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Abstract

Timed continuous Petri net (contPN) systems with infinite server
semantics are non-linear systems, particularly a subclass of piecewise
linear (PWL) systems. This paper addresses several problems regard-
ing the state observability of these systems. We assume that the initial
marking/state is not known and measuring the marking of some places
we want to estimate all the others. First, a study of the different linear
systems corresponding to a continuous Petri net system is performed.
It is shown that in some cases, some of them are redundant, and so
can be disregarded. The notion of distinguishable modes is introduced
helping to give a necessary and sufficient criterion for the observability
in infinitesimal time. Structural observability, i.e., observability for all
possible values of firing rates of transitions, is studied and it is proved
that in some cases it can be reduced to a linear problem, even if the
system is nonlinear. Using results from linear structured systems, the
concept of weak structural or gemeric observability is considered.
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1 Introduction

State estimation is a very important part of the control problem when not
all the states are directly measurable. In last years, state estimation has
been studied by many researchers [1, 4] but many aspects are still open,
specially in the case of hybrid systems. In this paper we study observability
i infinitesimal time, structural observability and generic observability of
timed continuous Petri nets systems with infinite server semantics. Under
this semantic, a contPN system with joins corresponds to a set of switching
linear systems, where the switches depend on the marking and the rates of
the transitions. A brief introduction to timed contPN is given in Section 2
recalling basic concepts and results used along the paper.

While observability is well understood in classical linear system the-
ory [10, 15], it becomes more complex in the case of hybrid systems. In
this case, observability has been studied in the literature in the last years
considering different classes of systems: piecewise linear, piecewise affine
and switched hybrid systems [1, 2, 3, 4, 19]. Being contPN system a PWL
system, the results regarding its observability are similar to those obtained
in hybrid systems, but they differ for two main reasons: (1) the existence of
linear systems that are redundant, i.e., systems that it is not necessary to
consider; (2) when the marking is at the border of two regions, more than
one linear system can be used indistinctively (thus it is not important which
one is taken), which makes harder to distinguish between them.

In Section 3 the concept of redundant mode [14] is introduced. An expo-
nential number of linear systems can be embedded in a contPN but not all
of them are always fundamental for the evolution. A sufficient and necessary
condition for a mode to be redundant is presented. After, in Section 4 the
notion of distinguishable modes is considered, a concept similar to the one of
hybrid systems: distinguishable discrete states. A condition for two modes
to be distinguishable is given and, finally, a necessary and sufficient cri-
terium for the observability in infinitesimal time of general contPN systems
is proved.

Structural observability is a more general concept of observability, en-
suring observability for any (positive) value of firing rates, not just for a
particular value. This concept is studied in Section 5. For different sub-
classes of nets it is shown how can be found the set of places with minimum
cardinality that ensures structural observability. This is a different problem
from the one in [8] where the idea is to check if a net is structurally observ-
able or not for a given set of measured places. Even if we deal with PWL
systems, for some subclases of nets it is proved that the observability can



be checked on a reduced join-free net that corresponds to a linear system.

In [12] an interpretation of the loss of observability in the case of join
free (JF) contPN systems is given. When the system contains attributions,
the observability cannot be checked locally and can be lost for some spe-
cific values of the firing rates of the transitions. Moreover, using results on
(linear) structured systems [5], the problem of generic observability (here
observability for almost all firing rates A) is solved in Section 6. In this
case, the firing rates of the transitions become parameters and the system
is called generically observable if it is observable for almost all values of its
firing rates. Hence, the attributions will not create problems for generic
observability.

2 Timed Continuous Petri Net Systems

Definition 1 A contPN system is a pair (N',mg), where N = (P, T, Pre, Post)

s a net structure and mygy € RLPO‘ is the initial marking. P is the set of places,
g PIX|T]

T is the set of transitions and Pre, Post € RLO are the pre and post
incidence matrices, respectively.
Let p;, i = 1,...,|P| and tj, j = 1,...,|T| denote the places and the

transitions. For a place p; € P and a transition t; € T, Pre;; and Post;;
represent the weight of the arc from p; to t; and from ¢; to p;, respectively.
Each place p; € P has a token load denoted m; € R>g. The vector of
all token loads is called marking (distributed state) and it is denoted by
m € RLPJ. The preset and postset of a node v € P UT are denoted by ®v
and v®, and represents the input and the output nodes of v, respectively.

Example 2 Let us consider the contPN system in Fig. 1(b). For this net,
P = {pl’pQ’pfi}} T= {tlyt2at3at4}’

1 010
Pre=|0 1 1 0 Post =
00 01

For example, Prei3 = 1 means the existence of an arc from p1 to t3 of
weight 1, while Postis = 1 means the existence of an arc from ty to p1 of
weight 1.

A transition ¢; is enabled at m iff Vp; € *t;, m; > 0. Its enabling degree
is:

enab(t;,m) = min { i } (1)

pi€®t; Preij



Figure 1: Two timed contPNs

which represent the maximum amount in which ¢; can fire at m. An enabled
transition ¢; can fire in any real amount 0 < a < enab(t;,m) leading to
m' = m + a-C.; where C = Post — Pre is the token flow matriz and
C'; denotes its 4% column. If m is reachable from myg through a sequence
o = aqty...oxtg, a state (or fundamental) equation can be written: m =
my+C-o, where o € Rgol is the firing count vector, i.e., o; is the cumulative
amount of firing of ¢; in the sequence o. The set of all reachable marking
from my is called reachability space and it is denoted by R(N, my).

When a time interpretation is introduced, the fundamental equation de-
pends on time: m(7) = my+ C - o (7). After time differentiation becomes:
m(7) = C - 6(7). The derivative of the firing count vector f(7) = &(7) is
the (firing) flow. Therefore, the dynamical equation of a contPN results:

m(r) = C - f(7) (2)

In this paper we consider contPN with infinite server semantics that for
a broad class of net systems provides a better approximation of the steady
state throughput [13] of the discrete net. With this semantics, the flow of a
transition ¢; is given by:

fi(1T) = Aj - enab(t;, m(r)) (3)
7|

where A € R associate a constant A\; > 0 to each transition ¢; representing
its firing rate. Substituting (1) into (3) and the result in (2), it can be easily



observed that a timed contPN system with infinite server semantics is a
piecewise linear system with polyhedral regions.
There the dynamical matrix in each R; is calculated using a character-
istic matrix called IT* for each mode i (see [11] for more details)
1 .
- { Prem if Ym e R;, %ehhj = enab(t;, m)
J

0, otherwise

Denoting by A the matrix having on its diagonal the elements of A, the
dynamical matrix in R; is given by: A; = C - A - IT*. Hence, the dynamics
of the markings are given by:

() = A -m(r), me Ry, i€l (4)

where A; € RIPIXIPI R, is a polyhedral set, and I is a set of labels for the
modes (linear systems) of the piecewise linear system. (See [11] for more
details. There the dynamical matrix is calculated using a characteristic
matrix called II; for each mode 7).

Example 3 Let us consider the contPN system in Fig. 1(b) (see also Ex. 2).
The flows of the transitions are given by: fi = A1 -mq, fa = Ao - mo,

fy = Az-myp if mp <mo

BT Aeme ifma <my
and fy = Ag-mg. Let us assume A = 1. Using (1), (3) and (4), the modes of
the systems are: (i) the enabling degree of ts given by my: Ry = {m1 < may}
with

-2 1 0
A= 0 -1 0
1 0 -1

-1 0 0
Ay = 1 -2 0
0 1 -1

3 Redundant linear systems

The number of regions and modes can be exponential, upper bounded by

[T [°tj| where |*t;| is the cardinality of the set *t;. An evident necessary
t;eT



condition for the observability of the PWL systems in infinitesimal time is
the observability of all linear systems [4]. So, if the number of linear systems
composing the contPN under study is reduced, the complexity analysis of
the observability decrease.

In the context of contPN, for a given initial marking 1mg, some places
can be implicit [17] and their marking will never be the unique to give the
enabling degree of a transition in (1). In other words, py € P is implicit
if for any reachable marking from my, PTeiij < PT@’“M with p; € *t; \ {px}
is satisfied V¢; € p,. This implies that the corresponding regions of the
contPN system defined by PT@"U < PT@’;J_ are either empty or reduced to
their borders. On the other hand, for a given initial marking and a given
firing rate vector A, in [16] it is introduced the notion of time implicit arc
as those arcs from a place p; to a transition t; such that PT@"U is never the
unique quantity that gives the minimum in (1). As in the previous case, the
corresponding regions are either empty or reduced to their borders.

Unfortunately, the previous results, based on the net structure, timing
and initial marking, cannot be used in the context of state estimation since
the initial marking is not known for us and can take any real positive value
(our approach will be to identify this marking). In this section we study a
stronger concept, only depending on the net structure, valid for all possible
initial markings. It may happen that for every initial marking all reachable
markings belonging to a region are on the border (an example is illustrated
later in Ex. 5). Hence, these markings belong always to other regions, so
it is not necessary to consider this mode, obviously neither to check the
observability of the corresponding linear system. Therefore, our first step is

to structurally characterize these redundant modes and to remove them.

Definition 4 Let R;, i € I be a region. If for all mg, R; C Uj# R; then
R; is a redundant region and i ¢s a redundant mode.

Example 5 Let us consider the subnet in Fig. 2(a). Assume some reachable
markings such that the enabling degree of t1 is given by my, i.e., m1 < mao,
and the enabling degree of to is given by ms, i.e., mg < my. These markings
belong to the following region R1 = {my < mg, mg < my,...}. Taking other
markings for which the enabling degree of t1 and to is given by the same
myq, the corresponding region is Ro = {m1 < maq,...}. Assume also that
the enabling degrees of the other transitions not represented in the figure are
given by the marking of the same places, i.e., the other inequalities defining
R1 and Ry are the same.
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Figure 2: ContPNs with redundant regions.

From the above definition of Ry and Ro and from the assumption on the
other inequalities, it is obvious that Ry C Ro for all my € R‘>Po|. In fact,
R1 is a frontier of Ra. Since the linear system in Ro provides the same
time-evolution for the markings m € Ri, the linear system in Ri can be
ignored in the analysis of the contPN system.

To see if a mode i € I is non-redundant, check if there exists a marking
in the corresponding region R; such that the inequalities composing its def-
inition are strictly satisfied. In other words, if for a join ¢; with p;, py € °t;

does not exists m € R|>PO‘ such that Te' < 5~k then the linear systems of
> i

P Preg;

the regions of the form Ry = {% < PTekk.,. . } are redundant.
3 J

Proposition 6 Let N be a timed contPN system. The region R; with the
corresponding mode i € I is redundant iff fm € RLPOI solution of the following

; ; y my My my
system of strictly inequalities of the form Prey; < Pres;s ON€ for each Prer; <

M defining R;.

Prey;

Proof: Obviously, if the system has a solution this is an interior point
of R; and the corresponding linear system cannot be removed.

For the reverse sense, let us assume that the system of strictly inequalities
has no solution. This means that for all my > 0 there exists at least one
join transition ¢; such that PTe’fkj > PTe“uj. If for all m this inequality is
satisfied strictly the region is empty and can be eliminated without problems
together with the corresponding linear system. Otherwise, if it is an equality,
considering that the flow of ¢; is given by m, (not by my) it is clear that
the corresponding regions include R;. Hence, ¢ is a redundant mode. |

The solution of the system of inequalities in Prop. 6 can be checked

solving a linear programming problem (LPP) with a new variable e. For




My < My

each defining R;, a constraint of the following form is added:

Pregj — Prey;
pra— + € < pra—. The objective function will be to maximize e. If the
Teg; Prey,

resulting LPP is infeasible or has solution € = 0 then R; is a redundant
region.

It may seem that if a mode is redundant, a set of arcs has to be implicit
or timed implicit, since they cannot define the enabling. However, it is
not true, since it is not that an arc never defines the enabling, but that
a combination of arcs may never define the enabling. For example, in the
net in Fig. 2(a), none of the arcs is implicit, although a region is reduced
to its borders. In this example, the redundant mode could also have been
avoided by fusing transitions ¢ and t, into a single one [16]. However, this
kind of transformation cannot always be applied, as shown in the following
example.

Example 7 Let us consider the contPN in Fig. 2(b) and let us consider the
region R1 = {mo < my,m3 < mg,my < mg} that it is equivalent to assume
that the enabling degree of t1 is given by ms, the one of to by ms and of t3
by m1. Applying Prop. 6 we want to check if R is redundant. We have to
consider the following system:

mo < My (1)
ms < My (2) (5)
mip < ms (3)

Combining (5.2) and (5.3) we obtain my < mg that is in contradiction with
(5.1). Therefore, region R1 and mode 1 are redundant.

4 Observability of unforced timed continuous Petri
nets

Let us assume that the marking of some places P, C P can be measured,
i.e., the token load at every time instant is known, due to some sensors.
The problem is to estimate the other marking variables using these mea-
surements. Going back to (4), the system considered here is given by:

m(T) =A,; -m(T),m eER;,vel
(6)
y(r) =8 -m(7)
where S is a | P,| X | P| matrix, each row of S has all components zero except
the one corresponding to the i measurable place that is 1. Observe that



the matrix S is the same for all linear systems since the measured places
are characteristic to the contPN system. Here it is considered that all linear
systems are deterministic, i.e., noise-free.

Definition 8 A timed contPN system (N, X) with infinite server semantics
is observable in infinitesimal time if it is always possible to compute its

initial state myq in any time interval [0,€), Ve > 0, by observing only a set
of P, C P places.

In the rest of the paper, our attention is focused on observability in
infinitesimal time. Thus, if we say that a system is observable we understand
that it is observable in infinitesimal time. To study this kind of observability,
the following assumptions are considered:

A1l. The net structure N and timing X are known;

A2. The redundant modes are removed.

The observability of a JF contPN systems (a contPN is JF if there is
no synchronization, i.e., Vt; € T, |*t;| = 1) has been studied in [8] using the
results of classical linear system theory since a JF contPN system is a linear
system, i.e., has only one mode. An interesting interpretation at the graph
level is given for the state estimation procedure of a contPN system: going
backward on path.

Example 9 Let us consider the contPN in Fig. 1(a) and assume P, = {p1 },
i.e., p1 is measured. So, m1(T) is known at every time instant. Then, the
derivative of the marking, i.e., m1(7), can be computed, and also the flow of
the transition t1 because f1(1) = A1 - mi(7) since by assumption (Al.), the
vector A is known. Fwvidently, the flow of ts is deduced immediately using
that f3(7) = ma(7)+ f1(7). Thus the marking of ps can be computed because,
fa(r) = Ag-mST(T). Knowing ms(7) we can derive ms(T), but f1(7) and f3(7)
are also known, hence fo(T) can be estimated as: fo(T) = mg(7)+2- f3(1) —
f1(7) that permits to estimate mao(T) since fo(T) = Ag - ma(T).

Here, we consider the problem of state estimation of the general contPN
systems, not only JF. In this case, a very important problem for the ob-
servability is the determination of the mode, also called discrete state, i.e,
the mode in which the system is. It may happen that the continuous state
estimation fits with different discrete states, i.e., observing some places, it
may happen that more than one linear system satisfy the observation. If
the continuous states are on the border of some regions, it is not important
which linear system is assigned, but it may happen that the solution corre-
sponds to interior points of some regions and it is necessary to distinguish
between them.



Example 10 Let us consider the timed contPN in Fig. 1(b) and assume
XA =1 and P, = {p3}, i.e., 8 =[0 0 1]T. This system has two modes (see
Ex. 3) corresponding to the following linear systems:

o m(r) = A; -m(7)
m={ 500 e "

The observability matrices (see the appendiz for the classical definition)
of these two linear systems are:

00 1 0 0 1
91=| 10 —11]; =0 1 —1
-3 1 1 1 -3 1

Both have full rank, meaning that both linear systems are observable. Let
us take my = [1 2 0T € Ry \ Rz and ma = [2 1 0]7 € Ry \ Ry. As it is
well-known, the corresponding observations are 9;m; (1) = [y(r) 9(r) ...]T.
Nevertheless, for the selected markings we have that 91 - my = 99 - mo =
01 —1)T. Therefore, it is impossible to distinguish between my and M.

Definition 11 Two modes i and j of a contPN system are distinguishable
if for any mq € R1\Ra and any msy € Ro\ Ry the observation y1(7) for the
trajectory through my and the observation yo(T) for the trajectory through
my are different on an interval [0, €).

Remark that we remove the solutions at the border Rq N Ry since for
those points both linear systems lead to identical behavior, therefore it is
not important which one is chosen.

An immediate sufficient condition for being distinguishable is:

Proposition 12 Let i {i = 1,2} be a mode, ¥; and R; the corresponding
observability matrix and region. If the LPP

max €
st. —€-1<mji—mg<e-1
791-m1—192-m2:0
mi ER (8)
1 1
mo € Ro

mi,my >0

has the solution e = 0, then the modes 1 and 2 are distinguishable.

10



Proof: First, observe that LPP (8) has always € = 0, i.e., m; = mqy =
0, as a solution. On the other hand, maximizing ¢, the infinite norm of two
possible markings m; € Ry and mgy € Ry is obtained. Therefore, if the
solution of (8) is € = 0 means that do no exist two markings (m,ms) €
(R1\ R2) X (R2\ Rq) for which their outputs, i.e., ¥; - mq and Y9 - my are
equal. So, given a marking in any of these regions we can determine the
mode that governs the evolution of the contPN system. |

Example 13 In Ez. 10, for the timed contPN in Fig. 1(b) it is shown that
V1 -my = ¥ -mo = [0,1,-1]T. Solving LPP (8), the problem is found
to be unbounded, thus according to Prop. 12 we cannot conclude that the
modes 1 and 2 are distinguishable. For the interpretation of this result, let
us consider the equations that govern the evolution of the system.:

f3 = )\3 . min{ml, mg} (9)
M1 = Ag-mg — AL -my — f3 (10)
Moy = A1 -mp — Ay -mg — f3 (11)

Summing (10) and (11) and integrating, we obtain

(11 + m2)(7) = (1 + ma)(0) — 2 /0 " fs(0) - do (12)

Obviously, if ps is measured, fs can be estimated since f3(1) = mg(T) +
Ay - ms(T). Therefore, according to (9), the minimum between my and mo
is estimated. Moreover, due to (12) their sum is also known. Nevertheless,
these two equations are not enough to compute the markings, i.e., we have
the values but it is impossible to distinguish which one corresponds to which
place.

We use the same contPN system to illustrate that Prop. 12 provides only
a sufficient condition. Let us take now X = [2 1 1 1]7. In this case, the
dynamical matrices are:

-3 1 0 -2 0 0
A= 1 -1 0]; Ay=| 2 -2 0
1 0 -1 0 1 -1

00 1 0 0 1
91=| 10 —11]; =0 1 -1
—4 1 1 2 -3 1

11



Let mi = [1 517 € Ri\ Ry and my = 2 1 1]T € Ry \ Ry. Making
the computations, we have: ¥1my = Yamsy = [1 0 2]7. So, we have the
same observations for these two markings at a time T but the modes are
distinguishable. To see this let us assume the marking at 7 + 0, where J is
a very small value. Being a small time variation, we can consider that the
flow of the transitions are constant during the time interval (17,7 + §) and
we can write:

mi (1 +0) =my(7) + Aimy(r)d = [1+20 5-45 1]7

and
mh (1 +6) = ma(1) + Aoma(7)d =245 1+25 1)7.

The corresponding observations for these markings are: 9ym} = [1 2§ 2 —
126]7 # Y9mly, = [1 25 2 — 146]T. Since in all linear systems the set of
measured places is the same and the firing rates are also the same can be 0b-
served immediately that any m/ € Rq, m4 € Ry with 91m// (1) = doami(7)
then 9ym/{(T+38) # daml(T+0). Therefore, according to Def. 11, the modes
are distinguishable.

Remark 14 Prop. 12 provides only a sufficient condition for two modes
to be distinguishable. Considering the particular structure of our systems,
i.e., the same places are measured in both systems and the same firing rates
are assigned to the transitions, if (8) has a solution at time T, the next
step is to check the solution of this system after a small variation of time,
T+0. If there exists no solution, the modes are distinguishable (see previous
example).

Using the notion of distinguishable modes, an immediate criterium for
observability in infinitesimal time is:

Theorem 15 A timed continuous Petri net system (N, A) under infinite
server semantics is observable in infinitesimal time iff:

1. All modes are distinguishable,

2. For each region, the associated linear system is observable.

Proof: Assume that given an observation here are two different mark-
ings my and meo coherent with it. Since the linear systems are observable,
m, and ms belong to different regions. But the modes are all distinguish-
able, contradiction.

12



If the contPN is observable, for any initial marking in any region it
must be possible to reconstruct it from observation, hence all the linear
systems, i.e., modes, have to be observable. Moreover, the modes have to
be distinguishable, since otherwise it would be possible to have two different
markings that fit with the observation. |

5 Structural observability

Observability has been defined for a timed contPN system (N, ), so the
firing rates of the transitions are fixed. Since the firing rate vector represents
the speed of machines or servers, in many cases, an interesting problem is
to study the observability for any value of their rate. Imagine that we want
to design an observer and we know that in the future some machines will
be replaced but we don’t know exactly which one will be bought, hence
their speed is not fixed. In this section, we concentrate on the study of the
observability of contPNs under infinite server semantics in infinitesimal time
for any value of firing rate A. Because does not depend on X, only on N, we
call this problem: structural observability. The following assumptions are
done:

A1. The net structure N is known and A is a parameter;

A2. The redundant modes and regions are removed.

Definition 16 Let (N, mg) be a contPN system and P, C P the set of
measured places.

e A place p; € P is structurally observable from P, if for all A > 0,
m;(19) can be computed in (N, A\, mg) by measuring the marking evo-
lution of the places in P,.

o Let K(P,) be the set of places structurally observable from P,. N is
structurally observable from P, if every place p; € P is structurally
observable, i.e., K(P,) = P.

Due to the graphical representation of PNs, the observation procedure
has a quite interesting interpretation, going backward on the net (see [8] for
more details).

Example 17 Let us consider the contPN system in Fig. 3(a) and assume
that ps is measured and X is known. So, the marking in ps is known at every
time instant as well as the flow of t4 since fy = o + Aomg and then the
marking of py can be computed because, on the other hand, fi = Mg -my.

13
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Figure 3: Structural and generic observability: (a) a JF net that if Ay = A3
then mg and ms cannot be estimated from the observation of p;; (b) a PN
observable for any initial marking only if all places are measured.
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The backward procedure explained in the previous example assumes that
all places have only one input transition (attribution free: p; € P is an
attribution if |*p;| > 1) and all transitions have only one input place (join
free: t; € T is a join if |*¢;] > 1).

Definition 18 Let N be a contPN.

e A place p; € P\ P, is output connected if there exists a path, denoted
P, from p; to a measured place pj € Py: Py = (Pi, ti, Pit1, tit1s - - - Dj—1,tj—1,Dj)
with t; € p;®, pit1 €4°, ..., pj €t;_1°.

e N is output connected if all places are output connected.

For join attribution free (JA-F) PN, structural observability is solved
without difficulty using the basic backward strategy presented above (see
[8] for more details).

Lemma 19 Let N be a JA-F contPN. A place p; € P is structurally ob-
servable iff it is output connected.

Proof: To be observable, obviously p; should be output connected. On
the reverse sense, applying Alg. 5 in [8], going backward from an output to
pi, the rank condition of the algorithm is always satisfied since the matrix
required to be full-rank is a 1 x 1 with a non-null element, so has full rank.
According to Prop. 6 in [8], p; is structurally observable. |

Lemma 19 helps us to determine a set of places with minimum cardinal-
ity, denoted P,, that ensures the structural observability of a JA-F contPN.
Observe that this is another problem that the one in [8] where the set P,
is given and the problem is to compute the set of structurally observable
places. For this, the strongly connected components are used.

Definition 20 Let N = (P,T, Pre, Post) be a net and N' = (F, T, Pre', Post’)
a subnet of N, i.e., F C P, T" CT and Pre', Post' are the restrictions of
Pre, Post to F and T'. N is a strongly connected component of N w.r.t.

the places if for all p1,ps € F there is a path from p1 to ps of the form
<p1,t1,pi,ti,...,tj,pj,tg,p2> with t1 € ;1®, pi € 1%, ..., pj € 1;°, ta € p;°,

p2 € ta°.

Abusing of notation it will be said that a set of places F defines a strongly
connected component of N if N’ is a strongly connected component of N
with N’ the subnet generated by F, i.e., T' =°*F U F*.

15



Figure 4: A simple contPN system.

The net in Fig. 4 has only one strongly connected component F =
{p1,p2,p3,ps} because a path exists connecting any two places. For ex-
ample from p; to py there is: (p1,t1, p3, t2,p2,ta,pa). The net in Fig. 3(a)
has 5 strongly connected components, each one corresponding to a place,
i.e., FZ = {pi}, 1=1...5.

Output connectedness is required for structural observability but also
for observability. Obviously, for those places for which there is no path to
an output their marking cannot be estimated because they do not affect the
observed outputs. Therefore, the terminal strongly connected components
present a special interest because any place of the net is connected to those
components.

Definition 21 A strongly connected component N’ = (F,T', Pre/, Post')
of a net N is said to be terminal if there is no path from a place belonging
to F to a place not in F.

Strongly-connected components of a PN can be computed immediately,
adapting the classical algorithms (for example the one in [6]) to a bipartite
graph. The net in Fig. 4 has a unique strongly connected component which is
obviously terminal, while the net in Fig. 3.(a) has only one terminal strongly
connected component F; = {p;}.
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Proposition 22 Let N be a JA-F contPN. N is structurally observable
iff at least one place from each terminal strongly connected component is
measured.

Proof: If N is structurally observable then every place that is not
measured should be output connected to a place that is measured. Therefore
at least one place from each terminal strongly connected component should
be measured.

On the contrary, if at least one place from each terminal strongly con-
nected component is measured, every place is output connected and the
net is structurally observable according to Prop. 19. If N is structurally
observable, it is observable for any particular A. |

Therefore, the minimum number of places to ensure the structural ob-
servability of a JA-F contPN is equal to the number of terminal strongly
connected components. Let us see what happens when joins appear. Ac-
cording to (3), this introduces nonlinearities into the flow definition due to
the minimum functions. This will cause problems in the observation proce-
dure.

Example 23 Let us consider the contPN subsystem in Fig. 3(b). It is struc-
turally observable iff places P, = {p1,p2,p3} are measured.

Place p3 must be measured (it is a terminal strongly-connected compo-
nent). Using ms, f3 is obtained since fs = A3 -ms. Hence, the flow of t is
immediately computed as f; = ms+ f3. On the other hand, this flow is equal
to fy = A - min{my, ma}. In the last expression, f; and Ay are known which
implies that the minimum of mq and my can be evaluated. If mi1 < mo
(place py does not constraint the firing of t), mi equals to the minimum
and ps must be measured. Identically, if at a certain moment mo < maq,
p1 should be measured. Therefore, if no information regarding how my and
meo compare is known, then the only solution for observability is to measure
both p1 and ps. Moreover, since p1, pa and p3 are measured, the observabil-
ity space of this system is the same as that of the system obtained removing
the join transition t.

Proposition 24 Let (N, \) be a timed AF contPN and assume that for
any join t; there exists no strongly connected component containing all *t;.
Let N’ be the net obtained from N by just removing all join transitions
together with its input and output arcs. N is structurally observable iff N’
18 structurally observable.
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Proof: Let us assume, for simplicity, that N has only one join t; with
*t; = {p1,p2} (the proof can be easily extended). In this case, there exist two
modes corresponding to Ry = { < g2 } and Ro = { 2 < U }

Pre1; — Preo; Prey; — Prei;

“e=" N’ structurally observable, hence all places are output connected
according to Lemma 19. Obviously, the same paths exist in all modes
of N, therefore each one is structurally observable according to the same
Lemma 19 being AF the corresponding net of the region. The modes are
also distinguishable because N’ is output connected, so p; and py are esti-
mated using paths not containing ¢; therefore their markings are identified
in each mode.

“=" N is structurally observable then it is observable for any value of
A. (N, ) is observable iff every linear system is observable and the modes
are distinguishable according to Prop. 15.

Let us consider first the linear system of R1. The enabling degree of ¢; is
given by the marking of p; so the arc (ps,t;) is “invisible” in this mode, i.e.,
the backward procedure explained before cannot use (ps,t;). On the other
hand, the linear system is observable then ps should be output connected
according to Lemma 19. Let us denote by P; the path from ps to one output
in this mode. Evidently, as discussed before, the arc (p2,t;) does not belong
to Py but (p1,t;) can eventually belong. In this last case, i.e., (p1,t;) belongs
to Py, it is obvious that should exists a backward path from ps to p; not
containing t;.

Analogously, the linear system of R4 is observable (for this system, the
enabling degree of ¢; is given by mg), then a path, denoted Ps, from p; to
an output should exist but not using the arc (p1,¢;) that is “invisible” in
this mode.

We have three cases:

(i) If P; and P2 do not contain ¢; then these paths exist also in N, so
it is observable being all places output connected.

(ii) Assume ¢; belongs to P; but not to Ps. Let us concentrate first on
the linear system of R,. Since it is observable and (p1,t;) and (po,t;) do
not belong to Ps, p1 is output connected without passing through the join
transition ¢;. On the other hand, the linear system of R4 is observable, so
pe is output connected and the corresponding path is P;. If (p1,¢1) is not
belonging to P; then both p; and ps are output connected to two outputs
without t; and exactly as in (i) N’ is observable. Otherwise, if (p1,t1)
belongs to P; according to the previous remark should exists a backward
path from py to p; not containing ¢;. But p; is output connected without
passing through t; so also ps.
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Figure 5: ContPN used in Ex. 25.

(iii) If both P; and Py contain ¢; then there exists a backward path
from p; to po and also from ps to p; according to the previous remark.
Obviously, p1 and py belong to a strongly connected component of A/ and
the hypothesis is not satisfied. In fact, in this case, the join can “quote” to
observe the system (see Ex. 13). |

The previous theorem does not hold when the net is not AF.

Example 25 Let us consider the contPN system in Fig. 5 with A = [a, 1,2, 3, 4]T,

a € R>¢g and ps measured. This net is not an AF net and has a join in t;.
Notice that the linear system obtained removing the join t1 is observable and
p1 and p2 do not belong to a strongly connected component. This system has
the following two modes:

—1—-a 0 0 0 0 -1 —a
—a -4 0 0 0 0 —4-a
) m(r) = a 0 -2 0 0 m(T) ) m(r) = 0 a
X = a 0 0 -3 0 , 2= 0 a
1 2 3 4 0 1 2
y(r) =1(0,0,0,0,1] - m(r) y(7) =1[0,0,0,0,1] - m(r)
with observability matrices:
0 0 0 0 1
1 2 3 4 0
9 = 4.a—1 -8 —6 —12 0
~(4-a-1)-(a+1)—10-a 12 36 0

(4-a—=1)-(a+1)+10-a)-(a+1)+16-a —128 —24 —108 0

0 0 0 0 1
1 2 3 4 0

99 = | -1 4.a—8 —6 —12 0
1 —(4-a—8)-(a+4)—17-a 12 36 0

~1 (4-a—8)-(a+4)+17-a)-(a+4)+47-a —24 —108 0
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Figure 6: Transforming a CEQ net into a choice free one.

Computing the determinants of the observability matrices, we have: det(¥1) =

192 - a® — 912 - a® + 720 - a + 288, which has two positive real Toots, and
det(¥2) = —96 - a® — 408 - a® — 216 - a + 288, with one positive real Toot.
Obviously, if A1 is equal to one of these roots, the contPN system will not
be observable since one of the corresponding mode will not be observable.

Hence, for some particular values of X\, the system obtained removing

the join is observable but the original system (with join) is not observable.

Prop. 24 provides the conditions under which the observability of an AF

contPN net can be studied using the linear system theory (the joins can
be eliminated and a linear system is obtained). In this case, a minimal
cardinality set P, of places that ensures its structural observability can be
computed as in JA-F case using Prop. 22, after the joins are eliminated.
Notice that due to the elimination of the joins, several unconnected PN can
be obtained. In this case, Prop. 22 is applied for each connected component.

Proposition 26 The structural observability of an AF contPN can be solved
in polynomial time at the graph level.

In the case of continuous equal conflict (CEQ) nets (nets for which if ¢;

and to are in conflict, there exists k > 0 such that Pre;. = k- Pres. # 0,
i.e., a generalization of equal conflict relation), observability can be studied
also using linear system theory since the joins can be eliminated as in the
case of AF nets.

Proposition 27 Let (N, A) be a timed CEQ contPN system and N’ ob-
tained from N by just removing all join transitions together with its input
and output arcs. N is (structurally) observable iff N' is (structurally) ob-
servable.
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Proof: First, notice that the net N can be transformed into an equiv-
alent choice free fusing the CEQ [9] (see Fig. 6 for an example). Hence, it
can be assumed that the net has no choice, i.e., for every join transition t;
and for any p; € *t;, ¢; is the only output transition of p;, i.e., p} = {t;}.

“=—=" Let t; be a join, and p1, ps € *t;. For those markings in the region
defined by PT;M < PTZ%’ the only way to observe py is to measure it, since
its only output is ¢; and the arc (pe,t;) is “invisible” in this mode.

The same can be said for py, hence both places have to be measured and
removing their output transition cannot affect the (structural) observability
of the system.

“«="1f N is structurally observable it is observable for a given A. Since
N is obtained from N by removing the joins and N is CEQ), all input places
in the joins of A/ have no output transition in N’. But A’ is observable,
hence all these places should be measured because cannot be estimated
with others measurements. Measuring these places, the corresponding linear
systems of A are distinguishable. Moreover, all linear systems are observable
since the observability does not depends on the firing rates of the output
transitions of the measured places (Prop. 6 in [8]). According to Th. 15 N
is observable. |

Unfortunately, the elimination of joins cannot be performed in general,
because for nets with attributions the observability should be studied glob-
ally, not locally (see Ex. 25). For CEQ nets, that in principle have attri-
butions, all joins can be removed (Prop. 27), but only because their input
places must be measured, which is not true in general. In Ex. 25 taking
A = [a,1,2,3,4]T with a different from the roots of det(1) and det(V2)
observability is guaranteed. Since ty1,t9,t5 are not in CEQ relation, it is not
mandatory to measure all their input places. Indeed, this contPN system is
observable measuring only ps.

Summarizing, joins can be removed without affecting the observability
for AF nets under some conditions (Prop. 24) and for CEQ nets (Prop. 27).
Therefore, forks and choices do not pose any problem for observability (JA-
F case), while joins are real “barriers” in the backward procedure. Let
us now consider attributions, the only local construction of nets not yet
studied. This construction can introduce zeros in the transfer functions,
possibly leading to pole-zero cancelations, thus loss of observability.

Example 28 Let us consider the JF contPN system in Fig. 3(a) (it has an
attribution in p1) and assume py is measured. This system is a continuous
linear system. If we consider that the input of the system is the input flow
to py and the measured output is my, the equivalent linear system &(7) =
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A-x(7),y(r) =S - x(7) has:

A1 A2 A3 0
0 —X2 0 M\
0 0 =3 N\
0 0 0 —N\

, §=(1 00 0)
The transfer function vector between the input flow in places and the
output, using [Equation (19)] is:

— 1 T
y(s) N (8+)\1)(S+)\2)(8+)\3)(8+)\4)H (13)

where:

(s+A2) - (s+A3) - (5+ M)
)\2-(8+)\3)-(8+)\4)
Az (s+A2) - (s 4 Ad)

(A2 (s 4+ A3) + Az - (s + Az))

In Equations (13) and (14), if Ao = A3 there is a pole-zero simplifica-
tion in all elements of vector Y(s) leading to the conclusion that the system
is not observable [18]. If Ny # A3, but Ay = %\;‘ji‘:, there is another sim-
plification and the system s also not observable. Consequently, when an
attribution appears, particular values of A exist such that the observability
1s lost. Moreover, it is not a local property, but depends on the whole net

structure.

(14)

Usually, if p; is an attribution place with t1,to € ®*p; and Ay = Ao,
then there exists a pole-zero cancelation and an additional place should
be measured. But this is not a general rule as illustrated in the following
example.

Example 29 Let us consider the net in Fig. 7 with A = 1 and assume that
po is measured. Then py and ps cannot be estimated directly, but a linear
combination of the markings of these places is known (place pys in Fig. 7).
Going backwards, pi is estimated and, even although pi is an attribution,
since po is measured p3 is also estimated. Using the marking of ps, p4 i
estimated and through the linear combination of pss, ps as well. Therefore,
the system is observable measuring po.
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Figure 7: A JF net that is observable measuring the attribution place po
even if Ay = 5.

6 Generic observability

In Ex. 28, the pole-zero cancelation due to the attribution happens for very
specific values of A. If the firing rates of the transitions are chosen randomly
in R™, the probability to obtain this cancelation is null. Hence, a concept
weaker than structural observability can be studied. It is defined following
ideas in [5, 7] for linear systems. Hence, we assume:

A1. The net structure N is known and X is a parameter;

A2. N is a JF net.

According to the results in the previous section generic observability can
be studied also for some AF and CEQ nets. In these cases, as explained
before, joins can be removed and the obtained JF net is observable iff the
original net is observable. In a JF net, choices are CEQ, thus can be trans-
formed into forks [9], and a JC-F net is obtained. Therefore, we can assume
that the nets are JC-F.

Definition 30 Let (N, X, mg) be a JF contPN system and P, the set of
measured places. N is weakly structural or generically observable from P,
if (N, X\, mg) is observable for all values of A outside a proper algebraic
variety of the parameter space.

Connection between structural and generic observability is obvious. If

N is structurally observable then it is generically observable. The reverse is
not true (see Ex. 28).
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Figure 8: (a) A JF ContPN; (b) Associated graph.

In [5], generic observability is studied for structured linear systems using
an associated graph; observability is guaranteed when there exists a state-
output connection for every state variable (the system is said to be output
connected) and no contraction (defined after) exists.

The associated graph of an unforced linear system (15), G = (Z,W) is
defined by a vertex set Z and an edge set W [5]. The vertex set Z = X UY
with X the set of state vertices and Y the set of output vertices. Denoting
(v,0") for a direct edge from the vertex v € Z to a vertex v/ € Z, the
edge set W is described by W4 U Wg with Wa = {(z;,z;)|Ali, j] # 0} and
Ws = {(2;,0:)|5i. ] # 0}.

The transformation of a JF net into its corresponding associated directed
graph is straightforward (see Fig. 8). The vertex set Z is given by the set P
of places (i.e. Z= P). The edge set W is computed as: W = {(p;, p;)|p; €
(pi®)* Api # pi} U{(pi,pi)|3t € pi®, Prelp;,t] # Post[p;,t]}. The first set
adds an edge from a place p; to all places (p;*)® since the dynamic matrix
has a non null entry and prevents adding an edge in the case of a self-loop.
The second subset will add a self-loop in the associated graph for any place
with Prelp;,t] # Post[p;,t], i.e., the marking of p; will change firing ¢,
implying that the dynamical matrix has an non zero entry.

Definition 31 Let N be a contPN system and G(N) its associated graph
with vertex set Z and edge set W. Consider a set S made of kg state vertices.
Denote E(S) the set of vertices w; for i = 1,--- ,lg of Z, such that there
exists an edge (xj,w;) € W with x; € S. S is said to be a contraction if
ks —lg > 0.

Based on the procedure to generate the associated graph (Fig. 8), and
using Prop. 1 in [5], the following is true:
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Proposition 32 Let N be a JF contPN and G(N) its associated graph. N
is gemerically observable iff:

1. N is output connected

2. G(N) contains no contraction.

Example 33 Let us consider the contPN in Fig. 8(a) whose associated
graph is sketched in Fig. 8(b). Taking S = {p2,ps,ps4, 05} (ks =4), E(S) =
{p1,p3,ps} (Is = 3). Thus, the net has a contraction (ks —lg=4—-3=1),
so it is mot gemerically observable. This happens because the flows of the
transitions t1 and t3 are constant and measuring p1 it is impossible to dis-
tinguish between these two constant incoming flows. |

In the case of pure contPN systems, the necessary and sufficient condition
of generic observability can be simplified. Since the associated graph of a
pure PN has in every node a self-loop (under infinite server semantics, if
p; has at least one output transition #; the derivative of the marking is:
m; = ---— Aj-m; + ---). Therefore, no contraction can exist and the only
remaining condition in Prop. 32 is the output connectedness.

Corollary 34 Let N be a pure JF contPN. N is generically observable
iff at least one place from each terminal strongly connected component is
measured.

The previous result can be extended immediately to general contPNs,
i.e., it is not true only for JF nets. In Ex. 10 is given a contPN system
containing two undistinguishable modes. Then, changing the firing rates of
the transitions in Ex. 13, these modes becomes distinguishable. Obviously,
two modes are undistinguishable when the path from states (markings) to
the outputs are identical in both linear systems. This happens for some
particular values of firing rates, e.g., A\ = Ay in the contPN of Fig. 1(b).

Corollary 35 Let N be a pure contPN. N is generically observable iff at
least one place from each terminal strongly connected component is mea-
sured.

Proof: Output connection is a requirement for generic observability of
each mode (Corollary 34). On the other hand, the output paths cannot be
identically in two modes for all possible values of firing rates. |

For example, the net in Fig. 1(b). This contPN system is not observable
but it is generic observable as explained before.
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7 Conclusions and future work

Different aspects of observability have been studied. First, the notion of
redundant modes is introduced and a necessary and sufficient condition for
a mode to be redundant is given. This permits to reduce the number of linear
systems (modes) that can govern the evolution of a contPN, number that can
be exponential. As already known, observability of a hybrid system requires
not only the estimation of the continuous states but also of the discrete
ones, i.e., it is important to know in which mode we are. To characterize
this, the notion of distinguishable modes is introduced and a LPP is given
to check if two modes are or are not distinguishable. Then, an observability
criteria is given for general contPN systems. Structural observability, i.e.,
observability for all possible values of firing rates of the transitions, has
been studied and for some subclasses the procedure to compute the set of
places that ensures this kind of observability is given. At the same time,
it is proved that the observability for CEQ nets and AF nets under some
conditions can be studied on a linear systems by removing joins. Finally,
an intermediate concept between observability and structural observability,
called weak structural or generic observability, i.e., observability for almost
all possible values of firing rates, has been studied also. It is illustrated
how can be computed a set of places of minimum cardinality that ensures
this kind of observability. In practice, the markings of some places, or the
flow of some transitions, or the token conservation laws can be known. All
these information can be used and the observability complexity problem is
reduced. For example, by simply introducing the corresponding rows of a
basis of P-flows in the observability matrix. Hence the results of this paper
are immediately extended to the case of additional hypothesis.
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Appendix: Observability: basic concepts

An unforced (i.e., without control inputs) time invariant linear system is
expressed by the following equations:

z(r) = A x(1)
iyt (o)

where x(7) is the state of the system and y(7) is the output, i.e., the set of
measured variables. Knowing matrices A and S, and being able to watch
the evolution of y(7), a linear system is said to be observable if it is always
possible to compute its initial state, &(7p) (in fact, since the system is de-
terministic, knowing the state at the initial time is equivalent to knowing
the state at any time).
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In Systems Theory a very well-known observability criterion exists which
allows to decide whether a continuous time invariant linear system is observ-
able or not. Besides, several approaches exist to compute the initial state of
a continuous time linear system that is observable.

Given an unforced linear system (15), the output of the system and the
observability matrixz are:

y(r) = 8- e a(n) (16)

9=1[87, (SA)T, ... (Sa~HT |’ (17)

Proposition 36 [10, 15] Eq. (16) is solvable Ya(79), V7T > 0 iff the observ-
ability matriz ¥ has full rank (rank(9) =n).

The initial state can be obtained solving the following system of equa-
tions that has a unique solution under the rank condition:

‘dnfl
L Wy(o) J
An interpretation of complete observability is that there is no simplifi-
cation in the transfer function between the (actions on) state variables and

the output [18]. Considering a single-output system, the transfer functions
vector between the state variables and the output is given by:

Y(s) = S(sT — A)~" = ﬁ[qms) e (19)

If Y(s) has a cancelation (all the polynomials ¢;(s) and A(s)) have a
common factor) this canceled mode cannot be observed in the output y.
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