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Abstract— In previous papers we investigated the problem
of deriving an optimal control law for continuous Petri nets
under infinite server semantics. In particular, the problem was
studied through Model Predictive Control (MPC), an advanced
control method, extensively used in industrial applications.

In this work we discuss some properties of the resulting
closed-loop system, such as feasibility and asymptotic stability.
We prove that for continuous Petri nets feasibility is always
guaranteed, while asymptotic stability is not ensured. Finally,
we demonstrate that the introduction of an appropriate ter-
minal constraint may guarantee asymptotic stability provided
that certain assumptions on the initial state and the moving
horizon are satisfied.

I. INTRODUCTION

Discrete Petri nets (PN) are a mathematical formalism for
the description of discrete-event systems, successfully used
for modeling, analysis and synthesis of such systems. Its
main feature is that their state space belongs to the set of
non-negative integers [5]. Another key feature of PN is their
capacity to represent graphically and visualize primitives
such as parallelism, synchronization, mutual exclusion, etc.

As other models of concurrent systems, discrete PN may
suffer from the state explosion problem. As a consequence
the analysis and optimization of these systems may require
an amount of computational effort, thus leading to analyti-
cally and computationally untractable problems. One way to
tackle this difficulty consists in the relaxation of the original
integrality constraints, giving a fluid (i.e., continuous) ap-
proximation of the discrete event dynamics [5], [14]. Fluid
models may be studied by means of structural analysis, that
does not require the enumeration of the state space [14].

To study the performance of systems, timing can be intro-
duced and timed PN are obtained. In this paper we consider
timed continuous Petri net systems (contPN) under infinite
server semantics and subject to external control actions:
we assume that the only admissible control law consists in
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slowing down the firing speed of transitions [14]. Such a
system can be represented by a particular hybrid positive
model: a piecewise linear positive model with autonomous
switches and with constraints on the state and control input
space [10]. By a suitable change of variables it is also
possible, as shown in [9], to further simplify the model into
a discrete-time linear model with constraints on the state and
input space.

In the case of discrete event systems (DES), the problem
of on-line calculation of supervisory controllers has been
introduced in [4] where the framework of limited lookahead
control policies is used. For DES modeled by PN, in [6] an
integer linear programming formalism is used while, for a
particular class of marked graphs, in [12] a control strategy
based on Model Predictive Control (MPC) has been studied.

For contPN systems with infinite server semantics, in [7]
we studied the problem of deriving an optimal control law
that enables the system to reach a desired point starting
from a given initial marking, while optimizing a quadratic
performance index. In particular, we assumed that the desired
marking and control was a steady state point [10], namely
a stable operation point where the system can work indefi-
nitely.

The solution proposed in [7] is based on MPC [3]. In
particular, in [7] we investigated the possibility of using
both an implicit and an explicit [1] MPC control strategy.
A detailed comparison among the two approaches is also
proposed in [7] in terms of computational complexity and
practical implementation.

The contribution of this paper consists in the discussion of
some properties of the system controlled via MPC, such as
feasibility and asymptotic stability. We prove that for contPN
systems feasibility is always guaranteed, while asymptotic
stability is not ensured. Different approaches are investigated
in order to guarantee this property. One of them consists in
the introduction of an appropriate terminal constraint, and
in such a case asymptotic stability can be guaranteed under
certain assumptions on the initial state and on the moving
horizon.

Some numerical examples are also presented to clearly
show that, although some of the assumptions may look
conservative, they cannot be relaxed when the desired (final)
state and input is not an interior point to the set of feasible



states and inputs, but lies on the boundary.

II. CONTINUOUS PETRI NETS

Definition 2.1: A contPN system is a pair 〈N , m0〉,
where: N = 〈P, T, Pre, Post〉 is the net structure with
set of places P , set of transitions T , pre and post incidence
matrices Pre, Post : P × T → N; m0 : P → R≥0 is the
initial marking. ¥

We denote m(τ) the marking at time τ and in discrete
time we denote m(k) the marking at sampling instant k,
where τ = k ·Θ and Θ is the sampling period. Finally, the
preset and postset of a node x ∈ P ∪ T are denoted •x and
x•, respectively.

A transition t ∈ T is enabled at m iff ∀pi ∈ •t, mi > 0,
and its enabling degree is

enab(t, m) = min
pi∈•t

{
mi

Pre(pi, t)

}
.

An enabled transition t can fire in any real amount 0 ≤ α ≤
enab(t, m) leading to a new marking m′ = m + αC(·, t),
where C = Post−Pre is the token flow matrix; this firing
is also denoted m[t(α)〉m′.

In general, if m is reachable from m0 through a sequence
σ = tr1(α1)tr2(α2) . . . trk

(αk), and we denote by σ :
T → R≥0 the firing vector whose component associated
to a transition tj is

σj =
∑

h∈H(σ,tj)

αh,

where

H(σ, tj) = {h = 1, . . . , k | trh
= tj},

we can write:

m = m0 + C · σ,

which is called the fundamental equation.
The basic difference between discrete and continuous PN

is that the components of the markings and firing count
vectors are not restricted to take values in the set of natural
numbers but can take non-negative real values.

Definition 2.2: A (deterministically) timed contPN sys-
tem is a contPN system together with a vector λ : T → R>0,
where λj is the firing rate of tj . ¥

Now, the fundamental equation depends on time: m(τ) =
m0 + C ·σ(τ), where σ(τ) denotes the firing count vector
in the interval [0, τ ]. Differentiating it with respect to time
the following is obtained: ṁ(τ) = C · σ̇(τ). The derivative
of firing vector represents the flow of the timed model
f(τ) = σ̇(τ). Depending on how the flow of the transition
is defined, many firing semantics are possible [5], [14]. This
paper deals with infinite server semantics that for a broad
class of systems approximates better the behavior of the

underlying discrete net [11]. Under this semantics, the flow
of transition tj is given by:

fj = λj enab(tj , m) = λj min
pi∈•tj

{
mi

Pre(pi, tj)

}
.

III. A LINEAR DISCRETE-TIME CONSTRAINED MODEL

In this section we consider net systems subject to external
control actions, and assume that the only admissible control
law consists in slowing down the firing speed of transitions,
that are assumed to be all controllable [10].

Definition 3.1: The flow of the forced (or controlled)
timed contPN will be denoted w(τ) = f(τ)− u(τ), where
the external control u(τ) satisfies 0 ≤ u(τ) ≤ f(τ). ¥
Therefore, the control input will be dynamically upper
bounded by the flow of the corresponding unforced system.

The overall behavior of the system is ruled by the follow-
ing system

{
ṁ(τ) = C · [f(τ)− u(τ)]

0 ≤ u(τ) ≤ f(τ)
(1)

This is a particular hybrid system: a piecewise linear
system with autonomous switches and dynamic (or state-
based) constraints in the input.

Proposition 3.2: [9] Any piecewise linear constrained
model of the form (1) can be rewritten as a linear constrained
model of the form





ṁ(τ) = C ·w(τ)

G ·
[

w(τ)
m(τ)

]
≤ 0

w(τ) ≥ 0

(2)

that we call continuous time contPN model (or ct-contPN
for short) where G is an appropriate constant matrix defined
as follows:

G =
[

∆ −Γ
]
, ∆ ∈ Zq×|T |, Γ ∈ Zq×|P |,

q =
∑

t∈T

|•t| ,

and the row of ∆ and Γ relative to the generic pre arc (pi, tj)
are 

0 · · · 0 1︸ ︷︷ ︸
j

0 · · · 0


 ,


0 · · · 0

λj

Pre(pi, tj)︸ ︷︷ ︸
i

0 · · · 0


 ,

respectively. The initial value of the state of this system is
m(0) = m0 ≥ 0. ¥

The system in eq. (2) is a linear system with a state-matrix
equal to 0 and an input matrix equal to the token flow matrix
of the contPN. There is still a dynamic constraint on the
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Fig. 1. A simple contPN.

system inputs that depends on the value of the system state
m. The continuous-time system (2) can be discretized, thus
obtaining a discrete-time “equivalent” model.

Definition 3.3: Consider a ct-contPN model of the form
(2) and let Θ be a sampling period. A model can be given
in terms of a discrete-time contPN or dt-contPN as follows:





m(k + 1) = m(k) + Θ ·C ·w(k)

G ·
[

w(k)
m(k)

]
≤ 0

w(k) ≥ 0

(3)

The initial value of the state of this system is m(0) = m0 ≥
0. ¥

It is important to stress that, although the evolution of
a dt-contPN occurs in discrete steps, as was the case for
an untimed system, discrete time evolutions and untimed
evolutions are not the same. In fact, while an untimed net
system can be seen evolving sequentially, executing a single
transition firing at each step, a dt-contPN may evolve in
concurrent steps where more than one transition can fire.

In a ct-contPN under infinite servers semantics, the pos-
itiveness of the marking is ensured if the initial marking
m0 is positive, because the flow of a transition goes to zero
whenever one of the input places is empty [14].

In a dt-contPN, this is not always true as it is illustrated
in [9]. In the same work it is proved that if the sampling
period is small enough the problem can be avoided. In the
rest of the paper we will always implicitly assume that Θ is
small enough and all reachable markings are positive.

IV. OPTIMAL TRANSIENT CONTROL VIA MPC

Steady state optimal control of contPN was studied in
[10] and if all transitions can be controlled and the objective
function is linear, the problem can be solved in polynomial
time. The solution is an optimal marking and an optimal
control input in steady state.

In [7] we assumed that the steady state condition (mf ,
wf ) was known and our problem was how to reach it
(from a given m0) in a finite time while optimizing a

given performance index. This steady state condition can
be an optimal one or any other reachable marking together
with a command. The optimal control was studied using
Model Predictive Control (MPC) [8], also referred as moving
horizon control or receding horizon control.

MPC algorithms use different cost functions to obtain the
control action. In [7] we considered the following standard
quadratic form:

J(m(k),w(k), N) =

{(m(k + N)−mf )′ ·Z · (m(k + N)−mf )

+
N−1∑
j=0

[(m(k + j)−mf )′ ·Q · (m(k + j)−mf )+

(w(k + j)−wf )′ ·R · (w(k + j)−wf )]}
(4)

where Z, Q and R are positive definite matrices.
The constraints are derived from the dt-contPN definition,

and at every step the new marking should respect (3). Thus,
at each step the following problem needs to be solved:





min J(m(k), N)
s.t. : m(k + j + 1) = m(k + j) + Θ ·C ·w(k + j),

j = 0, . . . , N − 1,

G ·
[

w(k + j)
m(k + j)

]
≤ 0, j = 0, . . . , N − 1,

w(k + j) ≥ 0, j = 0, . . . , N − 1.
(5)

We denote as implicit MPC the MPC control law com-
puted solving on-line the optimization problem (5).

An alternative to implicit MPC has been proposed in [1].
Here the authors present a technique to compute off-line
an explicit solution of the MPC control problem, based on
multi-parametric linear programming (mp-LP) or quadratic
programming (mp-QP). They split the maximum controllable
set (i.e., all states that are controllable) into polytopes de-
scribed by linear inequalities1 in which the control command
is described as a piecewise affine function of the state. Thus,
the control law results in a state feedback control law.

In [7] we applied both the two MPC approaches to dt-
contPN. Detailed comparisons among them are reported in
[7]. In particular, several numerical simulations have been
carried out using different values of N and/or Θ. We also
observed that if the considered final input lays on the
boundary of the region of feasible state + input vectors, the
infinite horizon problem (N = +∞) cannot be solved. In
fact, in this case it is not possible to determine a finite value
of N in order to reduce the problem to a finite time optimal
control problem.

1A bounded polyhedron P ⊂ Rn, P = {x ∈ Rn | Ax ≤ B} is
called a polytope.
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V. PROPERTIES OF THE CLOSED-LOOP SYSTEM

In this section we investigate some properties of the
closed-loop system (resulting from the application of MPC),
such as feasibility and asymptotic stability.

A. Feasibility

In general, given an initial feasible state, there is no
guarantee that the optimization problem we need to solve
at each time step when implementing implicit MPC, will
remain feasible at all future time steps k, as the system might
enter ”blind alleys” where no solution to the optimization
problem exists [2]. In terms of explicit MPC this translates
into the fact that there is no guarantee that the resulting state
space partition includes all feasible states.

However, thanks to the structure of the constraints, in the
case of continuous Petri net systems the following result
guarantees the feasibility of (5) for any time step k.

Proposition 5.1: The optimization problem (5) is feasible
for any m(k) ≥ 0.

Proof: The solution w(k+j) = 0 for j = 0, 1, . . . , N−
1 is feasible. In fact,

G ·
[

w(k + j)
m(k + j)

]

=
[

∆ −Γ
] · [ w(k + j) m(k + j)

]

= −Γ ·m(k + j) ≤ 0

because (see Proposition 3.2) Γ is a matrix of non-negative
numbers and m(k+j) = mk ≥ 0 for any j = 0, 1, . . . , N−
1. ¤

In simple words Proposition 5.1 claims that feasibility is
guaranteed for any m(k) ≥ 0 because we can always ”stop”
the net.

B. Asymptotic stability

The feasibility of (5) is obviously a desirable property but
it does not ensure the convergence of the optimal solution to
the desired state, that is our main requirement.

The following example clearly shows this.
Example 5.2: Let us consider the net system in Fig. 2

with λ = [1 5]T . Let Θ = 0.1, mf = [0 1]T and wf =
[0 0]T . Moreover, let Q = Z = R = I and N = 1.

The marking evolution of the system controlled with the
MPC policy is presented in Fig. 3. Clearly, the desired
marking is not reached. Observe that to obtain mf , only
t1 should fire. Because the timing horizon is too short and
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Fig. 3. Marking and flow evolution of the contPN system in Fig. 2.

λ2 = 5 >> λ1 = 1, the optimality of (5) implies that it
is better to fire at the beginning “a little” t2 so that m1

approaches the desired final value mf,1 = 0. However, once
t2 has fired, mf cannot be reached because there is not
enough marking in p1 to be transferred to p2. ¥

In this section we investigate three different approaches in
order to improve convergence, that are quite standard in the
literature [2].

B1. The first approach consists in assuming that

w(k + j) = 0 ∀ j = N + 1, · · · ,∞

and weighting the distance of the marking from the final one
not only for j = 0, 1, · · · , N−1 but for any j = 0, 1, · · · ,∞.

Obviously, such an approach can only be applied to
asymptotically stable systems, that is not the case here
because the dynamical matrix is the identity one.

B2. The second approach consists in assuming that

w(k + j) = Km(k + j) ∀ j = N + 1, · · · ,∞

and weighting the distance of the marking from the final
marking not only for j = 0, 1, · · · , N − 1 but for any
j = 0, 1, · · · ,∞. In particular, we assume that matrix K is
defined as in the unconstrained LQR problem with weighting
matrices Q and R, namely

K = −(R + BT KB)−1BT PA,

P = (A + BK)T P (A + BK)) + KT RK + Q,
(6)

and in our case A = I and B = Θ ·C.
In plain words we apply an open-loop optimal strategy

just for the first N steps; this leads us close enough to
the optimal desired state and then we can switch to a LQR
optimal regulator without violating the constraints.

This is equivalent to consider an optimization problem of
the form (5) where the matrix Z in the performance index
is Z = P , where P is defined as in eq. (6).



In such a case, using results from the classical optimal
control theory [13], we can guarantee convergence to the
desired condition only if the set of feasible state and input
vectors is bounded and the final state and input is an interior
point of it. As a consequence such an approach often does
not apply to many control problems within the framework of
continuous Petri nets, where is frequently the case of steady
state input on the border. Thus we need to investigate for
alternative approaches.

Note however that, if the final state + input is an interior
point, and the moving horizon N is sufficiently large, this
approach is surely the most convenient. In fact, it has the
major advantage that the resulting strategy is indeed the
optimal infinite horizon constrained LQR policy [2].

B3. The third approach we consider consists in forcing
the system state at time k + N to belong to the straight line
m(k) — mf . In simple words, this is equivalent to add a
terminal constraint of the form

{
m(k + N) = mk + α · (mf −m(k))
0 ≤ α ≤ 1

(7)

to the optimization problem (5), where α is a new decision
variable.

A remark should be done. We observe that the addition of
this constraint makes it necessary to solve a certain number
of bilinear (rather than linear) programming problems when
implementing the explicit MPC [2]. In particular, bilinear
problems have to be solved when computing the Chebychev
centers of the polytopic regions, where both the initial state
and α are unknown.

This approach revealed satisfactory in several numerical
examples we considered. However, we have been able to
prove convergence only under certain assumptions, as de-
tailed in the following.

Proposition 5.3: Let us consider a contPN system. Let
m0 and mf be the initial and final markings, respectively,
with m0 > 0 and mf reachable from m0. Assume that the
system is controlled using MPC with a terminal constraint
of the form (7) and prediction horizon N = 1. Then the
closed-loop system is asymptotically stable.

Proof: We prove the statement in three steps. We first
prove that if m0 > 0 then α > 0 in eq. (7) is feasible at any
k ≥ 0. Then, we define a quadratic function that we prove
to be a Lyapunov function. Finally, we demonstrate that it is
strictly decreasing.

— We first observe that by item (2) of Proposition 4.4 in
[9], if m0 > 0 then m(k) > 0 for any k ≥ 1. Moreover,
if mf is reachable from m0 then it is also reachable from
any marking in the straight path mf — m0 being the full
reachability space a convex region.

Now, let us consider eq. (7) with N = 1. It holds m(k +
1) = α ·mf + (1 − α) ·m(k). Being mf reachable from

m(k), then there exists σ ≥ 0 such that mf = m(k)+C ·σ.
Thus, m(k+1) = α ·m(k)+α ·C ·σ+(1−α) ·m(k) =

m(k) + C · (α σ). But there always exists α > 0 such that
α σ can always be fired at m(k) being m(k) > 0.

— Now, without loss of generality we assume that in eq.
(5) it holds: (a) mf = 0; (b) C is full rank. In fact, if
mf = 0 we can always redefine the state in eq. (5) by
translation. Furthermore, if C is not full rank then there exist
vectors in the null-space of C (called P-flows of the net) that
impose some invariants on the state space: this allows one
to reduce the dimension of the state vector in eq. (5) until a
full rank matrix C is obtained.

Let

V (m(k)) = m(k)T ·Z ·m(k)

where Z is the weighting matrix in the performance index
(4).

Obviously, V (m(k)) ≥ 0 for any m(k) 6= 0, being Z

positive definite. Moreover, V (m(k + 1)) ≤ V (m(k)) for
any k ≥ 0. In fact, under the assumption that mf = 0, by
constraint (7) it holds m(k + 1) = (1− α) ·m(k). Thus,

V (m(k + 1)) = m(k + 1)T ·Z ·m(k + 1)
= (1− α)2 ·m(k)T ·Z ·m(k)
= (1− α)2 · V (m(k)) ≤ V (m(k)).

— We now prove that ∀ k ≥ 0 the optimal solution of
problem (5) leads to α > 0. Let k be an arbitrary time
instant. If α = 0 then the performance index (4) is equal to

J ′ = m(k)T ·Q ·m(k) + m(k)T ·Z ·m(k).

If α > 0 (this is always possible by the first item of this
proof), then the performance index (4) is

J ′′ = m(k)T ·Q ·m(k) + w(k)T ·R ·w(k)+
+m(k + 1)T ·Z ·m(k + 1).

Being m(k + 1) = (1− α) ·m(k), it holds

J ′′ = m(k)T ·Q ·m(k) + w(k)T ·R ·w(k)
+m(k)T ·Z ·m(k)− 2 · α ·m(k)T ·Z ·m(k)
+α2 ·m(k)T ·Z ·m(k)

and

J ′′ − J ′ = w(k)T ·R ·w(k) + α2 ·m(k)T ·Z ·m(k)
−2 · α ·m(k)T ·Z ·m(k)

= w(k)T ·R ·w(k)
+α · (α− 2) ·m(k)T ·Z ·m(k).

But it is always possible to have J ′′ < J ′ by appropriately
choosing α > 0, and this always occurs since we are
minimizing the performance index. In fact, since

m(k + 1) = (1− α) ·m(k) = m(k) + Θ ·C ·w(k),
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Fig. 5. Simulations for the net in Fig. 4 with N = 1.

it follows that m(k) = −Θ
α
·Cw(k). Therefore

J ′′ − J ′ = w(k)T ·R ·w(k)

−Θ2 · (2− α)
α

·w(k)T ·CT ·Z ·C ·w(k)

= w(k)T ·R ·w(k)

−w(k)T ·
[(

2
α
− 1

)
·Θ2 ·CT ·Z ·C

]
·w(k) < 0

if α is small enough and CT · Z · C is positive definite.
But CT · Z · C is always positive definite because Z is
positive definite by definition and C is a full rank matrix by
assumption. ¤

Remark 5.4: In general m(0) > 0 is not a strict re-
quirement in the above proposition. It is only sufficient to
assume that for any k ≥ 0 the optimization problem (plus
terminal constraint) admits α > 0 as a solution. Physically
this means that we can move along the straight line m(0) —
mf . However, since in general it is difficult to verify such
a condition, for simplicity of presentation we prefer to state
Proposition 5.3 providing a condition on m(0). ¥

Note that in general the terminal equality constraint ap-
proach cannot be extended to the case of N > 1 as long as
the steady state values define an equilibrium point for the
system when the final state + input is not a point interior to
the set of feasible states + inputs.

Example 5.5: To illustrate this, let us consider the contPN
in Fig. 4. Assume m0 = [1 0.1]T > 0, mf = [0 0]T ,
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Fig. 6. Simulations for the net in Fig. 4 with N = 2.

wf = [0 0 0]T , λ = [1 1 1]T , Z = R = I , Q = [1 0; 0 100]
and Θ = 0.1.

Applying MPC, and using the terminal constraint m(k +
N) = α · mf + (1 − α) · m(k), we obtain the results in
Fig. 5 and Fig. 6.

Thus, in the case of N = 1, mf is reached (Fig. 5). On
the contrary, mf is not reached if N = 2 (Fig. 6). Observe
that mf = [0 0]T is on the boundary of the feasible states
since in a PN, m(k) ≥ 0 for all reachability markings m(k).
The same happens for wf = [0 0 0]T that is on the boundary
of the feasible inputs.

The results of Fig. 6 can be interpreted considering that if
N = 2 at each time instant the controller will choose to put
“nothing” in p2 at the first step and put “something” in the
second step. Observe that to remove tokens from p1, p2 can-
not be empty. But applying only w(0), t2 is never firing. This
control is obtained because the performance index weights
p2 with a big value in the first step (Q(2, 2) = 100) and with
a small value in the second step (Z(1, 1) = Z(2, 2) = 1).

Note that if we consider N = 2 but, instead of applying
the resulting control law in the first time instant only, we also
apply it in the second time instant, the closed-loop behavior
of the net would be that reported in Fig. 7, i.e., the desired
final marking is reached. Since in the first time instant the
control is do nothing, i.e., w = 0, but in the next time instant
it puts tokens in p2, the control action varies from a non-zero
to a zero value at every time instant.

Regarding the performance, it is obvious that this last case
provides better performances than those obtained for N=1.
Indeed, a closed loop cost of 101.0058 is obtained in the
case of N = 1 while the cost is equal to 34.4362 if N = 2
and both w(0) and w(1) are applied. ¥

The above MPC control scheme is very conservative but
ensures asymptotic stability even if the final marking and
input is on the boundary. When this is not the case, i.e., final
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Fig. 8. Simulations for the net in Fig. 1.

marking and input is an interior point, the second method of
ensuring stability (i.e., using unconstrained LQR for j >

N ) may be preferable because, in general, the closed loop
performance index is better.

Example 5.6: Let us consider the net system in Fig. 2
with m0 = [3 3 1 3]T . Let us assume that the de-
sired marking is mf = [0.75 6 0.25 8.25]T and wf =
[0.125 0.125 0.125]T . The reachability space projected on
m2 and m3 is illustrated in Fig. 8. It can be seen that
mf is an interior point of the reachability space and it
is easy to check that wf is also an interior point of the
feasible set of inputs. Let us assume Z = 100 · I for the
MPC scheme with terminal constraints of the form (7), and
Z = P , with P solution of (6), for the MPC scheme with
unconstrained LQR; finally, let Q = R = I . The resulting
marking evolution is quite different in the two cases as it
can be seen in Fig. 8. With continuous line it is represented
the marking evolution with unconstrained LQR (approach

B2), and with dot line the evolution with terminal constraints
(7). Under the considered assumptions, both schemes ensure
asymptotic stability but the unconstrained LQR one gives
a closed loop cost equal to 636.6636 instead of 717.641
obtained with terminal constraints (7). ¥

VI. CONCLUSIONS

We considered timed contPN under infinite server seman-
tics. In previous works, on the basis of a constrained discrete-
time positive linear model of the system, we derived optimal
control laws based on MPC. In this paper we analyzed some
properties of the closed-loop system, such as feasibility and
asymptotic stability. We proved that feasibility is always
guaranteed, while asymptotic stability can only be ensured
under certain restrictive assumptions.
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