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Abstract— Continuous Petri nets can be viewed as an approx-
imation of the classical discrete models introduced to copewith
the state explosion problem typical of discrete event systems.
In this paper we consider free-labeled Petri net systems, and
assume that certain transitions, including all those modeling
faulty behaviors, are unobservable, i.e., they are labeledwith
the empty word.

Based on the notion and characterization of the set of
justifications of a given observation (and the corresponding set
of j-vectors), we provide a diagnosis approach using the solution
of a certain number of linear programming problems.

I. I NTRODUCTION

The problem of fault diagnosis is clearly a main issue
in most of the engineering applications because of the
practical need of ensuring the correct and safe functioning
of systems. This is the reason why it has been so extensively
investigated in the last decades. Most of the results have been
developed within the framework of time-driven systems,
but several significant results have also been proposed for
discrete event systems. In particular, a series of original
theoretical approaches have been proposed using automata,
e.g., by Boel and van Schuppen [1], by Debouket al. [2], by
Hashtrudi Zadet al. [3], by Jiang and Kumar [4], by Lunze
and Schroder [5], and by Sampath et al. [6], [7].

Petri net (PN) models have also been used in this context:
the intrinsically distributed nature of PNs, where the notion
of state (i.e., marking) and action (i.e., transition) is local, has
often been an asset to reduce the computational complexity
involved in solving a diagnosis problem. Among the different
contributions in this area we recall the work of Ushioet al.
[8], Benvenisteet al. [9], [10], Jiroveanu and Boel [11], Giua
and Seatzu [12], and Cabasinoet al. [13].

Recently, a particular hybrid model based on PNs has
received some attention. This model is calledcontinuous
Petri net (contPN) [14], [15]. It can be seen as a relaxation
of PNs where the constraint that markings and transitions
firings are integer is removed.

In this paper we focus on the problem of designing a
diagnoser foruntimedcontPNs, thus we can assume that the
net behavior is asynchronous and sequential. We also assume
that the net structure is known, as well as the initial marking.
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The set of transitions is partitioned into two subsets: observ-
able and unobservable transitions. Unobservable transitions
may either model regular behavior or fault behavior, while
fault transitions are partitioned into different fault classes.
After each observable transition fires we observe its firing
quantity, which is the continuous counterpart of the number
of firings of each transition. Our goal is that of establishing
if some transition in a given fault class may have fired, given
the actual observation. In particular, based on the resultsin
[13], we define four fault diagnosis states that correspond to
four different degrees of alarm. The diagnoser is a function
that associates to each fault class and each observation a
diagnosis state.

We prove that, under certain assumptions on the unobserv-
able subnet, the set ofj-vectors, that keep track of the set
of unobservable transitions that may have fired to enable the
current observation, is convex. In particular, we prove that
in such a case the diagnosis problem can be written in terms
of linear programming problems (LPPs). This is a significant
advantage with respect to discrete PNs. In fact, in such a case
the computation of the diagnosis states requires the solution
of linear integerprogramming problems.

II. BACKGROUND ON UNTIMED CONTPNS

In this section we provide the basic background on un-
timed contPNs.

Definition 1: A contPN system is a pair〈N , m0〉, where:
• N = 〈P, T, Pre, Post〉 is the net structure with

two disjoint sets of placesP and transitionsT ; pre
and post incidence matricesPre, Post ∈ R|P |×|T |

≥0 ,
denote respectively the weight of the arcs from places
to transitions and from transitions to places;

• m0 ∈ R|P |
≥0 is the initial marking. �

We denote asm = |P | andn = |T | the cardinality of the
set of places and transitions, respectively.

The input and output set of a nodex ∈ P ∪ T is denoted
by •x andx•, respectively. The token load of a placepi at
the markingm is denoted bym(pi) or simply bymi.

A transition tj ∈ T is enabled at a markingm iff
∀pi ∈ •tj , m(pi) ≥ 0 and the enabling degree oftj at
m is enab(tj, m) = min

pi∈•tj

mi

P re(pi,tj)
.

When a transitiontj is enabled at a markingm it can
be fired. The main difference with respect to (w.r.t.) discrete
PNs is that in the case of contPNs it can be fired in any
real amountα, with 0 ≤ α ≤ enab(tj, m) and it is not
limited only to a natural number. Such a firing yields to a new
markingm′ = m + α · C(·, tj), whereC = Post − Pre

is the token flow matrix(or incidence matrix). This firing is
also denotedm[tj(α)〉m′.



If a marking m is reachable from the initial marking
through a firing sequenceσ = tr1(α1)tr2(α2) · · · trk(αk),
and we denote byσ ∈ R|T |

≥0 the firing count vectorwhose
component associated to a transitiontj is σj =

∑

h∈H(σ,tj)

αh,

where H(σ, tj) = {h = 1, . . . , k|trh
= tj}, then we can

write m = m0 + C · σ, which is called thefundamental
equationor state equation.

The set of all fireable sequences isL(N , m0), while
the set of all markings that are reachable with a finite
firing sequence is denoted byRSut(N , m0). An interesting
property of RSut(N , m0) is that it is a convex set[16].
That is, if two markingsm1 and m2 are reachable, then
any markingm3 = α · m1 + (1 − α) · m2, ∀α ∈ [0, 1] is
also reachable.

The netN is consistentiff ∃x > 0 such thatC · x = 0.
A PN N = 〈P, T, Pre, Post〉 is a state machineif ∀t ∈

T , |•t| = |t•| ≤ 1 andPre(p, t), Post(p, t) ∈ {0, 1} for any
p ∈ P and anyt ∈ T .

Given a netN = 〈P, T, Pre, Post〉, and a subsetT ′ ⊆ T

of its transitions, theT ′−induced subnet ofN is the new
netN ′ = 〈P, T ′, Pre′, Post′〉 wherePre′, Post′ are the
restriction ofPre, Post to T ′. The netN ′ can be thought
as obtained fromN removing all transitions inT \ T ′. We
also writeN ′ ≺T ′ N .

Given a subsetT ′ ⊆ T , the projectionΠ of a sequence
σ ∈ T ∗ over T ′ is defined asΠ : T ∗ → T ′∗ such that:
(i) Π(ε) = ε, where ε denotes the empty word; (ii) for
all σ ∈ T ∗ and t ∈ T , Π(σt) = Π(σ)t if t ∈ T ′,
and Π(σt) = Π(σ) otherwise. HereT ∗ denotes the set of
all possible sequences obtainable combining elements inT ,
included the empty word.

Given a sequenceσ ∈ L(N , m0), we denotew = Πo(σ)
the correspondingobserved word.

In the following, with a little abuse of notation, we will
write thatw ∈ T ∗

o .

III. E XPLANATIONS AND E-VECTORS

In this section we propose a procedure to design a diag-
noser for contPNs based on the following three assumptions.

(A1) The initial marking of the net is known.
(A2) The set of transitions is partitioned asT = To ∪ Tu

whereTo is the set ofobservabletransitions, andTu is
the set ofunobservabletransitions.

(A3) The Tu-induced net has nospurious solutions.

In simple words, the third assumption implies that all
markingsm ∈ Rm

≥0 such thatm = m0 +C ·σ, with σ ≥ 0,
are reachable.

Proposition2: Let 〈N , m0〉 be a contPN system. All
markingsm ∈ Rm

≥0 : m = m0 + C · σ, with σ ≥ 0,
are reachable, i.e.,N has no spurious solutions, if at least
one of the following two conditions is satisfied:

• N is acyclic [17];
• N is consistentand all transitions are firable fromm0

[16].

Definition 3: Given a set of markingsM and an observ-
able transitiont ∈ To firing an amountα, we define

Σ(M, t(α)) = {σ ∈ T ∗
u | ∃m ∈ M :

m[σ〉m′, m′ ≥ α · Pre(·, t)}

the set ofexplanationsof t(α) at markings inM, and we
define

Y (M, t(α)) = {e ∈ Rnu

≥0 | ∃σ ∈ Σ(M, t(α)) : σ = e}

thee-vectors(or explanation vectors) of t(α) at M, i.e., the
firing vectors associated to the explanations. �

Thus, if M is the set of markings in which the system is
known to be, e.g., the set of markings that are consistent
with an observed word, andt(α) is a new observation,
then Σ(M, t(α)) coincides with the set of unobservable
sequences whose firing may have enabled the firing oft(α)
starting from any marking inM.

The following proposition shows a nice feature of
Y (M, t(α)).

Proposition4: Given a convex set of markingsM and
an observable transitiont ∈ To firing an amountα, under
assumption (A3), the setY (M, t(α)) is convex.

Proof: To prove this we show that, given an arbitrary
couple of vectorsy1, y2 ∈ Y (M, t(α)), any convex combi-
nation of them belongs to the setY (M, t(α)).

If y1, y2 are e-vectors oft(α) at M, it means that there
exist two markingsm′

1, m
′
2 ∈ M such that

m1 = m′
1 + C · y1 ≥ α · Pre(·, t),

m2 = m′
2 + C · y2 ≥ α · Pre(·, t).

(1)

Now, let ỹ = δ · y1 + β · y2 where δ, β ∈ [0, 1] and
δ + β = 1. Being the net system continuous, by assumption
(A3) there exists a firing sequencẽσ with σ̃ = ỹ such that
σ̃ is enabled atm′ = δ · m′

1 + β · m′
2 ∈ M. But,

m = m′ + C · ỹ
= δ · m′

1 + β · m′
2 + δ · C · y1 + β · C · y2

= δ · m1 + β · m2

≥ δ · α · Pre(·, t) + β · α · Pre(·, t)
= α · Pre(·, t)

thus proving the statement. �

If the net system isboundedthe setY (M, t(α)) can
be easily characterized in linear algebraic terms using the
following algorithm that assumes that the setM is convex
and defined as (see the following Remark 6):

M =

{[

m

σu

]

∈ Rm+nu

≥0 | AM ·

[

m

σu

]

≤ bM

}

. (2)

Note that this is exactly the case when the setM coincides
with the set of markings consistent with the sequencev of
observations beforet(α), that we denoted asC(v), namely
with the set of markings in which the system may be given
the observationv. We recently proved the convexity ofC(v)
in [18] where we also provided an algorithm to express it in
the form of eq. (2).

Algorithm 5 (Computation ofY (M, t(α))):

1) Compute the set of verticesEM of M.



2) Let E = ∅.
3) For all ei = [m̃T σ̃u

T ]T ∈ EM:

a) compute the set of verticesEi = [mT σT
u ]T of

the polytope1 defined as






m = m̃ + Cu · σu

m ≥ α · Pre(·, t)
σu ≥ 0;

(3)

b) let E = E ∪ Ei.

4) Let Y (M, t(α)) be the convex hull ofE. �

In simple words Algorithm 5 first computes the set of
vertices ofM, denoted asEM. Then, for each vertexei =
[m̃T σ̃u

T ]T ∈ EM, it defines the set of markings – firing
vectorsσu that can be obtained from̃m firing a sequence of
unobservable transitions, with firing vectorσu, that enables
t(α). Note that by Assumption (A3) this does not lead to
spurious solutions. Then the algorithm computes the set of
verticesE of such a set. Finally,Y (M, t(α)) is the convex
hull of the union of the vertices thus obtained.

Remark6: The set Y (M, t(α)) resulting from Algo-
rithm 5 is defined in the (m + nu)–dimensional space,
while all vectors inY (M, t(α)) obviously belong to the
nu-dimensional space. Analogously, the set of markingsM
defined as in eq. (2) is a subspace ofRm+nu

≥0 while each
marking in it belongs toRm

≥0. Therefore, it would have been
more appropriate to use different notations to distinguish
Y (M, t(α)) and M and their definitions in theRm+nu

≥0

space. To simplify the notation we preferred not to do that
when this does not introduce ambiguity.

The same remark will apply in the following to the set
Ymin(m0, w). �

IV. M INIMAL EXPLANATIONS AND MINIMAL E -VECTORS

The set of explanations can be restricted only considering
the explanations with minimal firing vector. As it will be
clarified in the following section, this is extremely useful
when performing on-line diagnosis.

Definition 7: Given a set of markingsM and an observ-
able transitiont ∈ To firing an amountα, we define

Σmin(M, t(α)) = { σ ∈ Σ(M, t(α)) |
∄σ′ ∈ Σ(M, t(α)) : σ′ ≤ σ}

the set ofminimal explanationsof t(α) at markings inM,
and we denote

Ymin(M, t(α)) = {e ∈ Rnu

≥0 | ∃σ ∈ Σmin(M, t(α)) :

σ = e}

the minimal e-vectors(or minimal explanation vectors) of
t(α) at M, i.e., the firing vectors associated to the minimal
explanations. �

In the discretecase it is proved that the set of minimal
explanations is always finite provided that the setM is finite,
thus it can be exhaustively enumerated. On the contrary, in

1A bounded polyhedronP ⊂ R
n, P = {x ∈ R

n | Ax ≤ B} is
called apolytope.
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Fig. 1. The Petri net of Example 8, whereε2 andε3 are not observable.

the case of contPNs, the number of minimal explanations
is in general not finite. Moreover, it cannot always be
characterized in linear algebraic terms. In fact, as shown by
the following example, it may be a non convex set.

Example8: Let us consider the contPN system in Fig. 1
and the observationw = t1(1). The following two vectors
are minimal explanations forw = t1(1): σ′

u = [1 0]
T , σ′′

u =
[0 1]T .

In particular, firingσ′
u, markingm′ = [1 1 0 0]

T
+ Cu ·

σ′
u = [0 1 1 2]

T is obtained, while firingσ′′
u we get:m′′ =

[1 1 0 0]
T

+ Cu · σ′′
u = [1 0 2 1]

T .
Note thatm′

3 = 1, i.e., the content ofp3 is exactly what
is needed for the firing oft1(1); analogously,m′′

4 = 1, i.e.,
the content ofp4 is the minimum marking that allows the
same firing.

Now, let us consider the sequenceσu = 1
2 · σ′

u + 1
2 ·

σ′′
u =

[

1
2

1
2

]T
. It is easy to verify that it is an explanation

of t1(1) at m0, but it is not minimal. If fact, if we consider
σ̃u =

[

1
3

1
3

]T
it is an explanation as well, but̃σu < σu. �

Even if the setYmin(M, t(α)) is not convex in general,
we have been able to determine some classes of PNs for
which it is convex.

Proposition9: Let 〈N , m0〉 be a contPN andt ∈ To be
a transition firing in a finite amountα. If (A3) holds and the
Tu-induced subnet is either a backward conflict-free net2 or
a state machine, then the setYmin(M, t(α)) is convex.

Proof: If the Tu-induced subnet is backward conflict-
free, it is proved in the discrete PN framework that the set
of basic markings is a singleton [19] implying that the set
of minimal explanations is a singleton as well. Exactly the
same reasoning can be applied to the continuous backward
conflict-free nets thus proving the statement.

If the Tu-induced subnet is a state machine, each transition
has only one input and one output place. Moreover, it is an
ordinary net, i.e., the weights of the arcs are unitary, hence
firing an unobservable transition in an amountα, exactlyα

tokens are removed from the input place andα tokens are
put in the output place. Obviously, the minimal e-vectors
in eq. (1) are such that those equations are satisfied as
equalities. Following the same steps of Proposition 4, all
inequalities are satisfied as equalities. Hence the conclusion
is true. �

Under the assumption of Proposition 9, Algorithm 5 can
be updated as follows to computeYmin(M, t(α)).

Algorithm 10 (Computation ofYmin(M, t(α))):

2A P/T net is backward conflict-freeif ∀p ∈ P |•p| ≤ 1, i.e., if each
place has at most one input transition.



1) Compute the set of verticesEM of M.
2) Let E = ∅.
3) For all ei = [m̃T σ̃T

u ] ∈ EM:

a) compute the set of verticesEi = [mT σT
u ] of the

polytope defined as






m = m̃ + Cu · σu

mj = max{m̃j, α · Pre(pj , t)}, ∀pj ∈ •t

m, σu ≥ 0;
(4)

b) let E = E ∪ Ei.
4) Remove fromE those vertices that are not minimal

w.r.t. the firing vector.
5) Let Ymin(M, t(α)) be the convex hull ofE. �

There are two main differences between Algorithms 5
and 10. Firstly, in Algorithm 10 since our goal is that of
characterizing minimal e-vectors, we limit to consider those
sequences of silent transitions that lead to a fluid content in
the input places oft that is strictly necessary to enable its
firing for an amountα. Obviously, if some of such input
places already have a sufficient fluid content (that may also
be greater than that strictly necessary) we keep it unaltered.
To do this, we impose that for all placespj ∈ •t it is
mj = max{m̃j, α · Pre(pj , t)}3.

Let us also observe that the above equality can always be
satisfied for all placespj ∈ •t because of the assumptions of
Proposition 9 on the unobservable subnet. In fact, if the net
is backward conflict-free it may never occur that two silent
transitions share the same output place. If the net is a state
machine all input silent transitions ofpj have at most one
input place. Therefore, in both cases, if some placepj ∈ •t

has not a sufficient fluid content, we can always fire its silent
input transitions in an amount to reach a marking equal to
α · Pre(pj , t).

The second difference between the two algorithms is that
in Algorithm 10 we need to remove from the set of vertices
obtained at Step 3 all those vertices that are not minimal w.r.t
the firing vectors (see Step 4). Indeed, the set of vertices of
(4) does not necessarily correspond to minimal e-vectors, but
define a superset of the set of vertices relative to minimal
e-vectors. As an example, let us consider the net system in
Fig. 2. Let M = {[m0 0]T }. Assumet1(1) is observed.
If we compute the vertices of (4) we also obtain a vertex
corresponding to the firing ofε7, even ifε7 is not obviously
a minimal explanation!

An easy way (even if computational demanding) to remove
the non-minimal vertices is that of checking for any pair
[m1 σ1]

T , [m2 σ2]
T ∈ E if minj=1,...,nu

(σ1,j − σ2,j) ≥ 0.
If it is true, the vertex[m1 σ1]

T does not correspond to a
minimal explanation and should be removed fromE.

Let us finally observe, as already discussed in detail in
[18] when computing the set of consistent markings, that
the computational complexity of Algorithms 5 and 10 can
be drastically reduced taking advantage from the structure

3Note that bothm̃j andα ·Pre(pj , t) are given values, so the constrain
is linear.

of the constraints in eq. (3) and (4). In particular, all the
basis of (3) and (4) can be computed off-line because they
do not depend on the current observation, thus only products
of matrices need to be performed on-line.

V. BASIS MARKINGS AND J-VECTORS

In this section we show that under the assumptions of
Proposition 9, the notions of basis markings and j-vectors
we introduced for discrete PNs, can still be used in the
continuous case.

A basis markingMb is a marking reached fromm0 with
the firing of the observed wordw and of all unobservable
transitions whose firing is necessary to enablew. A j-
vector y ∈ Ymin(m0, w) is a firing vector of unobservable
transitions whose firing is necessary to reachMb.

Definition 11: Let 〈N , m0〉 be a net system whereN =
〈P, T, Pre, Post〉 and T = To ∪ Tu. Let w ∈ T ∗

o be an
observed word. We define

L(w) = {σ ∈ L(N , m0) | Πo(σ) = w}

the set of firing sequencesconsistentwith w ∈ T ∗
o . �

Definition 12: Let 〈N , m0〉 be a contPN system where
N = 〈P, T, Pre, Post〉 and T = To ∪ Tu. Let σ ∈
L(N, m0) be a firable sequence andw = Po(σ) the corre-
sponding observed word. We define the set ofjustifications
of w as

J (w) = {σu ∈ T ∗
u | [∃σ ∈ L(w) : σu = Pu(σ)]∧

[6 ∃σ′ ∈ L(w) : σ′
u = Pu(σ′)∧

σ′
u � σu]} .

Moreover, we define

Ymin(m0, w) = {y ∈ Rnu

≥0 | ∃σu ∈ J (w) : σu = y}

the corresponding set ofj-vectors. �

In simple words,J (w) is the set of sequences of unob-
servable transitions interleaved withw whose firing enables
w and whose firing vector is minimal. The firing vectors of
these sequences are called j-vectors.

Example13: Let us consider again the contPN system in
Fig. 1. Assumew = t1(1) is observed. It is easy to verify
that σ′

u = ε2(1) and σ′′
u = ε3(1) are justifications ofw,

namelyσ′
u, σ′′

u ∈ J (w) .
This is consistent with the result already discussed in

Example 8 where we claimed thatσ′
u, σ′′

u ∈ Ymin(m0, w),
whereσ′

u = [1 0]T , σ′′
u = [0 1]T . �

Definition 14: Let 〈N , m0〉 be a net system whereN =
〈P, T, Pre, Post〉 and T = To ∪ Tu. Let w be a given
observation andσu ∈ J (w) be one of its minimal justi-
fications. The markingMb = m0 + Cu · σu + C · σw, i.e.,
the marking reached firingw interleaved with the minimal
justificationσu, is calledbasis markingandσu is its j-vector
(or justification-vector). �

Example15: Markings m′ and m′′ in Example 8 are
basis markings for the observed wordw = t1(1). �

Obviously, because in general more than one justification
exists for a wordw (the set J (w) is generally not a



singleton), the basis marking may be not unique as well.
Furthermore, two or more j-vectors may correspond to the
same basis marking.

Under the assumptions of Proposition 9 the set
Ymin(m0, w) is convex and it provides our starting point for
the on-line diagnosis as discussed in the following section.

Proposition16: Let 〈N , m0〉 be a contPN. Letw ∈ T ∗
o

be an observed sequence where each transition fires for a
finite amount. If (A1) to (A3) hold and theTu-induced subnet
is either backward conflict-free or it is a state machine, then
the setYmin(m0, w) is convex.

Proof: We prove this by induction on the number of
observed transitions.

(Basis step.)Let t′ be the first observed transition. Assume
that it has been observed for an amountα′. By Proposition 9
the setYmin(m0, t

′(α′)) is convex.
(Inductive step.)Assume that the setYmin(m0, v) is

convex. We have to prove that the setYmin(m0, w) is convex
as well, wherew = vt(α).

If the Tu-induced net is backward conflict-free then the
result is true since the set of minimal explanations and
consequently the set of basis markings are singleton [19].

Assume now that theTu-induced net is a state machine.
In this class of nets the firing vectors with minimum com-
ponents corresponding to the moving of one token from any
place to any other place, e.g.,pi ∈ •t, have binary entries.
Hence the minimal explanations have binary entries as well,
thus implying that the setYmin(m0, w) is convex. �

An algorithm to computeYmin(m0, w) can be obtained
as a generalization of Algorithm 10.

Algorithm 17 (Computation ofYmin(m0, w)):

1) Let v = ε.

2) Let Ymin(m0, v) =

{[

m

y

]

=

[

m0

0

]}

.

3) Let t(α) be a new observation andw = vt(α).
4) Compute the set of verticesE(v) of Ymin(m0, v).
5) Let E = ∅.
6) For all ei = [m̃T σ̃T

u ]T ∈ E(v):

a) compute the set of verticesEi = [mT yT ]T of
the polytope defined as






















m′ = m̃ + Cu · y
m′

j = max{m̃j, α · Pre(pj , t)}, ∀pj ∈ •t

y = σu + σ̃u

m = m′ + C(·, t(α))
m′, σu ≥ 0;

(5)
b) let E = E ∪ Ei.

7) Remove fromE those vertices that are not minimal
w.r.t. the firing vector.

8) Let Ymin(m0, w) be the convex hull ofE.
9) Let v = w and goto Step 3. �

Note that, given a generic elemente = [mT σT
u ] ∈

Ymin(m0, w) (not only a vertex) the firstm entries corre-
spond to a basis marking and the lastnu entries correspond

p
2p p

1 6

ε

ε ε ε
t t
1

3

4 5 8

2
p3 p4

p5
ε6 ε7.

.

Fig. 2. The Petri net of Example 18, whereε3, ε4, ε5, ε6, ε7 and ε8 are
not observable.

to a j-vector. In particular,m is the basis marking corre-
sponding to thej-vectorσu.

Example18: Let us consider the contPN system in Fig. 2
whereTu = {ε3, . . . , ε8}. The Tu-induced subnet is a state
machine.

Let w = t1(1)t2(1)t2(1) be the current observation.
The set of vertices computed at the different iterations of
Algorithm 17 are summarized in the following items.

• w = ε, i.e., w is the empty word.
Ymin(m0, ε) = {[1 0 0 0 1 0 | 0 0 0 0 0 0]T } where
the first six entries correspond to the basis marking (that
coincides withm0) and the last six entries correspond
to the minimal j-vector that is initially null by definition.

• w = t1(1).
Ymin(m0, t1(1)) = {[0 1 0 0 1 0 | 0 0 0 0 0 0]T }. The
firing of t1(1) is enabled at the initial marking thus
we only have one j-vector that coincides with the null
vector, and the basis marking is obtained from the initial
marking (the basis marking at the previous iteration)
firing t1(1).

• w = t1(1)t2(1).
The set of vertices obtained at Step 6 of Algorithm 17
is given by the the following elements:

1) e1 = [1 0 0 0 1 0 | 0 1 1 0 0 1]T ,
2) e2 = [1 1 0 0 0 0 | 0 0 0 0 1 1]T ,
3) e3 = [1 0 0 0 1 0 | 1 0 0 0 0 0]T ,
4) e4 = [1 0 0 1 0 0 | 1 0 0 0 1 0]T ,

that correspond respectively to the justificationsσ1 =
ε4ε5ε8, σ2 = ε7ε8, σ3 = ε3, σ4 = ε3ε7.
However, at Step 7 the last elemente4 is removed
because it does not correspond to a minimal j-vector.
Indeed, the firing ofε7 is not necessary to enablet2(1)
at the previous basis marking ifε3 has already fired.

• w = t1(1)t2(1)t2(1).
The set of vertices obtained at Step 6 of Algorithm 17
is given by the following elements:

1) e′
1 = [2 0 0 0 0 0 | 0 1 1 0 1 2]T ,

2) e′
2 = [2 0 0 0 0 0 | 1 0 0 0 1 1]T ,

that all correspond to minimal j-vectors, thus none of
them is removed at Step 7. �

VI. FAULT DIAGNOSER DESIGN

Let us consider a system modeled as a contPN whose
transitions may either be observable or unobservable (T =
To ∪ Tu). Assume that a certain number ofanomalous(or



fault) behaviors may occur in the system. The occurrence of
a fault behavior corresponds to the firing of an unobservable
transition, but there may also be other transitions that are
unobservable as well, but whose firing corresponds to regular
behaviors. Then, assume that fault behaviors may be divided
into r main classes (fault classes), and we are not interested
in distinguishing among fault events in the same class.
This can be easily modeled in PN terms assuming that
the set of unobservable transitions is partitioned into two
subsets, namelyTu = Tf ∪ Treg, where Tf includes all
fault transitions andTreg includes all transitions relative
to unobservable but regular events. The setTf is further
partitioned intor subsets, namely,Tf = T 1

f ∪ T 2
f ∪ . . .∪ T r

f

where all transitions in the same subset correspond to the
same fault class. We will say that thei-th fault has occurred
when a transition inT i

f has fired.
We now provide the definition ofdiagnoseranddiagnosis

statethat we first introduced in [13].
Definition 19: A diagnoser is a function ∆ : T ∗

o ×
{T 1

f , T 2
f , . . . , T r

f } → {0, 1, 2, 3} that associates to each
observationw and to each fault classT i

f , i = 1, . . . , r, a
diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ L(w) and for all tf ∈ T i

f

it holds tf 6∈ σ.
In such a case theith fault cannot have occurred,
because none of the firing sequences consistent with
the observation contains fault transitions of classi.

• ∆(w, T i
f ) = 1 if:

(i) there existσ ∈ L(w) and tf ∈ T i
f such thattf ∈ σ

but
(ii) for all σ ∈ J (w) and for all tf ∈ T i

f it holds that
tf 6∈ σ.
In such a case a fault transition of classi may have
occurred but is not contained in any justification ofw.

• ∆(w, T i
f ) = 2 if there existσ, σ′ ∈ J (w) such that:

(i) there existstf ∈ T i
f such thattf ∈ σ;

(ii) for all tf ∈ T i
f , tf 6∈ σ′.

In such a case a fault transition of classi is contained
in one (but not in all) justification ofw.

• ∆(w, T i
f ) = 3 if for all σ ∈ L(w) there existstf ∈ T i

f

such thattf ∈ σ.
In such a case theith fault must have occurred, because
all firable sequences consistent with the observation
contain at least one fault transition of classi. �

The diagnosis states 1 and 2 correspond both to cases
in which a fault may have occurred but has not necessarily
occurred. The main reason to distinguish between them is
the following. In the state 1 the observed behavior does
not suggest that a fault has occurred because all minimal
sequences leading tow are fault free. On the contrary, in
the state 2 at least one of the justifications of the observed
behavior contains one transition in the class.

Example20: Consider the contPN system in Fig. 2 al-
ready examined in Example 18. Assume two fault classes:
T 1

f = {ε3} andT 2
f = {ε6, ε7}.

• Let w = ε. The set of justifications is empty, thus

the diagnosis states may either be equal to0 or 1.
Now, sinceε3 is not enabled at the initial marking it is
∆(w, T 1

f ) = 0. On the contrary, transitionε7 is enabled
at the initial marking thus∆(w, T 2

f ) = 1.
• Let w = t1(1). The set of justifications atw only

contains the empty word becauset1(1) is enabled at the
initial marking. However, bothε3 andε7 can fire after
the occurrence oft1(1). Thus,∆(w, T 1

f ) = ∆(w, T 2
f ) =

1.
• Let w = t1(1)t2(1). Looking at the set of minimal j-

vectors computed in Example 18 it is easy to observe
that for both fault classes, we have some justification
that contains at least one transition in the class, but we
also have justifications that contain none of them, thus
∆(w, T 1

f ) = ∆(w, T 2
f ) = 2.

• Let w = t1(1)t2(1)t2(1). Always looking at the set of
minimal j-vectors computed in Example 18 we argue
that ∆(w, T 1

f ) = 2 and ∆(w, T 2
f ) = 3. In fact,

while transitionε3 is contained in only one of the two
justifications atw, transitionε7 is contained in both of
them. �

The on-line computation of the setsL(w) andJ (w) may
be computational demanding in large scale systems, thus in
the following we suggest an alternative procedure to compute
diagnosis states that is based on the knowledge of the the set
Ymin(m0, w). In particular, such a procedure well applies to
all cases in which the setYmin(m0, w) is convex. Thus for
sure it well applies to net systems whoseunobservable subnet
is eitherbackward conflict-freeor a state machine.

Proposition21: Consider an observed wordw ∈ T ∗
o . Let























li = min
∑

tj∈T i
f

σu(tj)

s.t.
[

m

σu

]

∈ Ymin(m0, w)

(6)























ui = max
∑

tj∈T i
f

σu(tj)

s.t.
[

m

σu

]

∈ Ymin(m0, w)

(7)































ūi = max
∑

tj∈T i
f

σ̄u(tj)

s.t.
[

m

σu

]

∈ Ymin(m0, w)

m + Cu · σ̄u ≥ 0

(8)

It holds:

∆(w, T i
f ) = 0 ⇔ ui = ūi = 0

∆(w, T i
f ) = 1 ⇔ ui = 0, ūi > 0

∆(w, T i
f ) = 2 ⇔ li = 0, ui > 0

∆(w, T i
f ) = 3 ⇔ li > 0

Proof: It follows from Definitions 12 and 19.



If ui = ūi = 0 it means that none of the justifications con-
tains transitions inT i

f and no transition inT i
f may also have

fired after any of such justifications. But by Definition 19 this
is exactly what corresponds to diagnosis state0. Moreover,
if ui 6= 0 it means that at least one justification contains at
least one transition in theith class, thus the diagnosis state
cannot be0. Finally, if ui 6= 0 but ūi 6= 0 it means that at
least one transition in theith fault class may have fired after
the firing of any of the justifications atw. In such a case the
diagnosis state is> 0.

If ui = 0 and ūi > 0 it means that none of the
justifications contains transitions inT i

f but at least one
transition inT i

f may have fired after a basis marking, thus
the diagnosis state is1. Obviously, the diagnosis state cannot
be equal to1 if either ui 6= 0 or ūi = 0.

If li = 0 and ui > 0 it means that at least one of the
justifications atw contains some transition in theith class,
that is by definition the case of diagnosis state equal to2. If
any of such conditions is violated the diagnosis state cannot
be equal to2.

Finally, if li > 0 then all the justifications atw contain at
least one transition inT i

f , i.e., all words consistent with the
actual observation contain a transition in theith class, that
means that some fault in theith class has occurred for sure.
This corresponds by Definition 19 to diagnosis state equal
to 3. If li = 0 it means that some justification contains no
transition inT i

f thus the diagnosis state is< 3. �

Example22: Consider the contPN system in Fig. 2 al-
ready examined in Examples 18 and 20. Assume two fault
classes:T 1

f = {ε3} and T 2
f = {ε6, ε7}. We compute the

diagnosis states after certain observations solving the LPPs
in Proposition 21. Obviously such results are consistent with
those obtained in Example 20, based on the definition of
diagnosis states.

• w = ε.
1) l1 = u1 = ū1 = 0 =⇒ ∆(w, T 1

f ) = 0;
2) l2 = u2 = 0 and ū2 = 1 =⇒ ∆(w, T 2

f ) = 1.
• w = t1(1).

1) l1 = u1 = 0 and ū1 = 1 =⇒ ∆(w, T 1
f ) = 1;

2) l2 = u2 = 0 and ū2 = 3 =⇒ ∆(w, T 2
f ) = 1.

• w = t1(1)t2(1).
1) l1 = 0, u1 = 1 and ū1 = 1 =⇒ ∆(w, T 1

f ) = 2;
2) l2 = 0, u2 = 1 and ū2 = 2 =⇒ ∆(w, T 2

f ) = 2.
• w = t1(1)t2(1)t2(1).

1) l1 = 0, u1 = 1 and ū1 = 0 =⇒ ∆(w, T 1
f ) = 2;

2) l2 = u2 = 1 and ū2 = 0 =⇒ ∆(w, T 2
f ) = 3. �

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for the design of a
fault diagnoser for systems modeled by untimed contPNs.
A certain number of transitions, including all the fault
transitions, are assumed to be unobservable. Fault transitions
are partitioned into different fault classes and the diagnoser
assigns four different states (corresponding to differentde-
grees of alarm) to each fault class based on the actual
observation. We proved that under certain assumptions on

the unobservable subnet the set ofj-vectors is convex thus
the diagnosis state may be easily computed solving a LPP.

We plan to extend this work in several directions. Firstly,
we want to characterize how the number of vertices of the
polytope defining the set of minimal explanations changes
with the observed word. Secondly, we plan to extend the
diagnosis approach to more general classes of Petri nets for
which the set of minimal explanations is not convex. Finally,
we will try to derive some criteria fordiagnosability, namely
some criteria to establish a priori if the fault occurrencescan
be reconstructed after a finite amount of observations.
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