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Abstract— Continuous Petri nets can be viewed as an approx-
imation of the classical discrete models introduced to copwith
the state explosion problem typical of discrete event systes.
In this paper we consider free-labeled Petri net systems, ah
assume that certain transitions, including all those modéhg
faulty behaviors, are unobservable, i.e., they are labeleavith
the empty word.

Based on the notion and characterization of the set of
justifications of a given observation (and the corresponding set
of j-vector9, we provide a diagnosis approach using the solution
of a certain number of linear programming problems.

The problem of fault diagnosis is clearly a main issu

INTRODUCTION

in most of the engineering applications because of the
practical need of ensuring the correct and safe functionin

of systems. This is the reason why it has been so extensive
investigated in the last decades. Most of the results hase be
developed within the framework of time-driven systems

but several significant results have also been proposed
discrete event systems. In particular, a series of origin

theoretical approaches have been proposed using automat

e.g., by Boel and van Schuppen [1], by Debatlal. [2], by
Hashtrudi Zadet al. [3], by Jiang and Kumar [4], by Lunze
and Schroder [5], and by Sampath et al. [6], [7].

The set of transitions is partitioned into two subsets: pbse
able and unobservable transitions. Unobservable transiti
may either model regular behavior or fault behavior, while
fault transitions are partitioned into different fault st&s.
After each observable transition fires we observe its firing
guantity, which is the continuous counterpart of the number
of firings of each transition. Our goal is that of establighin
if some transition in a given fault class may have fired, given
the actual observation. In particular, based on the results
[13], we define four fault diagnosis states that correspond t
four different degrees of alarm. The diagnoser is a function
that associates to each fault class and each observation a
iagnosis state.
We prove that, under certain assumptions on the unobserv-
le subnet, the set ¢fvectors that keep track of the set
Y unobservable transitions that may have fired to enable the
current observation, is convex. In particular, we prove tha
n such a case the diagnosis problem can be written in terms
of linear programming problems (LPPs). This is a significant
a f . .

%vantage with respect to discrete PNs. In fact, in suche cas
€ computation of the diagnosis states requires the saluti
of linearinteger programming problems.
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BACKGROUND ONUNTIMED CONTPNS

Petri net (PN) models have also been used in this context:|n this section we provide the basic background on un-

the intrinsically distributed nature of PNs, where the ooti
of state (i.e., marking) and action (i.e., transition) isdh has

timed contPNs.
Definition 1: A contPN system is a pait\/, m), where:

often been an asset to reduce the computational complexity, A/ — (P, T, Pre, Post) is the net structure with

involved in solving a diagnosis problem. Among the diffdren
contributions in this area we recall the work of Uslebal.
[8], Benvenisteet al.[9], [10], Jiroveanu and Boel [11], Giua
and Seatzu [12], and Cabasiebal. [13].

Recently, a particular hybrid model based on PNs has , mo € R‘>PO| is the initial marking.

received some attention. This model is calledntinuous

two disjoint sets of places® and transitionsT’; pre
and post incidence matriceBre, Post ¢ R‘f()'x'T'
denote respectively the weight of the arcs from places

to transitions and from transitions to places;

|
We denote asn = |P| andn = |T| the cardinality of the

Petri net(contPN) [14], [15]. It can be seen as a relaxatioret of places and transitions, respectively.
of PNs where the constraint that markings and transitions The input and output set of a nodes P U T is denoted

firings are integer is removed.

by *x and z*®, respectively. The token load of a plapgat

In this paper we focus on the problem of designing ghe markingm is denoted bym(p;) or simply bym;.
diagnoser fountimedcontPNs, thus we can assume that the A transition tj € T is enabled at a markingn iff

net behavior is asynchronous and sequential. We also assugg < *t;, m(p;) > 0 and the enabling degree of at

that the net structure is known, as well as the initial magkin
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m iS enab(t;,m) = min %
pi€E®tLy P>ty

When a transitiort; is enabled at a marking: it can
be fired. The main difference with respect to (w.r.t.) disere
PNs is that in the case of contPNs it can be fired in any
real amounte, with 0 < a < enab(t;,m) and it is not
limited only to a natural number. Such a firing yields to a new
markingm’ = m + a - C(-,t;), whereC = Post — Pre
is thetoken flow matrix(or incidence matrix This firing is
also denotedn|t;(a))m’.



If a marking m is reachable from the initial marking Definition 3: Given a set of markingg and an observ-
through a firing sequence = t¢,1(a1)tr2(a2) - - tr(ar), able transitiont € T, firing an amounty, we define
and we denote by € RLTO the firing count vectorwhose SM,ta)={ceT: | ImeM :

component associated to a transitionis o; = > oy, mloym/, m' > a- Pre(-,t)}
hEH(0,t;) ’ = ’
where H(o,t;) = {h = 1,...,k[t,, = t;}, then we can the set ofexplanationsof ¢(«) at markings inM, and we

write m = mg + C - o, which is called thefundamental gefine
equationor state equation .

The set of all fireable sequences &N, mg), while Y(M,t(a)) ={e e R | 30 € E(M,t(a)) : o =e}
the set of all markings that are reachable with a ﬁnit‘?nee-vectors(or explanation vectojsof ¢(a) at M, i.e., the
firing sequence is denoted WYS“* (N, my). An interesting  firing vectors associated to the explanations. n
property of RS (N, my) is that it is aconvex sef16]. Thus, if M is the set of markings in which the system is
That is, if two markingsm; and m, are reachable, then known to be, e.g., the set of markings that are consistent
any markingms = o -mq + (1 — ) - mg, Va € [0,1] IS with an observed word, and(e) is a new observation,
also reachable. then (M, t(«)) coincides with the set of unobservable

The net\ is consistentff 3z > 0 such thatC' - x = 0.  sequences whose firing may have enabled the firing f

APNN = (P, T, Pre, Post) is astate machinéf Vt €  starting from any marking in\.

T, |°t] = |t*| <1 and Pre(p,t), Post(p,t) € {0,1} for any The following proposition shows a nice feature of
p € P andanyt e T. Y (M, t(a)).

Givenanet\' = (P, T, Pre, Post), and a subset’ C T Proposition4: Given a convex set of markings1 and
of its transitions, thel”—induced subnet of\ is the new an observable transitioh € T, firing an amountx, under
net N/ = (P, T, Pre’, Post’') where Pre’, Post’ are the assumption (A3), the sét(M,t(«)) is convex.

restriction of Pre, Post to T'. The netN’ can be thought Proof: To prove this we show that, given an arbitrary
as obtained from\ removing all transitions i’ \ 77. We  couple of vectory,y2 € Y (M, t(«)), any convex combi-
also write N <7+ . nation of them belongs to the sE{M, t(«a)).

Given a subsef” C T, the projectionIl of a sequence If yi,y> are e-vectors of(a) at M, it means that there
o € T* over T’ is defined adll : T — T'" such that: exist two markingsn’, m, € M such that
(i) (e) = ¢, wheree denotes the empty word; (ii) for

al o € T* andt € T, l(ot) = (o)t if ¢t € T, my =my+C-yy > o Pre(,t), (1)

andII(ot) = II(0) otherwise. Herel™ denotes the set of me=my+C-y2 2 a- Pre(,1).

all possible sequences obtainable combining elemers in  Now, letg = 6 - y; + 3 - y2 where§,3 € [0,1] and

included the empty word. 0 + 8 = 1. Being the net system continuous, by assumption
Given a sequence € L(N,my), we denotew = I1,(c)  (A3) there exists a firing sequenéewith & = g such that

the correspondingbserved word g is enabled ain’ = ¢ - m/ + - m, € M. But,

In the following, with a little abuse of notation, we will

: N m = m'+C-y
write thatw € T7. = Sml+B-mh+6-Cyr+8-C-ys
= 0-my+ 5 -my
I1l. EXPLANATIONS AND E-VECTORS > §-a-Pre(-,t)+ 8- a- Pre(-t)
In this section we propose a procedure to design a diag- = a Pre(,1)
noser for contPNs based on the following three assumptiortus proving the statement. O
(A1) The initial marking of the net is known. If the net system isboundedthe setY (M, t(a)) can

(A2) The set of transitions is partitioned & = T, U T, be easily characterized in linear algebraic terms using the
whereT, is the set ofobservableransitions, and’, is  following algorithm that assumes that the set is convex

the set ofunobservablédransitions. and defined as (see the following Remark 6):
(A3) TheT,-induced net has nepurious solutions
. . o M= ™ lerm™ | Ay | ™ | <. (2
In simple words, the third assumption implies that all u = oy

markingsm € RY, such thatm = m,+C-o, with o > 0, Note that this is exactly the case when thes¢toincides
are reachable. with the set of markings consistent with the sequencsf

Proposition2: Let (V,mg) be a contPN system. All ghservations beforé(), that we denoted a&(v), namely
markingsm € RZ, : m = mo + C -0, with o > 0,  yjith the set of markings in which the system may be given
are reachable, i.e/" has no spurious solutions, if at leastine gpservation. We recently proved the convexity 6{v)

one of the following two conditions is satisfied: in [18] where we also provided an algorithm to express it in
o N is acyclic[17]; the form of eq. (2).
« N is consistentand all transitions are firable fromm, Algorithm 5 (Computation oy (M, ¢(«))):

[16]. 1) Compute the set of vertice®,, of M.



2) LetE = 0. R 2 B

T T]T€5M: @—>42>©\

3) Foralle; =[m"' oy, |
2
. ©) t
a) compute the set of verticds; = [m” o] of Q/r !
the polytopé defined as R % B
m=m-+0C, o, Fig. 1. The Petri net of Example 8, where andes are not observable.
m > «- Pre(-,t) (3)
o, > 0;
b) let E = EU E;. the case of contPNs, the number of minimal explanations
4) LetY(M, t(a)) be the convex hull of2 - is in general not finite. Moreover, it cannot always be

In simol ds Algorithm 5 fi h fcharacterized in linear algebraic terms. In fact, as shown b
n S|mpfe ch)jr S é:]orift m Th wstfcompuﬁes the SEt %he following example, it may be a non convex set.
V?rtlce§ oM, enoted as (. Then, for each verter; = Example8: Let us consider the contPN system in Fig. 1
T a,T1" € Ep, it defines the set of markings — firing : -
u ' and the observatiom = ¢1(1). The following two vectors

[m
vectorso,, that can be obtained fromn firing a sequence of are minimal explanations far = t,(1): o’, = [1 O]T, e

unobservable transitions, with firing vecter,, that enables 0 1]T
t(«). Note that by Assumption (A3) this does not lead tci | i ticular. firi , Ki ‘1007 +C
spurious solutions. Then the algorithm computes the set of, n_prgrlwij ;r;’p .mngb(trW’ rr:jar 'Q?n;’ . [ " ) t'+ //u_.
verticesE of such a set. Finallyy (M, t(«)) is the convex 1“1_0 [O T C]’ 'S (,), _alne W ';"e rngr, we getm= =
hull of the union of the vertices thus obtained. [ I+ A Tu = [Lo21). .

Remark6: The setY(M,t(a)) resulting from Algo- . Note thatmy = 1 Le., the c.ontent Ops is e>/<lactly v_vhat
rithm 5 is defined in the 74 + n,)-dimensional space, Is needed for the. firing Of.l(.l)’ analogo.uslym4 =L 1e,
while all vectors inY (M, ¢(«)) obviously belong to the the content Ofpy is the minimum marking that allows the
n,-dimensional space. Analogously, the set of markings same firing. : 1 1
defined as in eq. (2) is a subspaceR¥f; " while each NNOW’llei us cqn5|der the Sequeneg, = 5 - oy + 5 -
marking in it belongs t®?,. Therefore, it would have been Tu = [3 3] - Itis easy to verify that it is an explanation
more appropriate to use different notations to distinguisff 1(1) at mo, but it is not minimal. If fact, if we consider
Y (M, t(a)) and M and their definitions in theR7;™ &, =[5 3] itis an explanation as well, bét, < o, B
space. To simplify the notation we preferred not to do that Even if the setY,,;,(M,t(c)) is not convex in general,

when this does not introduce ambiguity. we have been able to determine some classes of PNs for
The same remark will apply in the following to the setwhich it is convex.
Yonin (Mo, w). [ Proposition9: Let (N, mg) be a contPN and € T, be

a transition firing in a finite amount. If (A3) holds and the
IV. MINIMAL EXPLANATIONS AND MINIMAL E -VECTORS T, -induced subnet is either a backward conflict-free? et
The set of explanations can be restricted only consideririgstate machine, then the $ét;,(M,t(«)) is convex.
the explanations with minimal firing vector. As it will be Proof: If the T),-induced subnet is backward conflict-
clarified in the following section, this is extremely usefulfree, it is proved in the discrete PN framework that the set
when performing on-line diagnosis. of basic markings is a singleton [19] implying that the set
Definition 7: Given a set of markings/ and an observ- of minimal explanations is a singleton as well. Exactly the
able transitiort € T, firing an amounty, we define same reasoning can be applied to the continuous backward
conflict-free nets thus proving the statement.
EminMt(a))={ o € EM, () | / If the T),-induced subnet is a state machine, each transition
fo’ € XM, () : 0’ <o} has only one input and one output place. Moreover, it is an
the set ofminimal explanation®f ¢(«) at markings inM, ordinary net, i.e., the weights of the arcs are unitary, benc
and we denote firing an unobservable transition in an amountexactly a
N ) tokens are removed from the input place andokens are
Yin(M,t(e)) = {e €R5 | 30 € Zmin(M, t(a)) : put in the output place. ObviouZIy, I?the minimal e-vectors
o =e} in eq. (1) are such that those equations are satisfied as
the minimal e-vectorgor minimal explanation vectoysof equalities. Following the same steps of Proposition 4, all
t(«) at M, i.e., the firing vectors associated to the minimainequalities are satisfied as equalities. Hence the cooalus
explanations. W s true. O
In the discretecase it is proved that the set of minimal Under the assumption of Proposition 9, Algorithm 5 can
explanations is always finite provided that the 4étis finite, be updated as follows to computg,;,, (M, t(a)).
thus it can be exhaustively enumerated. On the contrary, in Algorithm 10 (Computation ok, (M, t(«))):

A bounded polyhedroP C R?, P = {x € R | Az < B}is 2A PIT net isbackward conflict-freéf Vp € P |°p| < 1, i.e., if each
called apolytope place has at most one input transition.



1) Compute the set of vertices,, of M. of the constraints in eq. (3) and (4). In particular, all the
2) Let E = 0. basis of (3) and (4) can be computed off-line because they
3) Foralle; = [m” &%) e Eu: do not depend on the current observation, thus only products
of matrices need to be performed on-line.
a) compute the set of verticds = [m” o] of the

polytope defined as V. BASIS MARKINGS AND JVECTORS

~ In this section we show that under the assumptions of
m=m+ Cy "Ou Proposition 9, the notions of basis markings and j-vectors
mj = max{m;,a- Pre(p;, 1)}, Vp; €t we introduced for discrete PNs, can still be used in the
m, oy 2 0; continuous case.
) A basis marking), is a marking reached fromm, with
b) let & = E'U E;. ) o the firing of the observed word and of all unobservable
4) Remove f_rqu those vertices that are not minimal i 43nsitions whose firing is necessary to enable A j-
w.r.t. the firing vector. vectory € Y. (mo,w) is a firing vector of unobservable

5) LetYyin(M,i(e)) be the convex hull of. transitions whose firing is necessary to reddh.

There are two main differences between Algorithms 5 Definition 11: Let (A, m,) be a net system wher¥ =
and 10. Firstly, in Algorithm 10 since our goal is that of<p7 T, Pre, Post) andT = T, UT,. Letw € T* be an
characterizing minimal e-vectors, we limit to considerddo gbserved word. We define
sequences of silent transitions that lead to a fluid content i

the input places ot that is strictly necessary to enable its Lw) = {o€LN,mg) | (o) =w}
firing for an amounta. Obviously, if some of such input he set of firing sequencesnsistenwith w € T*. n

places already have a sufficient fluid content (that may also pefinition 12: Let (N, mo) be a contPN system where
be greater than that strictly necessary) we keep it unaltere,, _ (P,T, Pre Post7> andT = T, UT,. Leto €

To do this, we impose that for all placgs < °t it is L(N,m) be a firable sequence and= P,(c) the corre-

_ ~ 3 . . - .
mj = max{m;, o - Pre(p;, t)}°. ) sponding observed word. We define the sejustifications
Let us also observe that the above equality can always Bg ,, as

satisfied for all placeg; € °¢ because of the assumptions of

Proposition 9 on the unobservable subnet. In fact, if the net J(w) ={ow € T | [Fo € L(w) : 0y = Pu(0)]A
is backward conflict-free it may never occur that two silent [Ao’ € L(w) : o7, = Pu(o")A
transitions share the same output place. If the net is a state o, S oul}.

machine all input silent transitions @f; have at most one  Moreover, we define

input place. Therefore, in both cases, if some plage °t

has not a sufficient fluid content, we can always fire its silent

input transitions in an amount to reach a marking equal to  Ymin(mo,w) ={y € RZj | Jou € T(w) : 0w = y}

- Pre(p;,t). ) ] ) the corresponding set ¢ivectors |
The second difference between the two algorithms is that |, simple words, 7 (w) is the set of sequences of unob-

n AI_gonthm 10 we need to remove from the set O,f Vertice3eryvable transitions interleaved with whose firing enables
obtained at Step 3 all those vertices that are not minimat W.I' and whose firing vector is minimal. The firing vectors of
the firing vectors (see Step 4). Indeed, the set of vertices gfoqe sequences are called j-vectors.

(4) does not necessarily correspond to minimal e-vectaots, b Example 13: Let us consider again the contPN system in

define a superset of the set of vertices relative to minim@ig_ 1. Assumew = t,(1) is observed. It is easy to verify
e-vectors. As an example, let us consider the net system, / _ e2(1) and o = £5(1) are justifications ofw
u u 1

Fig. 2. Let M = {[mg 0]T}. Assumet;(1) is observed. namelyo’, 0" € J(w) .
If we compute the vertices of (4) we also obtain a vertex Thjs js consistent with the result already discussed in
corresponding to the firing af;, even ife; is not obviously Example 8 where we claimed that,, o/ € Yy (mo, w)
a minimal explanation! whereo! — [1 01T, o — [0 1] 1Oy min 5 .
An easy way (even if computational demanding) to remove Defini?ion 14: Let &\/, mo) be a net system wher’ —

the non-minimal vertices is that of checking for any pair<P T, Pre, Post) and T —= T, U T.. Let w be a given

T T c B if min o . - WU @ SVE
[my o], [ma 02]" € Eif minj—1,..n, (01, = 02,) 2 0. gpservation andr, € 7 (w) be one of its minimal justi-

If it is true, the vertexm; o4]7 does not correspond to a fications. The marking\ly, — mg + Cyy - Gy + C - 0, i€
. - u u wy Ty

minimal explanation and should be removed frém . the marking reached firings interleaved with the minimal
Let us finally observe, as already discussed in detail g(’u

A : . ustificationo,, is calledbasis markingandeo,, is its j-vector
[18] when computing the set of consistent markings, th Brjustification-vecto). -

the computational complexity of Algorithms 5 and 10 can Example 15: Markings m’ and m” in Example 8 are
be drastically reduced taking advantage from the Structuge, <is marking.s for the observed ward= (1) n

SNote that bothi; anda - Pre(p;, t) are given values, so the constrain QbV'OUSIy' because in general mor? than one justification
is linear. exists for a wordw (the set7(w) is generally not a



singleton), the basis marking may be not unique as well,
Furthermore, two or more j-vectors may correspond to th
same basis marking. Q\/V O—1

Under the assumptions of Proposition 9 the set ’—l |_, _,|_,Q_,V B b

Yonin (Mo, w) is convex and it provides our starting point for 9

the on-line diagnosis as discussed in the following section
Proposition16: Let (A, mg) be a contPN. Lew € T

be an observed sequence where each transition f|res for a

finite amount. If (A1) to (A3) hold and th&,-induced subnet 3 & The Petri net of Example 18, whers, e4, <5, g, =7 and ey are

is either backward conflict-free or it is a state machinenthe

the setY,,;n(mo, w) is convex.

Proof: We prove this by induction on the number ofy, 4 j.vector. In particularn is the basis marking corre-
observed transitions. sponding to th(—;y ~vectora,.

that it has been observed for an amouhtBy Proposmon 9 whereT, = {53’ ...,es}. The T,-induced subnet is a state

the setY,,i,(mo,t'(a’)) is convex. machine.

(Inductive step.)Assume that the se¥y.in(mo,v) IS Let w = t,(1)t2(1)t2(1) be the current observation.
convex. We have to prove that the $&1;,, (1m0, w) is convex The set of vertices computed at the different iterations of
as well, wherew = vt(). Algorithm 17 are summarized in the following items.

If the T',-induced net is backward conflict-free then the | ,, — . je.  is the empty word.
result is true since the set of minimal explanations and Yonin(mo,e) ={[100010]00000 0]} where

consequently the set of basis markings are singleton [19].  the first six entries correspond to the basis marking (that
Assume now that th&’,-induced net is a state machine.  coincides withm,) and the last six entries correspond

In this class of nets the firing vectors with minimum com- {0 the minimal j-vector that is initially null by definition.
ponents corresponding to the moving of one token from any , 4, — t1(1).

place to any other place, e.g,; € °t, have binary entries. Yinin(mo,t1(1)) ={[010010]000000]”}. The
Hence the minimal explanations have binary entries as well,  firing of ¢,(1) is enabled at the initial marking thus
thus implying that the seY’i, (mo, w) is convex. O we only have one j-vector that coincides with the null
An algorithm to compute’,,;, (mo,w) can be obtained vector, and the basis marking is obtained from the initial
as a generalization of Algorithm 10. marking (the basis marking at the previous iteration)
Algorithm 17 (Computation o, (mo, w)): firing t1(1).
1) Letv =c¢. o w=11(1)t2(1).

m mo The set of vertices obtained at Step 6 of Algorithm 17
2) LetYiin(mo,v) = - 0 ' is given by the the following elements:
3) Lett(a) be a new observation and = vt(«). 1) eg=[100010]011001]7,
4) Compute the set of verticegv) of Yiin(mo,v). 2) e2=[110000]00001 1],
5) Let B = 0. 3) e3=[100010|100000]7,

6) Foralle; = [m’ &7 € £(v): 4) e, =[100100]100010],

that correspond respectively to the justifications=
EQE5ER, 09 — E7E8, 03 = €3, 04 — E3E7.

However, at Step 7 the last elemeat is removed
because it does not correspond to a minimal j-vector.

a) compute the set of verticds;, = [m? yT|T of

the polytope defined as

m; = max{mj,a : PTe(pjat)}v Vpj €
m=m' + 0(7 t(a))
m', o, > 0;
(5)
b) let E = EUE,.

7) Remove fromE those vertices that are not minimal

w.r.t. the firing vector.
8) Let Y,,in(mg,w) be the convex hull ofz.
9) Letv = w and goto Step 3. |

Note that, given a generic elemeat= [m” o] €

u

Indeed, the firing ok~ is not necessary to enablg(1)
at the previous basis markingdf, has already fired.
w = tl(l)tg(l)tg(l).
The set of vertices obtained at Step 6 of Algorithm 17
is given by the following elements:
1) e/ =[200000]011012]7,
2) e,=[200000]10001 1],
that all correspond to minimal j-vectors, thus none of
them is removed at Step 7. |

V1. FAULT DIAGNOSER DESIGN

Let us consider a system modeled as a contPN whose

Yimin (Mg, w) (ot only a vertex) the firsin entries corre- transitions may either be observable or unobservéable=(
spond to a basis marking and the last entries correspond T, U T,). Assume that a certain number ahomalous(or



fault) behaviors may occur in the system. The occurrence of
a fault behavior corresponds to the firing of an unobservable
transition, but there may also be other transitions that are
unobservable as well, but whose firing corresponds to regula
behaviors. Then, assume that fault behaviors may be dividede
into » main classesféult classel and we are not interested
in distinguishing among fault events in the same class.
This can be easily modeled in PN terms assuming that
the set of unobservable transitions is partitioned into two
subsets, namely(;, = Ty U T4, WhereT includes all o
fault transitions andl}., includes all transitions relative
to unobservable but regular events. The $gtis further
partitioned intor subsets, namelyi’y = T UTF U... UTy
where all transitions in the same subset correspond to the
same fault class. We will say that thh fault has occurred
when a transition irT} has fired. .

We now provide the definition adiagnoseranddiagnosis
statethat we first introduced in [13].

Definition 19: A diagnoseris a function A : T x
{1y, T7,...,Tf} — {0,1,2,3} that associates to each
observationw and to each fault cIasT}, i =1,...,r, a

the diagnosis states may either be equalOter 1.
Now, sincees is not enabled at the initial marking it is
A(w, T}) = 0. On the contrary, transitiosy; is enabled

at the initial marking thug\ (w, T7) = 1.

Let w t1(1). The set of justifications atv only
contains the empty word becausél) is enabled at the
initial marking. However, bottzs ande; can fire after
the occurrence ofy (1). Thus,A(w, T}) = A(w, T7) =

1.

Let w = ¢1(1)t2(1). Looking at the set of minimal j-
vectors computed in Example 18 it is easy to observe
that for both fault classes, we have some justification
that contains at least one transition in the class, but we
also have justifications that contain none of them, thus
A(w,T]}) = A(w,T?) =2.

Let w = t1(1)t2(1)t2(1). Always looking at the set of
minimal j-vectors computed in Example 18 we argue
that A(w,T}) 2 and A(w,Tf) = 3. In fact,
while transitiones is contained in only one of the two
justifications atw, transitione; is contained in both of
them. [

diagnosis state The on-line computation of the seffw) and J (w) may

. A(w,T;) =0 if for all o € L(w) and for allt; € T} be computational demanding in large scale systems, thus in
it holdst; ¢ o. ~ the following we suggest an alternative procedure to comput
In such a case theth fault cannot have occurred, diagnosis states that is based on the knowledge of the the set
because none of the firing sequences consistent withnin (70, w). In particular, such a procedure well applies to

the observation contains fault transitions of class ~ all cases in which the séty;, (m, w) is convex. Thus for
. A(w,T;) =1if: sure it well applies to net systems whaswbservable subnet

(i) there exists € £(w) andt; € T} such thatt; € o is eitherbackward conflict-fre@r a state machine

but Proposition21: Consider an observed word € 7. Let
(ii) for all o € J(w) and for allt; € T} it holds that .
trdo. l; = min Z ou(t;)
In such a case a fault transition of classnay have t; €T}
occurred but is not contained in any justification.of s.t. (6)
. A(w,T}) :_2 if there existo, o’ € J(w) such that: [ m ] € Vonin (M0, )
(i) there existsy € T such thatty € o; Oy
(ii) for all t; € T}, ty & o'
In such a case a fault transition of clasis contained U = max Z u(t;)
in one (but not in all) justification ofv. €T} .
o A(w,T}) =3 if for all o € L(w) there existg; € T} s.. )
such thatt; € o. [ m ] € Yinin (Mo, w)
In such a case th&h fault must have occurred, because Ou
all firable sequences consistent with the observation o Z 5ults)
contain at least one fault transition of class | Us = Taax ,G“ J
, ) t; €T
The diagnosis states 1 and 2 correspond both to cases ot T
in which a fault may have occurred but has not necessarily : m (8)
occurred. The main reason to distinguish between them is [ o ] € Yoin(mo, w)
the following. In the state 1 the observed behavior does v _
m+Cy,-6,>0

not suggest that a fault has occurred because all minimal

sequences leading to are fault free. On the contrary, in It holds:

the state 2 at least one of the justifications of the observed . B

behavior contains one transition in the class. Aw,Tj) =0 & ui=1u=0
Example 20: Consider the contPN system in Fig. 2 al- Aw,Tp) =1 & u;=0, 4 >0

ready examined in Example 18. Assume two fault classes: Alw,Tp) =2 & 1;=0, u; >0

T} = {es3} andT? = {eg,27}. Aw,Tj) =3 & Li>0

o Let w = £. The set of justifications is empty, thus Proof: It follows from Definitions 12 and 19.



If u; = u; = 0 it means that none of the justifications con-the unobservable subnet the setjefectors is convex thus
tains transitions il and no transition irT;; may also have the diagnosis state may be easily computed solving a LPP.
fired after any of such justifications. But by Definition 19sthi  We plan to extend this work in several directions. Firstly,
is exactly what corresponds to diagnosis statdloreover, we want to characterize how the number of vertices of the
if u; # 0 it means that at least one justification contains gbolytope defining the set of minimal explanations changes
least one transition in théh class, thus the diagnosis statewith the observed word. Secondly, we plan to extend the
cannot be0. Finally, if u; # 0 but u; # 0 it means that at diagnosis approach to more general classes of Petri nets for
least one transition in thah fault class may have fired after which the set of minimal explanations is not convex. Finally
the firing of any of the justifications ab. In such a case the we will try to derive some criteria fodiagnosability namely
diagnosis state is- 0. some criteria to establish a priori if the fault occurrencas

If w;, = 0 and w; > 0 it means that none of the be reconstructed after a finite amount of observations.
justifications contains transitions iff} but at least one
transition inT;; may have fired after a basis marking, thus

the diagnosis state is Obviously, the diagnosis state cannot [1] R. Boel and J. van Schuppen, “Decentralized failure diésgs for

b  tol if eith 0 o= 0 discrete-event systems with costly communication betweéy-
€ equal tol It either u; 7é oru; = 0. nosers,” inProc. WODES'02: 6th Work. on Discrete Event Systems
If [; = 0 andwu; > 0 it means that at least one of the (Zaragoza, Spain)Oct. 2002, pp. 175-181.

justifications atw contains some transition in thi¢h class, [2 R. Debouk, S. Lafortune, and D. Teneketzis, “Coordidatiecentral-

. . . . ized protocols for failure diagnosis of discrete-eventeys,’Discrete
that is by definition the case of diagnosis state equal i Events Dynamical Systemsl. 20, pp. 33-79, 2000.

any of such conditions is violated the diagnosis state canngga] s. H. zad, R. Kwong, and W. Wonham, “Fault diagnosis incrtie-
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