitions in the
discrete quotients). The drawback is that α will not split only h

∼
(qi) and

h
∼
(qj), but also other polytopes from the partition corresponding to Temb/∼,

and thus the number of states of Temb/
H
∼

can increase significantly. Another
way of cutting could involve a triangulation of h

∼
(qi) and h

∼
(qj) that preserves

(contains as edge) the sign separating set we want. However, there are no
algorithms for performing such a constrained triangulation in space dimensions
higher than 2.

Even if the solutions to Problems 3.2 and 3.3 at a given step are not sat-
isfactory, there are two situations when we do not perform refinement: either
no more predicates are found, or a certain imposed complexity limit is reached
(e.g., a maximum number of states in the discrete quotient is reached). We
note that, even if refinement in the current step does not produce a better so-
lution to one of our problems, the refinement in the next step might yield an
improvement, as it can be seen in the example concluding this section.

The above ideas are summarized in Algorithm 5.4, which presents the main
steps to be taken for solving the discrete versions of Problems 3.2 and 3.3,
respectively. By “discrete versions” we understand the problems of finding the
discrete sets Qnr and Qs. Note that notation Temb/

H
∼

does not explicitly appear
in Algorithm 5.4, since it just stands for the Temb/∼ to be constructed at the
next iteration.

Algorithm 5.4 (Discrete solutions to Problems 3.2 and 3.3)

1: For Problem 3.2 skip lines 13-21, and for Problem 3.3 skip lines 8-12
2: stop = 0
3: while ¬stop do
4: Find feasible polytopes induced by predicates from Π and construct Temb/∼

5: if |Qemb/∼| ≥ max num states then
6: stop = 1
7: end if

{For Problem 3.2:}
8: Qemb0/∼ = {q ∈ Qemb/∼|q � π, ∀π ∈ Π0}
9: Qnr = {q ∈ Qemb/∼|q not reachable fromq0, ∀q0 ∈ Qemb0/∼}

10: if |Qnr = Qemb/∼ \Qemb0/∼ then
11: stop = 1
12: end if

{For Problem 3.3:}
13: Qs = ∅

14

14: for all q ∈ Qemb/∼ do
15: if LTL formula is satisfied by any word of Temb/∼ starting from q then
16: Add q in Qs

17: end if
18: end for
19: if |Qs = Qemb/∼ then
20: stop = 1
21: end if
22: if stop=1 then
23: Break “while” loop
24: end if

{Refinement}:
25: H = ∅
26: for all qi, qj ∈ Qemb/∼ s.t. (qi, qj), (qj , qi) ∈→emb /∼ and i < j do
27: Construct predicate α
28: H = H ∪ {α}
29: end for
30: if H \Π = ∅ then
31: stop = 1
32: else
33: Π = Π ∪H
34: end if
35: end while

Once the sets Qnr and Qs are found, the solutions to Problems 3.2 and
3.3 are immediate, by using the concretization map h

∼
as shown at the end of

subsection 5.1.

Example 5.5 Consider the ContPN system in Fig. 1 with m0 = [1, 5.25, 0.75, 5.5]T ,
λ = 1 and the problem of constructing a safe set (Problem 3.2) for the initial
region R1. It has been seen in Ex. 5.3 that at the first iteration, no safety re-
gions are obtained (Fig. 4a). Through refinement, three new cutting predicates
are obtained (the thin lines from Fig. 4b), and at the second step the transition
system will contain 14 discrete states and a safety region depicted in Fig. 4b. At
the next iteration, the number of discrete states of the transition system grows
to 24, but the safety region is exactly the same as in previous step (Fig. 4c).
Refining more, a number of 30 discrete states is obtained and the safety region
is increased a little (Fig. 4d). Since no other cutting is possible, the procedure
is finished. �

6 Software implementation, conservativeness and

complexity

In this section we briefly present the software implementation of the proposed
techniques, and we discuss the conservativeness and complexity of our approach
for solving Problems 3.2 and 3.3.

We implemented our approach as a user friendly software package for formal
verification of ContPN under Matlab. The tool takes as inputs the ContPN
(defined by the Pre and Post matrices, as in Definition 2.1), the user-defined

15

(a) (b)

(c) (d)

Figure 4: Iterative construction of a safe set for the initial region R1 shown in
yellow. The safe set obtained at each iteration is shown in green.

propositions from set Π, and the set of initial markings defined by Π0 (for Prob-
lem 3.2), respectively the LTL formula (for Problem 3.3). The initial ContPN is
automatically projected into a PWA representation (together with the defined
predicates), as described in Section 4, and then the approach from Section 5 is
employed for solving the proposed problems. The software tool is freely down-
loadable from [27], and it also uses the next mentioned free packages. The first
one is a mex-file calling CDD in Matlab [39], and it is used for finding the feasible
polytopes induced by predicates from Π and for converting between edge repre-
sentation and vertex representation of a polytope. For solving Problem 3.3, we
embedded the LTL planning tool from [33, 38], which in turn uses LTL2BA [40],
a free package that converts an LTL formula into a so-called Büchi automaton.

The approach we developed can be used for analyzing any bounded ContPN.
Constructing a PWA representation of the ContPN does not introduce conser-
vativeness, nor complex computations (as described in Section 4), and therefore
our subsequent analysis on conservativeness and complexity will focus on the
approach described in Section 5.

The abstraction of the PWA system to a finite quotient is a general source of
conservativeness, because we look for whole polytopes instead of investigating
distinct markings and trajectories in the reachability set. More specifically, the
way we create transitions in the discrete quotient induces conservativeness in
the following sense. The existence of a set of states q, q′, q” ∈ Qemb/∼, such
that (q, q′), (q′, q”) ∈→emb /

∼
does not necessarily imply that there exists a

continuous trajectory starting from a marking in h
∼
(q) and crossing h

∼
(q′) and

16

then h
∼
(q”). Such a situation can be called lack of transitivity, and it is funda-

mental in distinguishing between simulation (as in our case) and bisimulation
relations among transition systems. The refinement aims to reduce this kind
of conservativeness. However, the refinement that we develop is again conser-
vative, because we restrict ourselves to linear cuts, as described in subsection
5.2.

From the complexity point of view, solving Problem 3.2 basically reduces
to searches on a graph, where complexity is dependent on the number of nodes
(states in our finite quotient). The complexity for solving Problem 3.3 depends
on both the size of the LTL formula (chosen by user) and on the size of the finite
quotient. We mention that although the upper bound complexity induced by
the LTL formula (through the corresponding Büchi automaton) is exponential
in the length of the formula, this limit is rarely reached in practice. Therefore,
the necessary time for running Algorithm 5.4 strongly depends on the number of
regions in our partition, and thus the bottleneck of our approach is resulting from
the refinement procedure. As explained in subsection 5.2, each hyperplane we
use in a refinement step cuts all the existing regions from the current partition
(rather than cutting only those implied in finding the hyperplane), and this
fact can significantly increase the number of states of the finite quotient from
one refinement step to another. At each iteration of Algorithm 5.4, the resulted
partition has at most 2|Π| regions. However, if |Π| is greater that the state space
dimension (r) of the PWA system (which is usually the case, due to refinement),
there will be much less than 2|Π| regions. Also, it is worth mentioning that in
our implementation we use an iterative procedure to construct the set of feasible
polytopes, while at the same time taking into consideration new predicates. This
way, especially for a large cardinality of |Π|, we end up with testing a number
of predicate combinations much smaller than 2|Π|. Finally, to give a rough idea
about the computation time, we can mention that the computation for any
example presented here took less than 10 seconds.

7 Formal analysis of ContPN systems

In this section we use the tools developed in this paper to answer some open
questions in the analysis of timed continuous Petri Nets.

7.1 Timed implicit arc

Definition 7.1 [Timed Implicit Arc] Given a timed ContPN system 〈N ,λ,m0〉,

an input arc (pi, tj) is called timed implicit if and only if mi(τ)
Preij

≥ enab(tj,m(τ))

for all τ ≥ 0. �

In other words, an input arc (pi, tj) is timed implicit if and only if the timed
evolution of the ContPN system starting from m0 is such that mi(τ) never
gives the enabling degree of tj , for all τ ≥ 0. In this case, the corresponding
linear system is redundant and can be removed, since it will never govern the
evolution of the ContPN . Moreover, if all output arcs of one place are timed
implicit, that place can be removed, resulting in a reduced number of state
variables. Therefore, any analysis technique inducing either a reduced set of
linear systems or a reduced number of state variables is useful because of its

17

(a)

t

2

3

p p

p

2 3

4

t t2 3

1

(b)

Figure 5: Using safety analysis to reduce the size of a ContPN : (a) the safe set
for the yellow region R3 is shown in green; (b) the reduced ContPN.

direct impact on the computational complexity. Until now, this property has
been structurally characterized only for the special case of par-begin par-end
nets [41]. Using the solution to the safety Problem 3.2, Algorithm 7.2 can be
used to determine if an arc is implicit.

Algorithm 7.2 (Check if (pi, tj) is a Timed Implicit Arc)

1. let R∗ = {m ∈ R | ||m−m0||∞ ≤ ǫ}, i.e., a very small region near the
initial marking

2. let Π0 be the set of predicates necessary to define R∗

3. let Π be the set of predicates necessary to define Ri’s and R∗

4. Use Algorithm 5.4 to obtain a solution to Problem 3.2

5. Check if all regions in which mi

Preij
= enab(tj,m) are safe, i.e., non reach-

able.

Example 7.3 Let us apply Alg. 7.2 for the ContPN in Fig. 1 with m0 =
[13, 5, 0, 6]T , λ = 1, and initial set R∗ = R3. By applying the previous pro-
cedure, after three iterations, the safe set is shown in Fig. 5a. We also show
three individual trajectories originating in R3. Note that all states in R1 and R2

are safe. Since m1 ≤ m4 only in these two regions, the arc (p1, t1) will never
constrain the enabling degree of t1 during the evolution, and therefore it is a
timed implicit arc [41]. Since it is the only output arc of p1, it can be removed
together with the place, and the equivalent obtained net is shown in Fig. 5b. �

7.2 Deadlock Analysis

In this subsection, we use the procedure of solving Problem 3.3 to provide a
solution to the deadlock problem, i.e., the total inactivity of the servers (tran-
sitions). Deadlock avoidance is a necessity for correct and safe functioning of

18

a system. Therefore, it is an important problem for many engineering applica-
tions, and it has been extensively investigated in the last decades [7, 42, 43].
In this subsection we present a procedure for computing a set of “bad” initial
states, starting from which the system eventually deadlocks. Obviously, this set
can be used in the deadlock avoidance problem of timed systems. Even if the
untimed system has a deadlock state, the time interpretation together with an
initial state not in the “bad” set can induce that a steady-state different by the
deadlock one is reached.

In the case of continuous Petri nets, the deadlock implies f = 0 in steady
state, hence, the corresponding LTL formula for computing the initial markings
that brings the system to deadlock is:

φ = ♦�
(

(f1 = 0) ∧ (f2 = 0) ∧ . . . ∧ (f|T | = 0)
)

,

meaning that from any initial marking, including a deadlock one, eventually
(♦) the evolution will end (� - always) in a state in which the flow of all
transitions is null (fi = 0, ∀i = 1, . . . , |T |). The null flow of a transition signifies
the emptiness of at least one input place, and to codify it we define a predicate
corresponding to a small region where the marking is close to zero. For example,
the corresponding predicate for a place pi approaching to zero is: π′ = {m ∈
R|mi < ǫ}, where ǫ is a (very) small constant. Using these predicates, the
following algorithm computes the initial states bringing the system to deadlock.

Algorithm 7.4 (Computes initial markings leading to deadlock)

1. let Π be the set of predicates necessary to define Ri’s and the regions
corresponding to the zero markings

2. Use Algorithm 5.4 to obtain a solution to Problem 3.3.

Example 7.5 For the same ContPN of Ex. 7.3, but now with m0 = [15, 3, 1, 0]T

and λ = 1, we compute the initial set leading to deadlock using Alg. 7.4. It
has been seen in section 2.1 that p2 is an implicit place for this m0. There-
fore, only two full-dimensional regions are possible: R1 = {m1

2 < m4

2 } and
R2 = {m4

2 < m1

2 } (with the corresponding predicates included in set Π).
Since the deadlock signifies the total inactivity of the servers, i.e, f = 0,

let us define the following predicates: π3 = {m ∈ R|m1 < ǫ}, π4 = {m ∈
R|m2 < ǫ}, π5 = {m ∈ R|m3 < ǫ} and π6 = {m ∈ R|m4 < ǫ} where ǫ is a
small constant (in Fig. 6a, these regions are the ones near the borders, where
we chose ǫ = 0.5).

According to (4), the deadlock is: (i) m1

2 = 0 or m4

2 = 0 (f1 = 0) and (ii)
m2 = 0 or m4 = 0 (f2 = 0) and (iii) m3 = 0 (f3 = 0). Hence, the LTL formula
that computes the initial states bringing the ContPN system to deadlock is:

φ = ♦� ((π3 ∨ π6) ∧ (π4 ∨ π6) ∧ (π5))

By applying our algorithm, the whole polytope is obtained after three iterations,
as shown in Fig. 6. This means that from any initial marking, the system will
eventually reach a deadlock state. In the same figure, two trajectories originating
in R1 are illustrated. �

19

(a) (b)

(c) (d)

Figure 6: Computation of an initial set leading to deadlock: (a) the deadlock
states; (b), (c), (d) successive iterations for the computation of an initial set
leading to deadlock (green regions).

20

8 Conclusions

The focus of this paper was on developing an automated framework for formal
analysis of timed continuous Petri nets. We addressed two important problems,
namely (1) the construction of a safe region for a given initial set, and (2) the
construction of an initial set such that an arbitrary LTL specification is satisfied
by all trajectories originating in this set. The solutions to both these problems
start with reducing the initial ContPN to an equivalent PWA system. Then,
a finite (and conservative) abstraction of this PWA system was constructed by
using computationally attractive results that mainly involve polyhedral oper-
ations. Intermediate solutions for the initial problems were obtained by using
the discrete abstraction and standard tools as searches on graphs and model
checking algorithms. Finally, a refinement procedure was developed, allowing
us to iteratively reduce the modelling conservativeness and improve the solu-
tions to the initial problems. The proposed framework was implemented as a
freely downloadable software tool [27] and it was successfully used for provid-
ing solutions to two important problems concerning ContPN, namely finding
timed implicit arcs and finding initial markings from where the system reaches
deadlock.

Acknowledgement

This paper is written in memoriam of Prof. Laura Recalde, co-author of the
conference version of the paper [1], who passed away in December 2008.

References

[1] M. Kloetzer, C. Mahulea, C. Belta, L. Recalde, and M. Silva, “Formal anal-
ysis of timed continuous Petri nets,” in 47th IEEE Conference on Decision
and Control (CDC 2008), Dec. 2008, pp. 245–250.

[2] M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Kluwer Academic Publishers, 1993.

[3] M. Allam and H. Alla, “Modeling and simulation of an electronic component
manufacturing system using hybrid Petri nets,” IEEE Trans. on Semicon-
ductor Manufacturing, vol. 11, no. 3, pp. 374–383, 1998.

[4] F. Balduzzi, A. Giua, and C. Seatzu, “Modelling and simulation of manu-
facturing systems with first-order hybrid Petri nets,” Int. J. of Production
Research, vol. 39, no. 2, pp. 255–282, 2001, special Issue on Modelling, Spec-
ification and analysis of Manufacturing Systems.

[5] A. Desrochers, Ed., Modeling and Control of Automated Manufacturing Sys-
tems. IEEE Computer Society Press, 1989.

[6] M. Dotoli, M. Fanti, A. Giua, and C. Seatzu, “First-Order Hybrid Petri nets.
An application to distributed manufacturing systems,” Nonlinear Analysis:
Hybrid Systems, vol. 2, no. 2, pp. 408–430, June 2008.

21

[7] J. Ezpeleta, J. M. Colom, and J. Mart́ınez, “A Petri net based deadlock pre-
vention policy for flexible manufacturing systems,” IEEE Trans. on Robotics
and Automation, vol. 11, no. 2, pp. 173–184, 1995.

[8] A. Giua and C. Seatzu, “Modeling and Supervisory Control of Railway Net-
works Using Petri Nets,” IEEE Transactions on Automation Science and
Engineering, vol. 5, no. 3, pp. 431–445, July 2008.

[9] R. Zurawski and M. C. Zhou, “Petri nets and industrial applications: A
tutorial,” IEEE Trans. on Industrial Electronics, vol. 41, no. 6, pp. 567–583,
1994.

[10] B. Berthomieu and M. Diaz, “Modeling and verification of time depen-
dent systems using time Petri nets,” IEEE Trans. on Software Engineering,
vol. 17, no. 3, pp. 259–273, 1991.

[11] B. Berthomieu and M. Menasche, “An enumerative approach for analyzing
time Petri nets,” in Proceedings IFIP. Elsevier Science Publishers, 1983,
pp. 41–46.

[12] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets.
Springer-Verlag, 2005.

[13] M. Silva and L. Recalde, “On fluidification of Petri net models: from dis-
crete to hybrid and continuous models,” Annual Reviews in Control, vol. 28,
no. 2, pp. 253–266, 2004.

[14] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis, “Stability conditions for
multiclass fluid queueing networks,” Automatic Control, IEEE Transactions
on, vol. 41, no. 11, pp. 1618–1631, Nov 1996.

[15] C. G. Cassandras, G. Sun, C. Panayiotou, and Y. Wardi, “Perturbation
analysis of multiclass stochastic fluid models,” in 15th IFAC World Congress,
2002.

[16] H. Chen and D. D. Yao, Fundamentals of queueing networks: Performance,
asymptotics, and optimization, ser. Stochastic Modelling and Applied Prob-
ability. Springer-Verlag, New York, 2001.

[17] M. Silva, E. Teruel, and J. M. Colom, “Linear algebraic and linear program-
ming techniques for the analysis of net systems,” in Lectures in Petri Nets.
I: Basic Models, ser. LNCS, G. Rozenberg and W. Reisig, Eds. Springer,
1998, vol. 1491, pp. 309–373.

[18] L. Recalde, S. Haddad, and M. Silva, “Continuous Petri Nets: Expressive
Power and Decidability Issues,” in Proc. of the 5th Int. Symp. on Automated
Technology for Verification and Analysis (ATVA2007), vol. 4762. Springer,
2007, pp. 362–377.

[19] F. Balduzzi, G. Menga, and A. Giua, “First-order hybrid Petri nets: a
model for optimization and control,” IEEE Trans. on Robotics and Automa-
tion, vol. 16, no. 4, pp. 382–399, 2000.

22

[20] S. Troncale, J.-P. Comet, and G. Bernot, “Verification of biological models
with Timed Hybrid Petri Nets,” in International Symposium on Computa-
tional Models of Life Sciences, vol. 952, 2007, pp. 287–296.

[21] C. Mahulea, L. Recalde, and M. Silva, “Basic Server Semantics and Per-
formance Monotonicity of Continuous Petri Nets,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 19, no. 2, pp. 189–212, 2009.

[22] F. Torrisi and A. Bemporad, “HYSDEL — A tool for generating compu-
tational hybrid models,” IEEE Trans. Contr. Systems Technology, vol. 12,
no. 2, Mar. 2004, http://control.ethz.ch/~hybrid/hysdel.

[23] L. Habets, P. Collins, and J. van Schuppen, “Reachability and control
synthesis for piecewise-affine hybrid systems on simplices,” IEEE Trans.
Aut. Control, vol. 51, pp. 938–948, 2006.

[24] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic sys-
tems using approximate quotient transition systems,” IEEE Trans. Aut.
Control, vol. 46, no. 9, pp. 1401–1410, 2001.

[25] B. Yordanov, C. Belta, and G. Batt, “Model checking discrete time piese-
wise affine systems: application to gene networks,” in European Control
Conference, Kos, Greece, 2007.

[26] M. Kloetzer and C. Belta, “Reachability analysis of multi-affine systems,”
in Hybrid Systems: Computation and Control: 9th International Workshop,
ser. LNCS, J. Hespanha and A. Tiwari, Eds. Springer Berlin / Heidelberg,
2006, vol. 3927, pp. 348 – 362.

[27] M. Kloetzer, C. Mahulea, C. Belta, and M. Silva, “Software
tool for formal verification of timed continuous Petri nets,” URL
http://webdiis.unizar.es/∼cmahulea/research/formal contPN.zip.

[28] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic anal-
ysis of hybrid systems,” Theoretical Computer Science, vol. 138, no. 1, pp.
3–34, 1995.

[29] T. Henzinger, P. Ho, and H. Wong-Toi, “HyTech: A model checker for
hybrid systems,” International Journal on Software Tools for Technology
Transfer, vol. 1, no. 1–2, pp. 110–122, 1997.

[30] S. D. Cairano and A. Bemporad, “An equivalence result between linear hy-
brid automata and piecewise affine systems,” IEEE Trans. Automatic Con-
trol, vol. 55, no. 2, pp. 498–502, 2010.

[31] C. Mahulea, A. Ramı́rez, L. Recalde, and M. Silva, “Steady state con-
trol reference and token conservation laws in continuous Petri net systems,”
IEEE Trans. on Autom. Science and Engineering, vol. 5, no. 2, pp. 307–320,
2008.

[32] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT Press,
1999.

23

http://control.ethz.ch/~hybrid/hysdel

[33] M. Kloetzer and C. Belta, “A fully automated framework for control of lin-
ear systems from temporal logic specifications,” IEEE Trans. Aut. Control,
vol. 53, no. 1, pp. 287–297, 2008.

[34] G. Holzmann, The SPIN Model Checker, Primer and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 2004.

[35] C. Belta and L. Habets, “Constructing decidable hybrid systems with ve-
locity bounds,” in 43rd IEEE Conference on Decision and Control, Paradise
Island, Bahamas, 2004.

[36] L. Habets and J. van Schuppen, “A control problem for affine dynamical
systems on a full-dimensional polytope,” Automatica, vol. 40, pp. 21–35,
2004.

[37] K. Fukuda, “CDD/CDD+ package,” URL
http://www.cs.mcgill.ca/∼fukuda/soft/cdd home/cdd.html, 1997.

[38] M. Kloetzer, “Symbolic motion planning and control,” Ph.D. dissertation,
Boston University, Boston, MA, 2008.

[39] F. Torrisi and M. Baotic, “Matlab interface for the CDD solver,” URL
http://control.ee.ethz.ch/∼hybrid/cdd.php.

[40] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,”
in Proceedings of the 13th Conference on Computer Aided Verification
(CAV’01), ser. Lecture Notes in Computer Science, H. C. G. Berry and
A. Finkel, Eds., no. 2102. Springer, 2001, pp. 53–65.

[41] L. Recalde, C. Mahulea, and M. Silva, “Improving analysis and simulation
of continuous Petri nets,” in 2nd IEEE Conference on Automation Science
and Engineering, Shanghai, China, October 2006, pp. 7–12.

[42] S. Reveliotis, Real-Time Management of Resource Allocation Systems: A
Discrete Event Systems Approach. Springer, 2005.

[43] Z. Li and M. C. Zhou, Deadlock Resolution in Automated Manufacturing
Systems: A Novel Petri Net Approach. Springer Publishing Company,
Incorporated, 2009.

24

	Introduction
	Preliminaries
	Timed Continuous Petri Nets
	Transition systems and temporal logic

	Problem formulation and approach
	Derivation of the PWA for a ContPN
	Formal analysis of PWA representations of ContPN
	Construction and analysis of the quotients
	Iterative analysis and refinement

	Software implementation, conservativeness and complexity
	Formal analysis of ContPN systems
	Timed implicit arc
	Deadlock Analysis

	Conclusions

