
1

Basic Server Semantics and Performance

Monotonicity of Continuous Petri Nets
Cristian Mahulea, Laura Recalde, and Manuel Silva

Abstract

Continuous Petri nets were introduced as an approximation to deal with the state explosion problem

which can appear in discrete event models. When time is introduced, the flow through a fluidified

transition can be defined in many ways. The most used in literature are constant and variable speed [8],

which can be seen as some kind of finite and infinite server interpretations of the transitions behavior,

and derived from stochastic (discrete) Petri nets [18]. In this paper we will compare the results obtained

with both relaxations for the broad class of mono-T-semiflow reducible nets, and prove that, under some

frequently true conditions, infinite server semantics offers a throughput which is closer to the throughput

of the discrete system in steady state. In the second part, it will be proved that the throughput of mono-

T-semiflow reducible net systems is monotone with respect to the speed of the transitions and the initial

marking of the net.

I. INTRODUCTION

Petri nets (PNs) are a well-known formalism to deal with discrete event systems (DES) [9]. The

state explosion problem appears frequently in such systems, making the enumerative analysis methods

inapplicable in many practical cases. Fluidification is a classical approximation technique that relaxes the

description of the system by removing the integrality constraints. Applying this idea to discrete PNs, the

firing of transitions is not limited to natural numbers but to positive real numbers leading to continuous

Petri nets (contPNs) [8], [17].

In the last years, contPNs have been used in many applications in which the number of clients is

relatively big. The main application has been in manufacturing systems [14], [4], [3] but have been used
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also in traffic systems [11] or supply chains [10], for example. Fluid models may be studied by means

of net based structural analysis techniques [12], [5].

As in the discrete case, contPNs can be autonomous (untimed) or can have time associated with the

transitions or places, namely timed contPNs. In the literature, in the continuous case, timing is mainly

associated to transitions and two basically different ways of defining their firing are often used: finite

server semantics (or constant speed) and infinite server semantics (or variable speed) [8], [18], [17].

For discrete PNs infinite server semantics is more general, since it can simulate finite server seman-

tics [1]. However, the continuous approximation of this model under infinite server semantics is not

equivalent to using finite server semantics in the original fluidified model. In the continuous case the

two semantics are in fact related to conceptually and technically different relaxations of the model. Since

these two semantics are different, the immediate question is, given a net system, which one is better?

Up to now, the first reference to this problem we were able to find in the literature is a remark in [2],

where the authors mention having observed that in several cases infinite server semantics provides a very

accurate approximation of discrete PNs.

One of the goals of this paper is to provide some results about the use of these semantics. In general,

is shown that it is not possible to say that one of them is always better than the other. Hence, we will

concentrate on a subclass of nets, hopefully with a very significant modeling power from a practical point

of view. The subclass is called mono-T-semiflow reducible [12], [13]. Focusing on live and bounded

systems, this class includes mono-T-semiflow nets [12] and equal conflict nets [20] (thus free-choice

and choice-free [19]). We will prove that for mono-T-semiflow reducible nets infinite server semantics

provides a throughput which is closer to the throughput of the discrete system in steady state, under quite

conditions in practice.

Another good indicator of the practical interest of a class of net models is the kind of properties it

verifies. In the last part of the paper monotonicity of the throughput w.r.t. the firing speed of transitions

and the initial marking is studied. It is proved that under a quite general condition the class of mono-T-

semiflow reducible nets enjoys these monotonicity properties. This means, for example, that if a machine

is replaced by a faster one or more resources are available, the production rate will never decrease.

A purely structural property that will be necessary to check is whether the places that restrict the firing

of transitions in the steady state contain the support of a P-semiflow. Two algorithms are presented for

this.

The paper is organized as follows: in Section II basic definitions of timed contPN are given. In

particular, the procedures to compute the evolution of continuous net systems under finite and infinite

September 12, 2008 DRAFT



3

server semantics are recalled. Section III is devoted to the comparison and a more in depth study of the

two semantics, concentrating on the class of mono-T-semiflow reducible nets. Sufficient conditions that

guarantee steady state performance monotonicity w.r.t. the speed of transitions and w.r.t. the initial marking

are proved in Section IV. Two algorithms to check structural properties sufficient for monotonicity are

shown in Section V. A manufacturing system is taken as case study in Section VI and it is shown how

the previous results can be used for its analysis. Some conclusions are given in Section VII.

II. PRELIMINARIES

A. Untimed continuous Petri nets

Definition 2.1: A contPN system is a pair 〈N , m0〉, where: N = 〈P, T,Pre, Post〉 is a net structure

(with set of places P , set of transitions T , the pre and post incidence matrices Pre,Post : P ×T → N)

and m0 is the initial marking.

The token load of the place pi at marking m is denoted by mi and preset and postset of a node

X ∈ P ∪ T are denoted by •X and X•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈ •tj , mi > 0 and its enabling degree is enab(tj , m) =

min
pi∈•tj

{
mi

P re(pi,tj)

}
. An enabled transition t can fire in any real amount 0 < α < enab(t,m) leading to a

new marking m′ = m + αC(·, t), where C = Post−Pre is the token-flow matrix. If m is reachable

from m0 through a finite sequence σ, a state (or fundamental) equation can be written: m = m0+C ·σ,

where σ ∈ N|T | is the firing count vector.

A contPN is bounded when every place is bounded (∀p ∈ P, ∃bp ∈ R≥0 with m(p) ≤ bp at every

reachable marking m). It is live when every transition is live (it can ultimately occur from every reachable

marking).

Right and left non negative annullers of the token flow matrix C are called T- and P-semiflows,

respectively. If non negativity is not required, the annullers are called T- and P-flows. When y ·C = 0,

y > 0 the net is said to be conservative, and when C · x = 0, x > 0 the net is said to be consistent.

Two transitions t1 and t2 are said to be in conflict relation if •t1 ∩ •t2 6= ∅. Two transitions t1 and

t2 are in continuous equal conflict (CEQ) relation when there exists k > 0 such that Pre[P, t1] =

k · Pre[P, t2] 6= 0.

B. Timed continuous Petri nets

Under any timed interpretation of the net model, the fundamental equation depends on time: m(τ) =

m0 + C ·σ(τ). Differentiating with respect to it, the following equation is obtained: ṁ(τ) = C · σ̇(τ).

September 12, 2008 DRAFT



4

Clients Servers Semantics of the transition

Many(C) Many(C) infinite server semantics

Many(C) Few(D) finite server semantics

Few(D) Few(D) discrete transitions

Few(D) Many(C) discrete transitions

TABLE I

ON THE FLUIDIFICATION OF A TRANSITION [18]

The derivative of the firing sequence will be called the (firing) flow of the timed model: f(τ) = σ̇(τ).

Different definitions of the flow of continuous timed transitions have been given, the two most important

being finite server (or constant speed) and infinite server (or variable speed) [2], [17].

1) Preliminaries for the server semantics: In general, transitions are interpreted as stations (in QN

terminology), where servers and clients meet. Thus, the more appropriate firing relaxation depends on

the relative number of servers and clients in the discrete model we want to approximate. Assuming,

qualitatively speaking, that there may be “many” or “few” of each one of them, fluidification can be

considered for clients, for servers or for both. Table I represents the four theoretically possible cases. If

the number of clients is “small” (Few-Few and Few-Many in Table I), the system is not really loaded,

the transitions “should” remain discrete and the fluidification may be unsuitable. If there are many clients

and a few servers (Many-Few) the relaxation is only at the level of clients, and finite server semantics

can provide a good approximation. On the other hand, in the case of many clients and many servers

(Many-Many), a continuous model with infinite server semantics seems reasonable, since there are so

many servers that there is no need to make them explicit.

It is important to notice that finite server semantics corresponds at conceptual level to a hybrid behavior:

fluidification is applied only to clients, while servers are kept as discrete, counted as a finite number (used

to define the bound of firing speed of the transition). On the other hand, infinite server semantics really

relaxes clients and servers, being the firing speed driven by the enabling degree of the transition, like for

stochastic-markovian (discrete) PNs.

2) Finite Server Semantics: Under finite server (constant speed), each transition tj has associated a

real positive number, λj , called maximal firing speed. If the markings of the input places of the transition

are strictly greater than zero (strongly enabled), its flow will be constant, equal with this value (all

servers working at full speed). Otherwise (weakly enabled), the flow will be the minimum between its

September 12, 2008 DRAFT



5

maximal firing speed and the total input flow to the places with zero marking. With this definition, λj

represents the product of the number of servers in the transition and their speed. The instantaneous flow

of a transition tj is given by:

fj =





λj , if 6 ∃pi ∈ •t with mi = 0

min

{
min

pi∈•t|mi=0

{
∑

t′∈•pi

f [t′]·Post[t′,pi]
Pre[pi,tj ]

}
, λj

}
otherwise

(1)

Observe that (1) is not defining completely the flow of a contPN under finite server semantics. In

the case of conflict, a resolution policy should be specified, otherwise many solutions of the flows are

possible [5]. Therefore, this semantics is non-deterministic as defined in (1).

3) Infinite Server Semantics: Under infinite server (variable speed) the flow of a transition tj is:

fj = λj · enab(tj ,m) = λj · min
pi∈•tj

{
mi

Pre[pi, tj ]

}
(2)

The enabling degree of the transition tj represents the number of active servers for that transition at m.

The flow will be the number of active servers times the work each one does per time unit (λj). Notice

that the number of active servers in a transition (station) depends only on the marking of its input places.

Definition 2.2: [15] A configuration Ci of 〈N , λ, m0〉 at m is a set of (p, t) arcs, one per transition,

such that p ∈ •t and

f [t] = λ[t] · m[p]
Pre[p, t]

.

The number of configurations is upper bounded by:
∏
t∈T

|•t|. In general, we are interested in the set of

places that limit the enabling degree. So, associated to a configuration Ci, we define the corresponding

P-configuration, the set of places from which there exist at least one output arc belonging to Ci. Formally,

the P-configuration of Ci, is:

P − Ci = {pj |∃(pj , tk) ∈ Ci}.

A contPN system evolves and may reach a steady state (i.e. a marking such that ṁ(τ) = 0). The (P-

)configuration of the steady state marking will be called the steady state (P-)configuration. This steady

state marking, if it exists, has to fulfill certain conditions: the flow it defines has to be a T-semiflow

(because ṁ = C · f = 0), and has to verify the equations defined by the P-flows (see [15] for more

details). The solutions of these equations represent all the possible ways of distributing the tokens of

the P-flows so that the system remains on that marking. However, it may happen that several markings

fulfill these conditions. We will refer to all these possible steady states markings as possible equilibrium

markings. All their (P-)configurations will be called possible equilibrium (P-)configurations.
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Through this paper we will assume that the net system will reach a steady state after some time,

and try to derive some results about this steady state. However, it may happen that the system does not

approach to steady state, even being a mono-T-semiflow net system.

We want to stress that under both semantics, the timed system is defined by the untimed net system

and a positive vector, λ (i.e. here it is assumed that there are no immediate transitions), although λ has

a different meaning under each semantics: it is the firing rate of a transition in the case of infinite server

semantics, and it is a maximal firing speed in the case of finite server semantics (the product of the

number of servers and the firing rate of one server).

C. Mono-T-semiflow reducible nets

As in queueing network theory, the visit ratio of transition tj with respect to ti, v(i)[tj ], is the average

number of times tj is visited (fired) for each visit to (firing of) the reference transition ti in steady-state.

Mono-T-semiflow reducible nets is a class for which the visit ratio vector depends only on the net and

the firing rate vector, but not on m0, i.e., v(i) = v(i)(N ,λ) [12].

Definition 2.3: [12] 〈N , λ〉 is a mono-T-semiflow reducible net if it is consistent, conservative and

the following system has a unique solution (its visit ratio):




C · v(1) = 0
v(1)[ti]

P re[p,ti]·λ[ti]
= v(1)[tj ]

P re[p,tj ]·λ[tj ]
∀ti, tj in CEQ relation, ∀p ∈ •ti

v(1)[t1] = 1

(3)

Based on the above definition, an immediate result is:

Proposition 2.4: Let 〈N , λ1,m0〉 be a mono-T-semiflow reducible net system, and λ2 a rates vector

such that λ1 and λ2 keep the same proportion in continuous equal conflicts, i.e., for every pair ti, tj in

CEQ relation λ1[ti]/λ1[tj ] = λ2[ti]/λ2[tj ]. The timed contPN systems 〈N ,λ1, m0〉 and 〈N , λ2, m0〉
have the same visit ratio vector: v(i)(N , λ1) = v(i)(N ,λ2).

Through this paper, if λ1, λ2 satisfy the above condition, we will say that they are visit ratio preserving.

This can be extended to sets of rates.

Example 2.5: The mono-T-semiflow reducible net in Fig. 1 represents a queuing network, adapted

from [7]. It has four minimal T-semiflows: x1 = t1 + t2 + t3, x2 = t1 + t2 + t4 + t6 + t8 + t11,

x3 = t6 + t8 + t10 and x4 = t1 + t2 + t5 + t7 + t9 + t12. The values of λ3, λ4 and λ5 will determine

the splitting of the flow entering in p3 (because t3, t4 and t5 are in free-choice) while λ10 and λ11

will define the splitting of the flow entering in p11. For example, for the particular value of λ = 1, the
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Fig. 1. Continuous mono-T-semiflow reducible net system, adapted from a queuing network in [7]. In fact, it is an EQ net;

{t3, t4, t5} and {t10, t11} are equal conflicts.

visit ratio vector normalized for t3 is v(3) = [3, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1]T (the addition of the minimal

T-semiflows). ¥

III. FINITE SERVER SEMANTICS VS. INFINITE SERVER SEMANTICS

A. Motivation Example

Let us consider the contPN system in Fig. 2, modeling a shared resource (place p6) among two

processes and let us see its evolution with both continuous approximations: finite and infinite server

semantics. Let λ = [1, 2, 1, 1, 0.5]. Observe that in this case the behavior of the discrete PN is the same

for finite and infinite server semantics because the (single) servers are implicit in the model. On the

contrary, continuous finite and infinite server semantics do not lead to the same values.

Infinite server semantics. First, observe that p2 is implicit (i.e. it is never the only place to constrain the

firing of t4 [9]) and its marking verifies: m2(τ) = m4(τ) + m6(τ). Hence, f4 = min{m2,m6} = m6,

and so only two configurations can govern the system evolution. At τ = 0, m3 < m6, therefore the

September 12, 2008 DRAFT



8

p1
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Fig. 2. ContPN system used in Section III-A.
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1

m[p2]
m[p3]
m[p6]

Σ1 Σ2

commutation

Fig. 3. Evolution of contPN in Fig. 2 with λ = [1, 2, 1, 1, 0.5]T under infinite server semantics.

evolution is governed by the configuration C1 = {(p1, t1), (p3, t2), (p4, t3), (p6, t4), (p5, t5)}. The linear

system in Ci will be called Σi.

The evolution of the contPN system is sketched in Fig. 3. It evolves according to Σ1 until τ ' 1.14

t.u. when m3(τ) = m6(τ). At that point, a switch occurs and the new governing configuration is:

C2 = {(p1, t1), (p6, t2), (p4, t3), (p6, t4), (p5, t5)}. The system evolves according to Σ2 and reaches the

steady state marking [0.4, 0.6, 0.2, 0.4, 0.4, 0.2] with the corresponding flow: [0.4, 0.4, 0.4, 0.2, 0.2].

Finite server semantics. The evolution of the system under finite server semantics is presented in Fig. 4.
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Fig. 4. Evolution of contPN in Fig. 2 with λ = [1, 2, 1, 1, 0.5]T under finite server semantics.

At m0, the input places of t1 and t4 are marked, therefore t1 and t4 are strongly enabled and f1 = f4 = 1.

The other transitions are weakly enabled and their flow depends on the input flows to the empty input

places. For t2, the input flow to p3 (the only empty input place) is 1, hence f2 = min{λ2, 1} = 1.

Transition t3 will work at the maximum speed because the input flow in p4 is f2 = 1, equal to λ1, its

maximal firing speed. For t5, the input flow to p5 is 1, then its flow is limited by its maximal firing speed

that is 0.5. According with these flow equations, the evolution of the system will be governed by a linear

system, Σ3, until τ = 2, when m6 and m2 become empty. At this time, the marking is [1, 0, 0, 0, 1, 0].

Now, t1 and t5 are strongly enabled, therefore f1 = 1 and f5 = 0.5. The weakly enabled transitions t2

and t4 are in conflict and a resolution policy should be specified. Assume, for example, that the flow of

t2 is equal to the flow of t4. Moreover, the output flows of all the empty places are upper bounded by the

input flows. The solution is f2 = f3 = f4 = 0.5. So, the system of equations that defines the evolution

after τ = 2 is a new linear system Σ4.

At τ = 4, p4 is emptied and a new flow computation has to be done. The current marking is

[0, 0, 1, 0, 1, 0]. The only strongly enabled transition is t5, hence f5 = 1. Solving the flows, f1 = f2 =

f3 = f4 = 0.5 is obtained. These values correspond to a steady state marking (ṁ(τ) = 0).

Clearly, the evolution of a contPN system is quite different under both semantics: different transitory

regimes and steady-state markings are obtained.
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B. Comparison of server semantics for mono-T-semiflow reducible nets

In this subsection we study both continuous semantics to see which one approximates better the steady

state throughput of the discrete net. In [12] a branch and bound algorithm is used to compute upper

bounds of the steady state throughput for continuous systems under infinite server semantics, each node

corresponding to a LPP. In the case of mono-T-semiflow reducible nets, the bounds can be computed

solving only one simple LPP. The linear programming problem is the “continuous version” of the bounds

obtained in [6] for discrete nets1.

Let 〈N ,λ, m0〉 be a mono-T-semiflow reducible net and γi the solution of the linear programming

problem:

γi = max {y · PDi|y ·C = 0,y ·m0 = 1, y ≥ 0} (4)

where PD(p) = max
t∈p•

P re(p,t)·v(i)(t)
λ(t) and v(i) is the visit ratio vector normalized for transition ti.

According to [12] the flow of the continuous system under infinite server semantics, f , verifies f ≤
1
γi

v(i). Moreover, this bound is reached (i.e. f = 1
γi

v(i)) iff the steady state P-configuration contains the

support of a P-semiflow [12].

On the other hand, in [6] it is given an upper bound of the throughput in steady state of the stochastic

(discrete) Petri net: χ ≤ 1
γi
· v(i), where γi and v(i) are the same as in continuous case. This bound

is valid for arbitrary probability distribution functions of service (including deterministic). Hence, if the

steady state P-configuration contains the support of a P-semiflow, the throughput of the continuous net

under infinite server semantics is an upper bound of the throughput of the discrete net system.

We will now prove that the throughput of continuous net systems under finite server semantics is greater

than or equal to the throughput under infinite server semantics when the servers are made explicit, by

adding the corresponding place self-loops (otherwise the comparison is inappropriate). Also, we assume

that the conflict resolution in the case of finite server semantics is done according to the same visit ratio

vector, as in discrete and infinite server semantics.

The comparison is done under the liveness hypothesis of the untimed contPN system. Liveness is

used to ensure that at any time instant the continuous system under finite server semantics has at least

one strongly-enabled transition. Otherwise, according to the flow definition (1) every transition has one

empty input place and the net is not live as untimed. Liveness analysis of autonomous and timed mono-

T-semiflow reducible nets is studied in [13]. It is proved that deadlock freeness is equivalent to liveness

1In [6] the mono-T-semiflow reducible nets are called Free Related T-semiflows nets (FRT)
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for this subclass of models. Also a necessary condition for the existence of a marking that makes the

system lim-live is given, which can be checked in polynomial time: every transition has at least one place

that is not input of any other transition.

Proposition 3.1: Let 〈N ,m0〉 be a live mono-T-semiflow reducible contPN system. For any λ, the

flow in steady state under finite server semantics is greater than or equal to the flow under infinite server

semantics.

Proof: The net is mono-T-semiflow reducible so the throughput in steady state will be proportional

to the visit ratio vector for both finite and infinite server semantics (fF = αF · v(i), f∞ = α∞ · v(i)).

Under finite server semantics at least one transition will be strongly enabled in steady state (otherwise

the net is not live). Let ti be one of those transitions, and assume we normalize the visit ratio with

respect to it. Then αF = ni · λ[ti] where ni is the number of servers for transition ti. Under infinite

servers, if m is the steady state marking, it verifies that α∞ = min
p∈•ti

m[p]
P re[p,ti]

· λ[ti] ≤ min
p∈•ti

m[p] · λ[ti]

(Pre[p, ti] ∈ N>0). Since the place that models the servers of ti is input of the transition, min
p∈•ti

m[p] ≤ ni

and so α∞ · v(i) = f∞[ti] ≤ fF [ti] = αF · v(i). ¤

Therefore:

Theorem 3.2: Let 〈N , λ, m0〉 be a live mono-T-semiflow reducible Petri net system with every pos-

sible equilibrium P-configuration containing the support of a P-semiflow. For any probability distribution

function for the firing of the transitions, the steady state throughput of the discrete model is better

approximated by the continuous relaxation with infinite server semantics than with finite server semantics.

Proof: According to Proposition 5 in [12], the steady state throughput of the discrete net system

is upper bounded by the steady-state throughput of the continuous one under infinite server semantics.

Using Prop. 3.1, the steady state throughput of the continuous net system with finite server semantics is

greater or equal than the one with infinite server semantics. ¤
Example 3.3: Let us consider again the queuing network presented in Fig. 1. We have computed

simulations for the discrete stochastic model (exponential distribution for servers) and the continuous

model under infinite and finite (single-server) server semantics, using λ = 1 (the servers are not

represented in the figure to simplify it). In this net, every P-configuration contains the support of a

P-semiflow (this will be proved in Example 4.12), so infinite server semantics will fit better. Simulating

the model and measuring the flow of transition t1, the following results are obtained: the throughput

is 0.1337 for the discrete model, 0.1667 for the continuous model under infinite server semantics, and

0.3333 for the continuous model under finite server semantics (i.e. two times bigger). ¥
In general, proving that every P-configuration contains the support of a P-semiflow may be computa-

September 12, 2008 DRAFT



12

tionally expensive since the number of P-configurations may be large. However, there are net subclasses

for which it is immediate. Take for example EQ nets (if •ti ∩ •tj 6= ∅, Pre[·, ti] = Pre[·, tj ]). For this

class, every P-configuration contains a P-semiflow iff it is conservative, consistent and the rank of the

token flow matrix equals to the number of equal conflicts (|SEQS|) minus one [20] (|SEQS| is defined

as the number of equivalence classes defined by the continuous equal conflict relation with k = 1). Hence

it can be verified in polynomial time. Moreover, if the initial marking is such that every P-semiflow is

marked, the net is live as continuous [16].

Corollary 3.4: Let N be an EQ net system that is consistent, conservative, rank(C) = |SEQS| − 1

and m0 such that every P-semiflow is marked. In steady state, the continuous system 〈N , λ, m0〉 with

infinite server semantics provides a throughput closer to the throughput of the discrete system than finite

server semantics.

C. Discussion

Resources (and in particular servers) are usually shared among different operations. This leads to

intuitively assert that finite server semantics approximation may lead to quite optimistic results. However,

it may happen that it provides a throughput closer to the throughput of the discrete system.

Example 3.5: Let us consider the net system in Fig. 5 with m0 = [15, 1, 1, 0]. Assume that each

transition has two dedicated servers and the speed of servers are 2, 1, 1. In steady state the throughput of all

the transitions will be the same (the incidence matrix has only one minimal right annuller, x = [1, 1, 1]T ,

and the flow in steady state must be a T-semiflow). As discrete, the steady state throughput is 1.55 under

exponential assumption for all transitions. If this model is seen as continuous with finite server semantics

the maximum firing speed λ = 2 · [2, 1, 1] = [4, 2, 2] (because each transition has 2 servers), and the

steady state flow is equal to 2. Under infinite server semantics λ = [2, 1, 1] and the steady state flow

is 0.75. Clearly, finite server semantics provides a throughput which is closer to the throughput of the

discrete system in steady state. However, we will see later that P − C3 = {p2, p3, p4} is an equilibrium

P-configuration that does not contain any P-semiflow, and Th. 3.2 does not apply.

This example also shows that the flow of the continuous model under infinite server semantics is not

necessarily an upper bound of the throughput as discrete, what may came as a surprise: fluidification

does not improve performance. ¥
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Fig. 5. Mono-T-semiflow net (x = [1, 1, 1]T ) used in Example 3.5.

IV. MONOTONICITY UNDER INFINITE SERVER SEMANTICS

A. Monotonicity results

In this section we will focus our attention on the timed contPN system under infinite server semantics

and study some properties related to monotonicity. From the flow definition in (2) it is easy to observe

that if the vector λ is multiplied by a constant k > 0 then at any reachable marking the flow will be also

multiplied by k. Analogously, when the initial marking is multiplied by k, the system will be k times

faster. But, what happens if only some components of λ or only some components of m0 are increased?

In general, as happens for discrete nets, increasing the rate of a transition or the initial marking of a

place may lead to a slower system (see examples in Subsection 2.2 in [12]). This unexpected behavior

is usually not desirable. For example, replacing a machine by a faster one or adding new machines in a

production system should not decrease the throughput. In this section we will see that mono-T-semiflow

reducible nets, under quite general conditions, have the a priori expected monotonicity property.

Theorem 4.1: Let 〈N , λ1, m0〉 and 〈N , λ2, m0〉 be mono-T-semiflow reducible contPN systems

with λ1 ≤ λ2, but visit ratio preserving. If the systems reach a steady state and both steady state

P-configurations contain the support of a P-semiflow then the steady state flows verify f1 ≤ f2.

Proof: For i = 1, 2, let mi be the steady state marking of 〈N , λi, m0〉, and yi a P-semiflow whose

support is contained in one P-configuration defined by mi. Obviously, both m1 and m2 can be reached

in the autonomous net system, thus yi ·m1 = yi ·m2.
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Let us focus on f2 and y2. Every place pj2 ∈ ||y2|| restricts the flow of at least one of its one output

transitions, denoted by tj2, i.e.:

f2[tj2] = λ2[tj2] · m2[pj2]
Pre[pj2, tj2]

(5)

Using the P-semiflow y2, we can write the token conservation law for m1 and m2, and taking m2 from

the previous equation:
∑

pj2∈||y2||
y2[pj2] · Pre[pj2, tj2 ] · f2[tj2]

λ2[tj2]
=

∑

pj2∈||y2||
y2[pj2] ·m1[pj2] (6)

Now, m1[pj2] can be replaced using f1 because

f1[tj2] = λ1[tj2] · enab(tj2,m1) ≤ λ1[tj2] · m1[pj2]
Pre[pj2, tj2]

. (7)

Moreover, λ1 ≤ λ2, so:
∑

pj2∈||y2||
y2[pj2] ·m1[pj2] ≥

≥
∑

pj2∈||y2||
y2[pj2] · Pre[pj2, tj2 ] · f1[tj2]

λ1[tj2]
≥

≥
∑

pj2∈||y2||
y2[pj2] · Pre[pj2, tj2 ] · f1[tj2]

λ2[tj2]

(8)

The net is mono-T-semiflow reducible, and λ1 and λ2 keep the proportion of flows in continuous

equal conflicts. Hence, both visit ratios will be the same, v(1) > 0. Let f1 = k1 ·v(1) and f2 = k2 ·v(1).

Therefore, merging (7) and (8):

∑

pj2∈||y2||
y2[pj2] · Pre[pj2, tj2 ] · v(1)[tj2]

λ2[tj2]
· (k2 − k1) ≥ 0 (9)

And so k2 ≥ k1. ¤

This result an be extended to sets of rates.

Definition 4.2: Let 〈N , λ, m0〉 be a timed contPN system and let L ⊆ R|T |>0. The system 〈N , λ, m0〉
is said to be monotone for tj in steady state w.r.t. λ ∈ L if ∀λ1, λ2 ∈ L with λ1 ≤ λ2, if these systems

have steady states, the associated steady state flows verify f1[tj ] ≤ f2[tj ].

In the case of mono-T-semiflow reducible net systems, since the steady state flow is proportional to

the visit ratio vector defined by the net structure and routing (speeds at CEQs), if a system is monotone

for a given tj , it is monotone for ∀t ∈ T . Therefore, it can be said that the net system is monotone (i.e.

it is monotone for all transitions).
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Theorem 4.3: Let 〈N , λ,m0〉 be a timed mono-T-semiflow reducible contPN system under infinite

server semantics and L ⊆ R|T |>0 visit ratio preserving. If for all λ ∈ L the possible equilibrium P-

configurations of 〈N , λ,m0〉 contain the support of a P-semiflow then the timed system is monotone in

steady state with respect to λ ∈ L.

Proof: Applying to all λ1,λ2 ∈ L Th. 4.1, the conclusion is verified. ¤

Example 4.4: Let us consider the contPN in Fig. 5. This net is mono-T-semiflow with x = [1, 1, 1]

and has 4 P-configurations: P − C1 = {p1, p2, p3}, P − C2 = {p1, p4, p3}, P − C3 = {p4, p2, p3} and

P −C4 = {p4, p3}, and two minimal P-semiflows: y1 = p1 +p2 +p3 and y2 = p1 +4 ·p3 +p4. Therefore

there are two P-configurations that contain a P-semiflow, P − C1 and P − C2, one P-configuration that

contains the support of a P-flow, P −C3 (y3 = y1−y2) but no P-semiflow, and one P-configuration that

does not contain the support of any P-flow, P − C4.

1) Let m0 = [1, 1, 0, 15]. We will see that for all λ ∈ R|T |>0 the only possible equilibrium P-

configurations are P − C1 and P − C2. Both contain P-semiflows, so using Theorem 4.3 the timed

system is monotone with respect to λ ∈ R|T |>0 (for this initial marking).

First, let us observe that P − C3 is not a possible equilibrium P-configuration. To be an equilibrium

P-configuration, the following system of equations should be satisfied:




m1 + m2 + m3 = 2 (a) first P-semiflow

m1 + 4 ·m3 + m4 = 16 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m4 ≥ m2 (d) f2 restricted by p2

(10)

where m1,m2,m3,m4 and f1, f2, f3 is a possible steady state in P − C3. From (10.a) =⇒ m1 ≤ 2 and

m3 ≤ 2. Moreover, (10.c) implies m4 ≤ m1 ≤ 2. Therefore, m1 + 4 ·m3 + m4 ≤ 2 + 8 + 2 = 12 and

so (10.b) cannot be satisfied.

Assume now that P −C4 is the steady state P-configuration, therefore the following system should be

satisfied: 



m1 + m2 + m3 = 2 (a) first P-semiflow

m1 + 4 ·m3 + m4 = 16 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m2 ≥ m4 (d) f2 restricted by p4

(11)

According to (11.a) and (11.b), m4 ≥ 8 and m2 ≤ 2 (because of (11.a)); thus (11.d) is not true.

Therefore (11) has no solution and P − C4 cannot be an equilibrium P-configuration.
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Fig. 6. Throughput of the contPN system in fig. 5 for m0 = [1, 1, 0, 15]T and different values of λ2 (λ1 = λ3 = 1).

Thus for m0 = [1, 1, 0, 15]T the only possible equilibrium P-configurations, for any λ ∈ R|T |>0, are

P − C1 and P − C2. Both contain the support of a P-semiflow, thus the timed system is monotone w.r.t.

λ ∈ R|T |>0 (Theorem 4.3). In Figure 6 it is shown the non decreasing monotonicity of the throughput w.r.t.

λ2.

2) Let m0 = [15, 1, 1, 0]. For this marking, P −C2, P −C3, P −C4 can be equilibrium configurations

if appropriate values for λ are chosen. For example: m2 = [1, 13, 3, 6]T corresponding to P − C2 is an

equilibrium marking for λ2 = [6, 1, 2]T with f2 = 6; m3 = [13.67, 3, 0.33, 4]T corresponding to P −C3

is an equilibrium marking for λ3 = [3, 2, 18]T with f3 = 1; m4 = [10.5, 4.5, 2, 0.5]T corresponding

to P − C4 is an equilibrium marking for λ4 = [8, 4, 1]T with f4 = 2. Since some possible equilibrium

P-configurations do not contain the support of a P-semiflow, monotony cannot be guaranteed.

In Figure 7 it is sketched the evolution of the throughput of the net system for m0 = [15, 1, 1, 0]T and

λ = [1, λ2, 1]T with 0 < λ2 ≤ 5. It can be seen that it is not monotonic. Even a discontinuity exists at

λ2 = 0.5. When 0 < λ2 < 0.5, the equilibrium P-configuration is P −C2 and the throughput is increasing

with λ2. For λ2 ≥ 0.5 the steady state P-configuration is P − C3 that contains the support of a P-flow

(but not of a P-semiflow) and the steady state throughput is decreasing (the conditions of Theorem 4.3

are not satisfied). Therefore, for m0 = [15, 1, 1, 0]T the system is not monotone in steady state w.r.t.

λ ∈ R|T |>0.

3) Let us now study the monotonicity of the same contPN with m0 = [15, 1, 1, 0]T w.r.t λ ∈ L1 where

L1 = {[λ1, λ2, λ3]T |λ1 = λ3 = 1, 0 < λ2 < 0.5}.
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Fig. 7. Throughput of the contPN system in fig. 5 for m0 = [15, 1, 1, 0]T and different values of λ2.

First, P −C4 cannot be an equilibrium P-configuration. If it were, p4 restricts the flows of t1 and t2 in

steady state, and so since the steady state flow verifies f1 = f2 = f3, λ2 ·m4 = λ1 · m4
2 = m4

2 . Because

we are assuming λ2 < 0.5, m4 = 0 and f1 = f2 = f3 = 0, i.e., the system is in a deadlock. Notice that

f3 is defined by m3, so m3 = 0. Using the P-semiflows: m1 + m2 = 17 and m1 = 19 which cannot be

satisfied.

If P −C3 were the equilibrium P-configuration, since the steady state flow verifies f1 = f2 = f3, then

λ1 · m4
2 = λ2 ·m2 = λ3 ·m3. But λ1 = λ3 = 1, and so m4

2 = λ2 ·m2 = m3. Hence, the following system

of equations should have a solution:




m1 + m2 + m3 = 17 (a) first P-semiflow

m1 + 4 ·m3 + m4 = 19 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m4 ≥ m2 (d) f2 restricted by p2

m4
2 = λ2 ·m2 = m3 (e) steady state flows

(12)

Using (12.e), m4 = 2λ2 ·m2 and considering (12.d): 2λ2 ·m2 ≥ m2. But m2 > 0 because the system

cannot deadlock (see the reasoning for C4) therefore 2·λ2 ≥ 1 that cannot be satisfied since 0 < λ2 < 0.5.

Hence, the only possible equilibrium P-configurations are P −C1 and P −C2 that contain the support of

a P-semiflow. Therefore the time contPN system is monotone w.r.t. λ ∈ L1. ¥
Let us now consider monotonicity w.r.t. the initial marking.

Theorem 4.5: Let 〈N , λ〉 be a mono-T-semiflow reducible contPN under infinite server semantics,

and let m1 ≤ m2. If for i = 1, 2 〈N , λ,mi〉 reaches a steady state and the steady state P-configuration
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contains the support of a P-semiflow, then the steady state flows verify f1 ≤ f2.

Proof: According to Prop. 5 of [12], fi = 1
γi
·v(1) with γi = max {y · PD|y ·C = 0,y ·mi = 1, y ≥ 0} =

max
{

1
y·mi

· y · PD|y ·C = 0, y ≥ 0
}

. Let us assume m10 ≤ m20. Then, for every P-semiflow y,

y ·m1 ≤ y ·m2 and so, γ1 ≥ γ2. Therefore, f1 ≤ f2. ¤
Monotonicity w.r.t. the initial marking can be studied also on a region as done in the case of the

monotonicity w.r.t. λ.

Definition 4.6: Let 〈N , λ〉 be a timed contPN and let M ⊆ R|P |>0 . The system 〈N , λ,m0〉 is said

to be monotone for tj in steady state w.r.t. m0 ∈ M if for all m1,m2 ∈ M with m1 ≤ m2, these

systems have steady states and the associated steady state flows verify f1[tj ] ≤ f2[tj ].

As in the case of the monotony w.r.t. λ, Theorem 4.7 can be used to derive the following sufficient

condition for monotonicity of a mono-T-semiflow net system w.r.t. the initial marking.

Theorem 4.7: Let 〈N , λ,m0〉 be a timed mono-T-semiflow reducible contPN system under infinite

server semantics. If for all m0 ∈ M the possible equilibrium P-configurations contain the support of a

P-semiflow, then 〈N , λ, m0〉 is monotone in steady state w.r.t. m0 ∈M.

Proof: Applying to all m1, m2 ∈M Th. 4.5, the conclusion is verified. ¤
Example 4.8: Let us consider the contPN in figure 5. Assume λ = [1, 1, 1]T .

1) Let us study monotonicity w.r.t. m0 ∈M1 = {m|m1 = 0,m2 = m3 = 1,m4 > 0}.

P − C4 cannot be an equilibrium P-configuration. If it were, in steady state, p4 limits the flow of t1

and t2, but taking into account the T-semiflow: f1 = f2, thus m4
2 = m4 (because λ1 = λ2 = 1), and the

only solution is m4 = 0. Therefore, from the T-semiflow, m3 = 0. Writing the P-semiflows we have:

m1 + m2 = 2 and m1 = 4 + z, with z the initial marking of p4. Since z ≥ 0 these equations cannot be

satisfied. Therefore P − C4 cannot be an equilibrium P-configuration.

For C3, the following system of equations should have a solution:




m1 + m2 + m3 = 2 (a) first P-semiflow

m1 + 4m3 + m4 = 4 + z (b) second P-semiflow
m4
2 = m2 = m3 (c) steady state flow

m1 ≥ m4 (d) f1 restricted by p4

m4 ≥ m2 (e) f2 restricted by p2

(13)

where z is the initial marking of p4. From (13.b) - (13.a): 3 ·m3 −m2 + m4 = z + 2. Replacing m3

and m4 using (13.c), 3 ·m2 −m2 + 2 ·m2 = z + 2, thus m2 = z+2
4 . Hence, any solution should be of

the form: [m1,
z+2
4 , z+2

4 , z+2
2 ]T with m1 ≥ z+2

2 (13.d). But (13.a) implies: m1 = 2− z+2
4 − z+2

4 = −z+2
2
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Fig. 8. Throughput of the contPN system in fig. 5 for m0 = [15, z, 1, 0]T and λ = [1, 1, 1]T .

and combining with (13.d) results −z+2
2 ≥ z+2

2 → 2 · z ≤ 0 → z ≤ 0 which is impossible because z is

the initial marking of p4.

Thus neither P − C4 nor P − C3 can be equilibrium P-configurations. Using Theorem 4.7 the timed

net system is monotone w.r.t. the initial marking m0 in M1.

2) Let us consider M2 = {[m1,m2,m3,m4]T |m1 = 15,m3 = 1, m4 = 0,m2 > 0}. P−C3 and P−C4

can be equilibrium P-configurations and monotonicity can be lost. Indeed, simulating for m0[p2] ∈ [0, 5]

(Figure 8), the throughput decreases, even deadlock is reached for m0[p2] ≥ 3. Hence the timed net

system with m0 ∈M2 is not monotonic in steady state. ¥

B. Some properties of non monotonicity

As an immediate consequence of Theorems 4.3 and 4.7, if all P-configurations defined by N (i.e.,

independently of m0), contain a P-semiflow, then the underlying net system is monotone in steady state

w.r.t. the set of λ ∈ R|T |>0 that impose the same routing (visiting ratio), and w.r.t. m0 in R|P |>0 . Moreover,

we will prove that this P-semiflow condition when asked to all the P-configurations is in fact equivalent

to an analogous P-flows condition (Corollary 4.11). Let us first consider the following lemma.

Lemma 4.9: Let N be a consistent join free net (i.e., ∀t ∈ T , |•t| ≤ 1). For every P-flow y there exist

a P-semiflow y′ such that ||y′|| ⊆ ||y||.
Proof: Dual of Theorem 9 of [19] (T-flows of CF nets). ¤

Theorem 4.10: Let 〈N ,λ, m0〉 be a mono-T-semiflow reducible contPN system under infinite server

semantics. If there exists a set L of rates, L visit ratio preserving, or a set of initial markings M, such
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that 〈N , λ,m0〉 is not monotone in steady state w.r.t. λ ∈ L or w.r.t. m0 ∈ M, then there exists a

P-configuration that does not contain any P-flow.

Proof: If 〈N ,λ, m0〉 is not monotone, applying Theorem 4.3 or Theorem 4.7, an equilibrium

P-configuration exists that does not contain a P-semiflow. If this equilibrium P-configuration does not

contain the support of any P-flow this is the requested P-configuration. Otherwise, assume that this

equilibrium P-configuration contains one P-flow (or more). Let us consider the subnet N ′ defined by the

set of all transitions together with the places that limit their flow in steady state, and let us call C′ the

token flow matrix of this subnet. Since the original net is mono-T-semiflow, it is consistent. The same

T-semiflow of N is also a right annuller of C′, hence N ′ is consistent.

If N ′ were a JF net, using Lemma 4.9 the support of a P-semiflow should be included in N ′, but that

is impossible by assumption. Hence N ′ must have at least one join/synchronization. Let us call tk this

transition. Let pi and pj be the input places of tk that belong to the P-configuration. Obviously, only one

place restricts the flow of tk. Let us assume pi to be this one.

If we consider now that tk is restricted by pj and the other transitions are restricted by the same places

as before, we obtain a new P-configuration (possibly a non-equilibrium one) in which place pi has been

removed. If this P-configuration contains a P-flow, repeat the reasoning. In the end this procedure will

define a P-configuration that does not contain any P-semiflow (from hypothesis) or P-flow. ¤
Corollary 4.11: Let 〈N , λ, m0〉 be a continuous mono-T-semiflow reducible net under infinite server

semantics. If all the P-configurations contain the support of a P-flow, then the underlying net system is

monotone in steady state w.r.t. m0 ∈M, ∀M ⊆ R|P |>0 , and w.r.t. λ ∈ L, ∀L ⊆ R|T |>0 visit ratio preserving.

Example 4.12: Let us consider again the queuing network presented in Fig. 1. It has the following P-

semiflows: y1 = p2+p4, y2 = p7+p9, y3 = p8+p10 and y4 = p1+p2+p3+p5+p6+p7+p8+p11+p12.

Since this net is EQ, all P-configurations contain the support of a P-semiflow [20]. Hence, both kinds of

monotonicity properties hold. ¥

V. CHECKING STRUCTURAL MONOTONICITY

This section deals with monotonicity results valid for family of m0, thus partially independent on the

initial marking, based on the structural timed net 〈N , λ〉.
In Section IV, monotonicity of the throughput w.r.t. λ or m0 is proved for mono-T-semiflow reducible

nets whose possible equilibrium P-configurations contain the support of a P-semiflow. Under the same

hypothesis, plus liveness, in Section III-B it is proved that infinite server semantics provides a throughput

closer to that of the discrete system in steady state than finite server semantics. Therefore, it is interesting
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to know the P-configurations that do not contain the support of a P-semiflow, because if they are possible

equilibrium P-configurations the previous two properties may not hold.

The idea is to use boolean equations to represent the conditions the places in a P-configuration have to

fulfill. Let γi be a boolean variable such that γi = 1 iff pi belongs to one P-configuration. Any P-semiflow

will provide a boolean equation: the product of the boolean variables associated to the support of the P-

semiflow should be 0 if the P-semiflow does not belong to the P-configuration. Moreover, if a transition

is not a join (|•ti| = 1) its input place must belong to all P-configurations (it is an essential cover),

therefore the boolean variables associated to those places are 1. For every synchronization, we should

have another boolean equation ensuring that at least one input place is taken so that the solution is (or

contains) a P-configuration. The solutions of this system of boolean equations provide P-configurations

that do not contain the support of a P-semiflow.

Example 5.1: Let us consider the net in Fig. 5. This net has been used in Examples 4.4 and 4.8 where

the P-configurations that do not contain the support of a P-semiflow were supposed to be known. These

P-configurations can be computed, for example, using the above algorithm. This net has two P-semiflows:

y1 = p1 + p2 + p3 and y2 = p1 +4 · p3 + p4, so the corresponding boolean equations are: γ1 · γ2 · γ3 = 0

and γ1 · γ3 · γ4 = 0. In order to cover transitions we need additional equations. For t1: γ1 + γ4 = 1 (m1

or m4 limit the flow of t1) and the same for t2: γ2 + γ4 = 1 (m2 or m4 limit the flow of t2). Clearly,

p3 being the only input place in t3 is an essential cover, thus γ3 = 1. The following system of boolean

equations is obtained:



γ1 · γ2 · γ3 = 0 (a) First P-semiflow is not contained

γ1 · γ3 · γ4 = 0 (b) Second P-semiflow is not contained

γ1 + γ4 = 1 (c) t1 is covered

γ2 + γ4 = 1 (d) t2 is covered

γ3 = 1 (e) t3 is covered

(14)

From (14.e), taking into account (14.a) and (14.b), γ1 · (γ2 + γ4) = 0. Because of (14.d): γ1 = 0; thus

γ4 = 1 and γ2 = ®. Summarizing, γ1 = 0, γ2 = ®, γ3 = 1 and γ4 = 1. Thus the net has two

P-configurations (C1 = {p3, p4}, C2 = {p2, p3, p4}) that do not contain the support of a P-semiflow.

Depending on the initial marking and the firing rates these P-configurations can or cannot be equilibrium

P-configurations and the monotonicity may be lost (see Example 4.4). ¥
Remark 5.2: It can be seen in (14) that for every transition with only one input place (there |•t3| =

|{p3}| = 1) a boolean equation γ3 = 1 is introduced. Before solving the equations, these variables can be

removed reducing the number of variables. The interpretation in the PN is that t3 and p3 can be removed
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in the model because p3 belongs to all P-configurations. If all transitions with only one input place are

removed, the net will contain only join transitions and the order of the system may be much lower.

According to Corollary 4.11, if all P-configurations contain the support of a P-flow, the timed net

system is monotonic in steady state w.r.t. m0 ∈ R|P |>0 and w.r.t. λ ∈ L, ∀L ⊆ R|T |>0 visit ratio preserving.

A second algorithm can be used to check if all P-configurations contain the support of a P-flow. This

second algorithm may fail, but this does not imply that the net system is not monotonic, since the net

may include P-configurations not containing the support of a P-semiflow but which cannot be equilibrium

P-configurations for a specific initial marking and transition rates (see Example 4.4). In fact, with this

algorithm it is monotonicity for any subset of λ and m0 that is obtained.

The algorithm consists in: first, all P-configurations are computed (which is exponential) and then,

each P-configuration is checked to see whether it contains the support of a P-flow. For the second step,

let the token flow matrix of a P-configuration P − Cj be denoted by Cj (Cj is obtained from the token

flow matrix of the original net by removing the rows not corresponding to P − Cj). To check if P − Cj

contains the support of a P-flow, is equivalent to check if ∃y 6= 0 such that y ·Cj = 0 (polynomial time

complexity).

Using this algorithm, we can check if all P-configurations contain the support of a P-flow. If the answer

is negative, we can compute P-configurations not containing the support of a P-semiflow checking for each

P-configuration P −Cj with the associated token flow matrix Cj if the following system has a solution:

∃y ≥ 0, y 6= 0 such that y ·Cj = 0. If we prove that they cannot be equilibrium P-configurations, the

system is monotone.

VI. CASE STUDY

The Petri net system in Fig. 9 represents an assembly line with kanban strategy (see [21]). The system

has two stages connected by transition t14. The first one is composed by three lines starting with p2, p3

and p4, three machines p23, p24 and p25 and three buffers p26, p27 and p28. The second stage has two

lines that share the resource p18. The number of kanban cards are given by the markings of p2, p3, p4,

p32.

The number of reachable markings for the initial marking in the figure is 209704. Having so many

states, we want to approximate the model with its continuous approximation. Considering that the firing

of every transition takes 1 t.u., which firing semantics will approximates better the throughput in steady

state?
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Fig. 9. An assembly line with kanban strategy. The net is mono-T-semiflow (There exists no equal conflict to be reduced).

First, it is easy to observe that every transition has at least one place with its marking not greater than

one at every time moment, hence the discrete net has the same behavior under finite and infinite server

semantics. Thus it is not necessary to make explicit the servers to compare the continuous approximations.

This PN has 12 minimal P-semiflows covering all places so it is conservative and has one minimal

T-semiflow covering all transitions so it is consistent, and mono-T-semiflow. Applying any algorithm

from Section V we obtain that every P-configuration contains the support of a P-semiflow. Applying

Theorem 3.2, the throughput in steady state of continuous model with infinite server semantics will be

closer than finite server semantics to the throughput of the deterministic discrete net. This is obtained also

by simulations. The throughput of the (discrete) timed PN is 0.125, of the continuous net with infinite

server semantics is 0.167 while with finite server semantics is 1.

Observe that the conditions of Theorem 4.3 are also satisfied. Therefore, increasing the speed of some

transitions or the marking of some places, the throughput of the contPN with infinite server semantics

will be greater or equal.

VII. CONCLUSIONS

Mono-T-semiflow reducible contPN have been discussed in this paper. First, a comparison between

finite and infinite firing semantics, the two most used for timed contPN systems is provided. A “good”

firing semantics for timed continuous Petri nets should provide a time evolution “similar” to the discrete

model. Being a relaxation, an identical result is practically impossible to obtain. In the actual level

of knowledge, in general it is difficult to answer to this question, although, in practice, infinite server

semantics is usually better than finite server semantics. In this paper we have proved that for mono-T-
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semiflow reducible contPN systems with all the equilibrium P-configurations containing the support of a

P-semiflow, the throughput in steady state with infinite server semantics is always closer to the throughput

of the discrete net. Moreover, under the same conditions, monotonicity with respect to the firing rate λ

and with respect to the initial marking m0 is obtained. Finally, two methods to check the conditions are

presented.
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