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Abstract

This paper addresses several questions related to the control of
timed continuous Petri Nets under infinite server semantics. First,
some results regarding equilibrium states and control actions are given.
In particular, it is shown that the considered systems are piecewise
linear, and for every linear subsystem the possible steady-states are
characterized. Second, optimal steady-state control is studied, a prob-
lem that surprisingly can be computed in polynomial time, when all
transitions are controllable and the objective function is linear. Third,
an interpretation of some controllability aspects in the framework of
linear dynamic systems is presented. An interesting finding is that non
controllable poles are zero valued.
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1 Introduction

Continuous Petri Nets (contPNs) [?] [?] [?] appear as a promising approach
to model, analyze and deal with some synthesis problems of discrete event
systems in a relaxed setting. The goal of the relaxation is to obtain more ef-
ficient algorithms. For instance, reachability can be characterized in polyno-
mial time under quite general conditions in the contPN model [?]. However,
one must be careful since there are properties that cannot be captured by
the contPN model. Properties like mutual exclusions or existence of home
states are essentially not analyzable under fluidification. Moreover it is well
known that for basic properties like boundedness, the continuous version
only provides sufficient conditions for the original discrete case, while live-
ness of the continuous case is neither necessary nor sufficient for that of
the underlying discrete model [?]. ContPNs have been mainly used in the
domain of manufacturing [?, ?, ?], although others applications have been
proposed, like traffic systems [?].

Time can be introduced in the model, leading to the so called timed
contPN. In timed contPN two server semantics are mostly used. These are
inspired from the discrete stochastic Petri nets, namely finite server seman-
tics and infinite server semantics (see [?] for a more detailed discussion).

Under finite server semantics [?], also called constant speed contPNs [?],
the flow (or throughput) of the transitions is piecewise-constant. A very
similar formalism is considered in [?] where the optimal instantaneous flow
is computed using a linear programming problem (LPP). Infinite server se-
mantics [?], also called variable speed continuous Petri nets [?], considers
that the flow of a transition is piecewise-linear.

In the literature, other semantics have been considered for timed con-
tinuous Petri nets. For example in [?,?] time is associated with places and
(max,+) algebra can be used in some cases to describe the system evolution.
The optimal steady-state is computed using dynamical programming [?] or
linear programming [?]. In [?], an approximation of variable speed contPNs,
called asymptotic continuous Petri nets is introduced where the instanta-
neous firing speed vector is piecewise-constant. Unfortunately, when the net
has choices, the conflict resolution policy must be defined ”a priori”. More-
over, for an unsaturated system an oscillatory behavior may be obtained in
steady-state.

Assuming that certain discrete event systems usually work close to con-
gestion, and having evidence of the gains that in certain cases are obtained
by fluidification, this paper deals with some control problems of timed con-
tinuous PNs under so called infinite server semantics (the continuous and
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first order deterministic approximation of markovian flows in discrete Petri
Nets (PNs)). Under this firing semantics, due to the min operator occur-
ring in the synchronizations, the continuous model is a multilinear switched
dynamic system.

Starting with the crucial question of how to control, an approach based
in the idea of slowing down the firing flow of transitions is considered [?].
A first question is which markings can be equilibrium points, assuming a
constant control action ud in steady-state. This paper explores this prob-
lem in Section 3. For some particular net subclasses, unique solutions are
algebraically obtained (thus their characterization is complete). If several
steady state markings appear, in many cases they produce the same flow
in steady state. In particular, it may be computationally easy (polynomial
time) to compute the (maximal) flow vector, even if several (even infinite)
steady-state markings appear.

The second main contribution is the computation of an optimal steady
state control reference, maximizing a linear profit function that takes into
account the throughput, the initial marking and the steady state marking
(see Section 4). If all transitions are controllable, this problem is solved in
polynomial time, using a LPP. If some transitions are not controllable the
problem becomes more complicated and a Branch & Bound algorithm can
be used, like in [?].

In Section 5, a bridge between controllability in classical linear theory
and Petri nets is established. The simplifying idea is to keep the fact that
the dynamic model is multilinear, but ignore the constraints that must be
respected by the action: non-negative and upper bounded by a function
of the marking (state). It is shown that net systems generate different
token conservation laws, some of them leading to uncontrollability. Some
conservation laws are generated by the P-flows (which depend only on the
net structure) and zero valued poles appear in the uncontrollable part of
the system. Other zero valued controllable poles are related to conservation
laws that depend on the net structure, the firing rates and the token load of
P-(semi)flows. Finally, some controllable non zero poles may generate token
conservation laws for particular values of m0.

2 Continuous Petri nets basics

2.1 Untimed continuous Petri nets

We assume that the reader is familiar with discrete PNs. Nevertheless, the
PNs that will be considered in this paper are continuous, a straightforward
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relaxation of discrete ones. Unlike discrete PN, the amount in which a
transition can be fired in contPN is not restricted to a natural number. A
PN system is a pair 〈N ,m0〉, where N = 〈P, T,P re,P ost〉 is a P/T net
(P and T are disjoint finite sets of places and transitions, and P re and
P ost are |P | × |T | sized incidence matrices) and m0 is the initial marking.
In contPNs, m0 is a vector of non negative real numbers. For every node
v ∈ P ∪ T , the sets of its input and output nodes are denoted as •v and v•,
respectively.

A transition t is enabled at m iff ∀p ∈ •t,m[p] > 0. The enabling degree
of t is enab(t,m)= minp∈•t{m[p]/Pre[p, t]} = max{k|k · Pre[·, t] ≤ m}, and
t can fire in a certain amount α ∈ R, 0 ≤ α ≤ enab(t,m) leading to a new
marking m′ = m + α · C[P, t], where C = P ost − P re is the token flow
matrix. If m is reachable from m0 through a sequence σ, a fundamental
equation can be written: m = m0 + C · σ, where σ ∈ (R+ ∪ {0})|T | is
the firing count vector. The set of all reachable markings is denoted by
RSuntimed(N ,m0).

Proposition 1 [?] A marking m ∈ RSuntimed(N ,m0) iff

1. m = m0 + C · σ, σ ≥ 0

2. a sequence can be fired from m0 that contains all the transitions in the
support of σ

3. there is no empty trap (a set of places Θ such that Θ• ⊆ •Θ) in Nσ at
m

where Nσ denotes the subnet obtained from N removing the transitions not
in the support of σ and the resulting isolated places.

A contPN is bounded when every place is bounded (∀p ∈ P,∃bp ∈ R with
m[p] ≤ bp at every reachable marking m). It is live when every transition
is live (it can ultimately occur from every reachable marking). Reachability
may be extended to lim-reachability assuming that infinitely long sequences
can be fired. The set of all reachable markings at the limit is denoted by
lim−RS. A transition t is lim-live iff no sequence of successively reachable
markings exists which converges to a marking such that none of its successors
enables t [?].

A net N is structurally bounded when 〈N ,m0〉 is bounded for every
initial marking m0 and is structurally live when a m0 exists such that
〈N ,m0〉 is live. Left and right natural annullers of the token flow matrix
C are called P- and T-semiflows, respectively. The net N is conservative iff
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∃y > 0, y · C = 0 and it is consistent iff ∃x > 0, C · x = 0. Left and right
real annullers of matrix C are P- and T-flows, respectively. The support of
a P- (T-) (semi)flow s is denoted by ||s||.

Proposition 2 [?] [?] Let 〈N ,λ〉 be a contPN system. If it is consistent
and all transitions are fireable the following statements are equivalent:

1. m is lim-reachable

2. ∃σ ≥ 0 s.t. m = m0 + C · σ ≥ 0

3. By
T · m = By

T · m0, m ≥ 0 where By is a basis of P-flows.

Like in discrete case, nets can be classified according to their structure.
A place p is Choice-Free (CF) iff |p•| ≤ 1 (i.e. there is no routing, choice is
structurally defined). A transition t is Join-Free (JF) iff |•t| ≤ 1 (i.e. there
is no synchronization on it). Two transitions, t and t′, are said to be in
Equal Conflict (EQ) relation when P re[P, t] = P re[P, t′] 6= 0. This is an
equivalence relation and the set of all the equal conflict sets is denoted by
SEQS.

Definition 3 Let N be a PN.

1. N is ordinary iff all arcs have weight one.

2. N is pure iff ∀t ∈ T, •t ∩ t• = ∅.

3. N is a weighted T-graph iff ∀p ∈ P : |p•| = |•p| = 1.

4. N is Choice-Free iff ∀p ∈ P : |p•| ≤ 1.

5. N is Join-Free iff ∀t ∈ T : |•t| ≤ 1.

6. N is Equal Conflict iff •t ∩ •t′ 6= 0 ⇒ P re[P, t] = P re[P, t′].

In this paper we will mainly focus on bounded and lim-live net systems.

Proposition 4 [?] A bounded and lim-live contPN is consistent, conser-
vative and rank(C) ≤ |SEQS| − 1. (This is one of the so called rank
theorems.)

5



2.2 Timed continuous Petri Nets and infinite server seman-

tics

In this section, timing constraints are added to contPN. Like in the discrete
case, time can be associated with places, with transitions or with arcs. This
paper assumes time associated with the transitions. Here we consider first-
order approximations (only using the average value; i.e. noise-free) of the
fluidified models.

Definition 5 A timed contPN 〈N ,λ〉 is the untimed contPN N together
with a vector λ ∈ (R+ )|T |, where λ[ti] = λi is the firing rate of transition ti.

Definition 6 A timed contPN system is a tuple Σ = 〈N ,λ,m0〉, where
〈N ,λ〉 is a timed contPN and m0 is the initial marking of the net.

Now, the fundamental equation explicitly depends on time τ : m(τ) =
m0+C ·σ(τ). Deriving it with respect to time we obtain: ṁ(τ) = C · σ̇(τ).
Using the notation f(τ) = σ̇(τ) to represent the flow of the transitions with
respect of time, the state equation becomes: ṁ(τ) = C · f(τ) (to simplify
notation, in the sequel time τ will not be written if no ambiguity exists).

Depending on the flow definition, there are many firing semantics. Finite
server (or constant speed) and infinite server (or variable speed) [?] [?] are
the more frequently used. In discrete Petri nets, infinite server semantics
and finite server semantics are equivalent if the servers are made explicit.
That is, finite server can be simulated with infinite server, hence the later
is more general. This is not true in the continuous case. Therefore, if the
servers are made explicit, the two semantics correspond to two different
approximations of the discrete net system.

In [?], the authors have observed that infinite server semantics frequently
provides a very good approximation of a discrete model. But net systems
exist for which finite server semantics provides a better approximation of
the discrete model. Nevertheless, for a broad class of nets it is formally
proved in [?] that infinite server semantics always provides a better approx-
imation than finite server semantics. In particular, for all net systems in
figures 1, 4, 5, 7, 11, 12 and 13 of this paper, infinite server semantics is
better approximation of the underlying discrete model than finite server
semantics.

Thus, this paper is focused on infinite server semantics. The flow of
each transition being defined by:

fi = f [ti] = λi · enab(ti,m) = λi min
pj∈•ti

{

mj

Pre[pj , ti]

}

(1)
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Figure 1: Timed contPN (marked graph) with several equilibrium points.

where, mj = m[pj] is the marking of place pj.

Remark 7 Due to the minimum operator that appears in the flow defini-
tion, a timed contPN under infinite server semantics is a piecewise linear
system.

Example 8 Let us consider the unforced net system in Figure 1. The flows
of the transitions are given by:















f1 = λ1 · m1

f2 = λ2 · min(m2,m3)
f3 = λ3 · min(m4,m5)
f4 = λ4 · m6

If λ = [1, 1, 1, 1]T , for example, we can write:































ṁ[p1] = f2 − f1 = min(m2,m3) − m1

ṁ[p2] = f1 − f2 = m1 − min(m2,m3)
ṁ[p3] = f3 − f2 = min(m4,m5) − min(m2,m3)
ṁ[p4] = f2 − f3 = min(m2,m3) − min(m4,m5)
ṁ[p5] = f4 − f3 = m6 − min(m4,m5)
ṁ[p6] = f3 − f4 = min(m4,m5) − m6

(2)

Thus, nonlinearity appears due to synchronizations (|•t| > 1). One linear
system is defined by the set of arcs in P re constraining the firing of the
transitions.

Definition 9 Let Σ = 〈N ,λ,m0〉 be a timed contPN system and m a
reachable marking. It will be said that the arc (p, t) constrains the dynamic

of t at m iff: f [t] = λ[t] · m[p]
Pre[p,t] .
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Definition 10 A configuration of Σ at m is a set of (p, t) arcs, one per
transition, constraining the dynamic of the system.

So, a configuration is a cover of T by its inputs arcs. Each configuration
defines an embedded linear dynamic system. One possible representation of
a given configuration is a |T | × |P | matrix:

Π[tj, pi] =

{

1
Pre[pi,tj ]

if pi is constraining the flow of tj

0 otherwise
(3)

The configuration operator associates to every marking m a matrix |T |×
|P |, such that each row i = 1..|T | has only one non null element in the
position j that corresponds to the place pj that restricts the flow of transition
ti (if more than one place is restricting the flow, any of them can be used,
but only one is taken). The matrix that represents the configuration of a
marking m will be denoted as Π(m). The product Π(m) · m(τ) is the
enabling degree of each transition at time τ , e(τ).

Through this paper the notations Π(md) and Πd will be used indis-
tinctly. The firing rate matrix is denoted by: Λ = diag(λ1, .., λ|T |).

Example 11 Let us consider the net system in Figure 1 with λ = [1, 1, 1, 1]T .
As we saw in Example 8, this is a piecewise linear system. For m2 ≤ m3

and m5 ≤ m4 the active configuration is {(p1, t1), (p2, t2), (p5, t3), (p6, t4)}
and the corresponding linear system is:































ṁ1 = m2 − m1

ṁ2 = m1 − m2

ṁ3 = m5 − m2

ṁ4 = m2 − m5

ṁ5 = m6 − m5

ṁ6 = m5 − m6

or in matrix form:

ṁ =

















−1 1 0 0 0 0
1 −1 0 0 0 0
0 −1 0 0 1 0
0 1 0 0 −1 0
0 0 0 0 −1 1
0 0 0 0 1 −1

















· m (4)
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If m2 ≤ m3 but m4 ≤ m5 the active configuration is {(p1, t1), (p2, t2), (p4, t3), (p6, t4)},
and the associated linear system is:































ṁ1 = m2 − m1

ṁ2 = m1 − m2

ṁ3 = m4 − m2

ṁ4 = m2 − m4

ṁ5 = m6 − m4

ṁ6 = m4 − m6

or in matrix form:

ṁ =

















−1 1 0 0 0 0
1 −1 0 0 0 0
0 −1 0 1 0 0
0 1 0 −1 0 0
0 0 0 −1 0 1
0 0 0 1 0 −1

















· m (5)

Observe that, depending on the marking of the places, the evolution of
the system will be given by one or other linear system. Equations 4 and 5
describe two of these different linear systems.

Any (reachable) marking m defines a configuration, Π(m). When the
markings of several places are simultaneously limiting the firing of the same
transition, any of the associated linear systems can be used.

Remark 12 If N is JF then all arcs in P re are constraining the dynamic
of the full system (i.e. all those arcs are essential covers). Hence, there exist
only one configuration.

Independently of markings, an upper bound of the number of configura-
tions can be computed taking one input arc per transition, thus γ =

∏

ti∈T

|•ti|

different configurations can be structurally defined. Nevertheless, implicit
places [?,?] can reduce the number of effective configurations. For nets in
figures 1, 2, 4, 5, 7, 9 and 10: γ1 = γ5 = γ10 = 4, γ2 = 16, γ4 = 1, γ7 = 8,
γ9 = 2.

Timed contPN systems evolve from m0 and may reach a steady state.
For unforced contPN the computation of bounds for the steady state was
studied in [?] and it is based on a branch and bound technique, each node
corresponding to a LPP. Usually, the system evolves to a steady state, but
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for certain cases, oscillations can be maintained forever. For example the
oscillatory evolution of the net system presented in Figure 2 is sketched in
Figure 3.

p1

p4

p5

p6

p2

p3

t1

t2

t3 t4

Figure 2: Timed contPN system
that has an oscillatory behavior
with m0 = [100, 0, 100, 0, 1, 1]T

and λ = [1, 12, 10, 1]T .

Figure 3: The evolution of the
timed contPN system presented in
Fig. 2

3 Control of timed contPNs and characterization

of steady-states

The parameters λ associated with the transitions in timed contPNs represent
their firing rate. We assume that the only action that can be applied is to
reduce their firing flow i.e. throughput. If a transition can be controlled (its
flow reduced or even stopped), we will say that it is a controllable transition.
The flow of a controlled transition ti becomes fi −ui, where fi is the flow of
the unforced system (i.e. defined as in Eq. (1)) and u is the control action
0 ≤ ui ≤ fi.
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According to the above notation, the controlled flow vector is ϕ = Λ ·
Π(m) · m − u ≥ 0, with ui = 0 if ti is not controllable. Thus the state
equation of controlled timed contPNs (i.e. net systems in which all the
transitions are controllable: ∀t ∈ T , u[t] > 0 is possible at certain instant)
becomes:

{

ṁ = C · (Λ ·Π(m) · m − u)
0 ≤ u ≤ Λ · Π(m) · m

(6)

Unless otherwise stated, in the following we will assume that all tran-
sitions are controllable. Controlling all transitions, almost all reachable
markings of an untimed system can be reached in the timed one. The
only problem is at the borders when the marking of one place is zero. In
this case, the marking is reached at the limit (this is like the discharging
of a capacitor in an electrical RC-circuit: theoretical total discharging takes
an infinite amount of time). For example, in the net system in Figure 4
the marking [0, 1, 1]T is reachable in the untimed model. Considering now
the timed model, stopping transitions t2 and t3 (u2 = f2 and u3 = f3)
and setting u1 = 0, the marking [0, 1, 1]T is reached at the limit because
ṁ1(τ) = −λ1 · m1(τ) ⇒ m1(τ) = e−λ1·τ · m1(0). Note that it takes an
infinite amount of time to empty p1.

The steady-state markings we are interested to obtain (reference mark-
ings for the control loop) are strictly positive (if the marking of a place is
zero then the flows of its output transitions are zero, meaning total inactiv-
ity of the machines or processors being controlled). These markings can be
reached in finite time in the timed model. Let us first prove the following
Lemma:

Lemma 13 If all transitions are controllable, any fireable sequence in the
untimed model that does not empty any place in the process, can be fired in
the timed-controlled model in finite time.

Proof: The same sequence can be reproduced, for example firing one
transition each time and stopping the others. Since the firings do not empty
any place, they take finite time. �

Proposition 14 If all transitions are controllable:
1) if m is reachable in the timed-controlled model then it is reachable in

the untimed model (i.e., RStimed ⊆ RSuntimed)
2) if m is reachable in the untimed model then it is lim-reachable in the

timed-controlled model (i.e., RSuntimed ⊆ lim-RStimed);
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3) If m > 0 is reachable in the untimed model, it can be reached in finite
time in the timed-controlled model (i.e., RS+

untimed ⊆ RStimed).

Proof: 1) If m is reachable in the timed-controlled model then, ac-
cording to (6), m(τ) = m0 +

∫ τ

0 C · ϕ(θ) · dθ = m0 + C ·
∫ τ

0 ϕ(θ) · dθ. Let
σ =

∫ τ

0 ϕ(θ) · dθ ≥ 0. Since m is reachable in the timed model no trap
can be empty at m in Nσ (a marked place cannot be emptied). Moreover,
since σ is fireable in the timed model, a sequence with the same support
can be fired in the untimed model. Hence m is reachable in the untimed
net according to Prop. 1.

2) If m is reachable in the untimed model from m0, there exists a
sequence σ = α1t1α2t2 · · ·αktk that leads from m0 to m. This sequence
is equivalent to an infinite sequence σ1σ2 · · · defined as:

σi = (βi,1α1)t1(βi,2α2)t2 · · · (βi,kαk)tk
β1,j = 1/2j , (j = 1, . . . , k)
βi,1 = 1/2i, (i = 1, 2, . . .)

βi,j = 1
2

(

∑i
l=1 βl,j−1 −

∑i−1
l=1 βl,j

)

, (i ≥ 2 j ≥ 2).

It is proved in [?] that σ1σ2 · · · converges to σ. By construction, no place
is emptied while firing this sequence, therefore it can be fired in the timed-
controlled model (Lemma 13). Observe that m is reached at the limit, being
an infinite sequence.

3) Let m > 0 be such that a sequence σ = α1t1 · · ·αiti · · ·αjtj · · ·αktk
exists that leads from m0 to m in the untimed model. If the firing of σ
does not empty any place, Lemma 13 can be applied. Otherwise, we prove
that a control law exists that brings the timed model from m0 to a marking
m′ > 0 such that m can be reached from m′ using other control law.

To construct σ′, let us assume without loss of generality that when firing
ti and tj while firing σ, at least one place in •ti and one place in •tj become
empty. Define σ′ = α1t1 · · ·

1
2αiti · · ·

1
4αjtj · · ·

1
4αktk. This sequence can be

fired in the timed-controlled model, since the amounts in which ti and tj are
fired ensure that no place is emptied.

The obtained marking is m′ = m0 + C · σ′ > 0, where σ′ is the firing
count vector corresponding to the sequence σ′. The desired marking is
reachable from m′ according to Prop. 1: exists a firing count vector σ′′ =
σ − σ′ ≥ 0 with m = m′ + C · σ′′; m′ > 0 implies the existence of a firing
sequence with the same support as σ′′ since all the transitions of the net
system are fireable; and m > 0 means that no empty trap exists at m.

Now, the control law to go from m′ to m is constructed. Since m > 0
and m′ > 0, the sequence σ′′ = σ − σ′ = 1

2αiti · · ·
3
4αjtj · · ·

3
4αktk can be

reordered in such a way that no place is emptied. For example, imagine
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σ′′ starts firing 1
2αiti. This would empty a place ph ∈ •ti. However, since

m[ph] > 0, at least one transition tr puts more tokens in ph than the amount
removed by the firing of 1

2αiti.
All the transitions that are fired before tr can be fired ”a bit less”. This

small amount can be defined in such way that ph will have enough tokens to
complete the firing of ti in a second round. Then, the firing of all the other
transitions until tr can be completed.

Clearly this procedure can be extended to the case in which several places
are emptied. Constructing a new firing sequence not emptying any place,
Lemma 13 can be applied. �

Definition 15 Let 0 ≤ ud ≤ Λ · Π(md) · md. Then md is an equilibrium
point for ud if ṁd = 0.

An equilibrium point represents a state in which the system can be main-
tained using the defined control action. Given m0 (initial) and md (desired)
markings, one control problem is to reach md and then keep it. In this sec-
tion we concentrate on steady states.

Obviously, taking into account (6), md ∈ RS is a equilibrium marking
if together with the control input ud is a solution of the following system:

C · (Λ · Π(md) · md − ud) = 0

0 ≤ ud ≤ Λ · Π(md) · md
(7)

Therefore, the steady-state flow of a controlled timed contPN ϕ = Λ ·
Π(md) · md − ud is a T-semiflow of the net. Notice that if the net is not
consistent, some transitions should be stopped in steady-state (i.e. ϕ should
contain some zero components).

Given a ud, let us denote as Mud
all the equilibrium states it could

maintain. That is, Mud
= {m ∈ RS|C · (Λ ·Π(m) · m − ud) = 0, 0 ≤

ud ≤ Λ · Π(m) · m}. The set Mud
can have one single element (Fig-

ure 4) or an infinite number of equilibrium markings in a single configuration
({(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5), (p7, t6)} in Figures 5 and 6), or in-
finite equilibrium markings in several configurations ({(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p8, t6)
and {(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p9, t6)} in Figures 7 and 8).

Next proposition characterizes all the equilibrium points of a net system
with the same control action in steady state, ud.

Proposition 16 Let 〈N ,m0〉 be a consistent contPN system with all tran-
sitions fireable at least once. Let 〈N ,λ,m0〉 be the timed contPN system

13



. .p1 p2

p3

t1 t2

t3

2

Figure 4: Timed continuous Join-Free system with λ = [1, 1, 1]T . It has a
unique equilibrium point for a given ud (for example md = [0.66, 0.66, 0.66]T

for ud = [0, 0, 0]T ).

and md an equilibrium point for ud. Then mi ≥ 0 is also an equilibrium
point (reachable in finite time if mi > 0) for ud iff:







By
T · (md − mi) = 0 (a)

C · Λ · (Πd · md − Πi · mi) = 0 (b)
0 ≤ ud ≤ Λ ·Πi · mi (c)

(8)

Proof: =⇒ If mi is an equilibrium point then it is a reachable marking.
The system is consistent so: By

T · mi = By
T · md, i.e. (8.a) is necessary.

Both markings are equilibrium points: C · (Λ · Πd · md − ud) = 0 and
C · (Λ · Πi · mi − ud) = 0. Subtracting ud from both equations, (8.b) is
obtained.

⇐= Equation (8.a) ensures the reachability of mi according to Prop. 2.
The control input ud can be applied (8.c), and using (8.b) mi is an equilib-
rium marking. �

Lemma 17 Let 〈N ,λ,m0〉 be a timed contPN system and md, mi two
equilibrium points for ud. The flows at these markings are equal iff Πd ·
md = Πi · mi.

Proof: Flows are equal: iff Λ · Πd · md − ud = Λ · Πi · mi − ud,
that is iff Λ · (Πd · md − Πi · mi) = 0. Since Λ is a full rank matrix (by
definition is a diagonal matrix with diagonal elements greater than zero),
this can happen iff Πd · md = Πi · mi. �

Example 18 For the timed contPN system depicted in Figure 9 the op-
timal flow ϕmax = [0.2, 0.2, 0.6, 0.2]T is obtained with ud = [0, 0, 0, 0]T

14
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Figure 5: Timed continuous
Marked Graph system with λ =
[1, 1, 1, 1, 1, 1]T and many equilib-
rium points in the same configura-
tion for a given ud.

Figure 6: Equilibrium points
of the timed continuous Marked
Graph system in Fig. 5 for ud =
[0, 0, 0, 0, 0, 0]T .

and marking md = [0.2, 0.6, 0.6, 0.6]T . Marking m′ = [0.1, 0.3, 1.8, 0.3]T ,
is also an equilibrium point for ud = [0, 0, 0, 0]T , and the flow is different
ϕ′ = [0.1, 0.1, 0.3, 0.1]T . Obviously, the conditions of the lemma do not hold,
Πd · md 6= Π′ · m′.

Let Bx be a basis of T-flows of a net (i.e. C · Bx = 0).

Theorem 19 Let 〈N ,λ,m0〉 be a consistent timed contPN system with all
transitions fireable at least once. In one configuration Π all the equilibrium
points for a given u have the same flow if

rank

[

Λ · Π | Bx

By
T | 0

]

= rank

[

Π

By
T

]

+ |T | − rank(C)

Proof: Let us assume that ma and mb are two equilibrium points
under Π for the same control u. Obviously, the flow in steady state will
be a T-semiflow: Λ · Π · ma − u = Bx · α (Bx · α =

∑

i

αi · bxi
), and

Λ ·Π ·mb −u = Bx ·β. Now, subtracting both equations: Π ·∆m−Λ−1 ·
Bx · ζ = 0 (∆m = ma − mb, ζ = α − β). Moreover, since these markings
are reachable, By

T · ∆m = 0.

[

Π | −Λ−1 · Bx

By
T | 0

]

·

[

∆m

ζ

]

= 0 (9)
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Figure 7: Timed continuous
Marked Graph system with λ =
[1, 1, 1, 1, 1, 1]T and many equilib-
rium points in several configura-
tions for a given ud.

Figure 8: Equilibrium points
of the timed continuous Marked
Graph system in Fig. 7 for ud =
[0, 0, 0, 0, 0, 0]T .

Under the rank condition, the vectorial spaces generated by the row vectors
of [ΠT |By] and [(Λ−1Bx)T |0] are linearly independent. Hence the null
element is the only vector that belongs to both of them, i.e., Λ−1Bx ·ζ = 0.
Moreover, Λ−1 is a diagonal matrix and the columns in Bx are linearly
independent since they are a T-flows basis, and so ζ = 0. Therefore ma

and mb have the same flow. �

Example 20 Let us consider the contPN system in Figure 10 with λ =
[2, 1, 1]T . The configuration {(p4, t1), (p4, t2), (p3, t3)} with associated matrix
Π can have several equilibrium points with different flows because the condi-

tions of Theorem 19 are not satisfied. For this system, Π =





0 0 0 1
2

0 0 0 1
0 0 1 0



,

By
T =

[

1 1 1 0
1 0 4 1

]

, Λ−1 ·Bx =





1
2
1
1



 and rank

[

Π −Λ · Bx

By
T 0

]

=

rank

[

Π

By
T

]

= 4. If u = [0, 0, 0]T , the equilibrium markings m1 =

[15.25, 1, 0.75, 0.75]T and m2 = [15.5, 0.8, 0.7, 0.7]T belonging to this con-
figuration have the flows ϕ1 = [0.75, 0.75, 0.75]T and ϕ2 = [0.7, 0.7, 0.7]T

respectively. Thus, any intermediate value is also possible.

For the class of Equal Conflict contPN, if the conflicting transitions are not
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Figure 9: Conservative but not
lim-live continuous EQ system
with several equilibrium points for
λ = [1, 1, 1, 1]T , with different
flow.
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Figure 10: Bounded and lim-live
contPN that has several equilib-
rium points with distinct flow.

controlled (otherwise the visit ratio is changed by the control), we can prove
that all equilibrium points have the same flow under the same configuration.

Theorem 21 Let 〈N ,λ,m0〉 be a bounded and lim-live EQ timed contPN
system. Given u in which transitions in conflict are not controlled, there
exists at least one equilibrium point. If there are more than one, all of them
have the same flow.

Proof: The throughput in steady state for unforced (u = 0) continuous
EQ nets can be computed using a linear programming problem [?]. More
precisely, the throughput is obtained looking for the slowest P-semiflow. The
solution is unique with respect to the flow, but there can exist more than one
marking that respect the P-semiflows and have the same associated flow.

Assume •t = p (i.e. t is a non synchronizing transition) and u[t] 6= 0.
If the steady-state marking of p is m[p], we can reduce the value of m[p]
and transform the system into an equivalent one with the same steady-
state flow with the marking m′[p] = m[p] − Pre[p,t]

λ[t] · u[t]. The flow will

be: λ[t] · m′

Pre[p,t] = λ[t] · m[p]
Pre[p,t] − u[t], the same as in the original system

(with u[t] 6= 0). For every controlled transition we can apply the same
technique (in the case of synchronizations we remove tokens from all input
places) obtaining an equivalent system with u = 0. For this system all the
equilibrium points have the same flow. �

Figure 4, 5 and 7 are CF (thus EQ). Therefore, this theorem ensures
that all their equilibrium points have the same flow for any constant control
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input u. The following theorem provides a sufficient condition to guarantee
that the equilibrium point of a configuration is unique.

Theorem 22 Let 〈N ,λ,m0〉 be a bounded and lim-live EQ timed contPN

system. If rank

[

Πi

By
T

]

= |P | and conflict transitions are not controlled,

then at most one equilibrium marking exists under Πi for a given ud.

Proof: Let rank

[

Πi

By
T

]

= |P | and md, mi (mi = md + ∆m) two

equilibrium points under Πi for ud. Using Theorem (21) all equilibrium
points with the same action ud have the same flow, i.e. Πi · md = Πi · mi

or Πi · ∆m = 0. Moreover, By
T · mi = By

T · md, or By
T · ∆m = 0.

Under the rank assumption, the previous system has only one solution,
∆m = 0. So md = mi. Hence, Πi has at most one equilibrium point. �

Example 23 Let us consider the net in Figure 7 and let

Π =

















1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

















define one configuration. One P-flow basis is:

By
T =









0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
1 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1









.

Since rank

[

Πi

By
T

]

= 8 < 9 (the number of places) this configuration

may have an infinite number of equilibrium points. In particular (Fig. 8), for
m0 = [1, 1, 1, 0.5, 0, 0, 0.5, 0, 0] the configuration 1 ({(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p8, t6)})
has an infinite number of equilibrium points.

But, for m0 = [1, 0, 0, 0.5, 0, 0, 0.5, 0, 0] the contPN system has only one
equilibrium marking. Thus, the condition in Theorem 22 is sufficient, but
not necessary.

Corollary 24 Let N be a conservative and consistent JF contPN. Given
ud and assuming that the conflict transitions are not controlled, only one
equilibrium point exists in 〈N ,λ,m0〉.
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Proof: Since the net is JF, all the conflicts are topologically EQ (if
t1, t2 ∈ p•, •t1 = •t2 = p), thus the net can be mapped into CF [?]. A CF
net is conservative iff it is strongly-connected implying rank(C) = |T |−1 =
|SEQS| − 1 [?]. A conservative and consistent contPN with rank(C) =
|SEQS| − 1 is lim-live and bounded [?] and Theorem 22 can be applied. �

4 Optimal control for steady state

In production control, the profit function frequently depends on production
sales, work in process (WIP) and amortization of investments. Under linear
hypothesis for fixed machines (i.e. λ defined), the profit function may have
the following form: wT · ϕ − zT · m − qT · m0, where ϕ is the throughput
vector, wT a price vector w.r.t. flows, m the average marking, zT is the
WIP cost vector and qT represents depreciations or amortization of the
initial investments (over m0).

Let us consider the following linear programming problem:

max wT · ϕ − zT · m − qT · m0

s.t. C · ϕ = 0, ϕ ≥ 0 (a)
m = m0 + C · σ, m,σ ≥ 0 (b)

ϕi = λi ·
(

mj ]
Pre[pj,ti]

)

− v[pj, ti],

∀pj ∈
•ti, v[pj , ti] ≥ 0 (c)

(10)

where v[pj , ti] are slack variables.
The equations correspond to: (a) ϕ is a T-semiflow; (b) fundamental

equation (m is a reachable marking); (c) firing law for infinite server se-
mantics.

Theorem 25 Let 〈N ,λ,m0〉 be a timed contPN system and let 〈ϕ,m,v〉
be a solution of LPP (10), then

1. For every transition ti, let ui = min
pj∈•ti

v[pj , ti] be its control input. Then

u is the control in steady-state for m. (In the case of |•ti| = 1 the
corresponding slack variable is the same as the control input.)

2. If for every ui > 0 transition ti is controllable, then u is an optimal
steady-state control.

Proof: In steady state, ϕi = λi · min
pj∈•ti

(

mj

Pre[pj,ti]

)

− ui. Choosing

ui = min
pj∈•ti

v[pj , ti] for all transitions, the equation (10.c) is verified. If all ti
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with ui 6= 0 can be controlled, the control can be applied in steady state;
then the command is optimal. �

For mono T-semiflow nets (conservative and consistent that have a unique
minimal T-semiflow) (or nets reducible to mono T-semiflow [?]), the equa-
tion (10a) can be replaced with the equivalent one: ϕ = α · X (10a’) with
X the minimal T-semiflow.

If the net is consistent and every transition can be fired at least once,
the equation (10b) is equivalent to: By

T · m = By
T · m0, m ≥ 0 (10b’).

Example 26 The solution of LPP 10 is not necessarily unique (as we men-
tioned in the previous section). Let us see which is the maximum through-
put in steady-state for the contPN in Figure 1 with λ = [1, 1, 1, 1]T and
m0 = [1, 0, 3, 3, 1, 0]T . Notice that this is a marked graph net system, hence
is monotone and the optimal control should be ud = 0. Indeed, LPP (10)
with (10a’) and (10b’) leads to:

max ϕ1

s.t. ϕ1 = ϕ2 = ϕ3 = ϕ4 (10a’)
m1 + m2 = m5 + m6 = 1
m3 + m4 = 6

}

(10b’)

ϕ1 = m1 − u1

ϕ2 = m2 − v22

ϕ2 = m3 − v23

ϕ3 = m4 − v34

ϕ3 = m5 − v35

ϕ4 = m6 − u4

ϕ,m,v ≥ 0

(11)

One optimal solution of this LPP is: ϕ1 = 0.5, md = [0.5 0.5 3.5 2.5 0.5 0.5]T

and v = [0, 0, 3, 2, 0, 0]T . Therefore u2 = min(v22, v23) = 0, u3 = min(v34, v35) =
0 and ud = [0 0 0 0]T is an optimal control in steady state (ud = 0 leads
always to optimal flow in marked graph).

For sure the solution is not unique: all the markings that satisfy (12)
are also solution of (11).







m1 = m2 = m5 = m6 = 0.5
m3 + m4 = 6
m3,m4 ≥ 0.5

(12)

Up to now we have considered that all transitions are controllable. What
happens when some are uncontrollable? In the extreme case, in which all
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transitions are uncontrollable (the unforced system), the problem to com-
pute the optimal steady-state (maximum throughput) was addressed in [?]
and can be solved using a branch and bound algorithm. Let us assume
T = TC ∪ TN , where TC is the set of controllable transitions and TN the set
of the uncontrollable transitions.

When all synchronizations are controllable ({t s.t. |•t| > 1} ⊆ TC), the
problem remains polynomial time. In fact, it is the same problem as (10) in
which no slack variables is allowed for the uncontrolled transitions.

When a synchronization is not controllable, the problem may be more
difficult. The corresponding slack variable cannot be used. As in [?] we can
relax (10) and the flow of non controllable transitions will be upper bounded
with inequalities written for every input place:

max wT · ϕ − zT · m − qT · m0

s.t. C · ϕ = 0, ϕ ≥ 0 (a)
m = m0 + C · σ, m,σ ≥ 0 (b)

ϕi = λi ·
(

mj

Pre[pj,ti]

)

− v[pj , ti],

∀pj ∈
•ti, ti ∈ TC , v[pj , ti] ≥ 0 (c)

ϕi = λi ·
(

m[p]
Pre[p,ti]

)

, if p = •ti, ti ∈ TN , (d)

ϕi ≤ λi ·
(

mj

Pre[pj,ti]

)

,∀pj ∈
•ti, ti ∈ TN . (e)

(13)

Because of (13.e), the LPP (13) provides in general a non tight bound,
i.e. the solution may be non reachable. This occurs when none of the input
places of a non controllable join transition really restricts the flow of that
transition. Similar to [?], a branch and bound algorithm can be used. For
every non controllable join transition tj, a number of |•tj| LPPs should be
computed by adding an equation that relates the flow of tj with the marking
of each one of its input places. Thus, the algorithm in [?] can be used in
this situation.

5 Approaching dynamic control: on controllabil-

ity and marking invariance laws

5.1 Definition of controllability

5.1.1 Controllability with constrained inputs

Assume the systems under study are described by the equations in (6). The
classical control theory for linear systems cannot be applied because we are
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p1 p2t1 t2
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Figure 11: Join-Free timed contPN system with λ = [1, 1]T , t1 ∈ TN , t2 ∈
TC .

working inside a polytope (not in a vectorial space) and our control input is
bounded.

Definition 27 Given Σ = 〈N ,λ,m0〉 and controlling transitions TC ⊂ T ,
a marking mf is said to be a reachable steady-state when there exists a
constrained control action u(τ) on TC that is able to drive the marking from
m0 to mf (in finite or infinite time) and maintain it.

Definition 28 The timed contPN 〈N ,λ〉 is controllable if ∀m0 and ∀mf ≥
0 such that BT

y · m0 = BT
y · mf , mf is a lim-reachable steady-state.

Unfortunately, the controllability of all transitions is required in order
to obtain a controllable contPN system.

Example 29 Let us consider the net system in Figure 11 and assume that
only t2 is controllable. The marking m = [1, 0]T cannot be an equilibrium
marking because in steady-state ϕ1 = ϕ2 so 1 = 0 − u[t2] which implies a
negative command on t2. Therefore, m cannot be maintained in the timed
and controlled model. In practice, any marking m′ with m′[p1] > m′[p2] is
non maintainable, because ṁ′[p1] = −m′[p1] + m′[p2] − u[t2] ≤ −m′[p1] +
m′[p2] < 0. Hence, the timed JF model of Figure 11 is not controllable.

Proposition 30 A pure and conservative timed contPN 〈N ,λ〉 is control-
lable iff all transitions are controllable i.e. T = TC .

Proof: The sufficient condition is immediate: if all transitions allow a
control action, the net is controllable. We can reach any desired marking
(maybe at the limit) (Prop. 14) and then we stop all transitions (i.e. u = f).

Necessity : Let m0 be an initial marking that puts tokens in all the P-
semiflows and let us assume ti is not controllable. We are going to prove that
a marking m satisfying BT

y ·m0 = BT
y ·m exists that cannot be maintained.

Let

βi = max
{

b|m ≥ b · P re[·, ti] and BT
y · m0 = BT

y · m
}

(14)
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In fact, βi represents the enabling bound of ti [?]. Let m be a solution of
(14). Since βi is obtained through maximization, for sure m[pj ] > 0,∀pj ∈
•ti.

Since the net is pure and conservative, ti
• ∩ (T \ •ti) 6= ∅, then at least

one place in ti
• must be empty (otherwise the enabling degree would be

greater). Clearly this place cannot remain empty if ti is not controlled. �

5.1.2 Classical approach: controllability without constrained in-

puts

From this point, a relaxation of the equations modeling the system is pro-
posed, eliminating the restrictions related to the bounds of the control input.
Therefore, the system under study is relaxed to the non-linear equations
(this is the dynamical equation in Eq. (6)):

ṁ = C ·Λ ·Π(m) · m − C · u (15)

The goal is to better understand the behavior of contPN and interpret
classical results in the contPN case. In many cases, the regulation of the
system is done to a point (desired marking + desired input) that is not
at the boundary. In this case, a region around it can be defined in which
the constraints are not active. Basically, the number of null eigenvalues
are explored, eigenvalues that introduce token conservation laws. It will be
seen that some of these conservation laws are given by the net structure N
(the P-flows, Subsection 5.2), others depend on 〈N ,λ〉 (Subsection 5.3) and
others depend also on the particular marking 〈N ,λ,m0〉 (Subsection 5.4).

For classical linear systems controllability has been thoroughly studied
(see the Appendix for some basic results). For contPN systems, every Π(m)
leads to a linear and time-invariant dynamic system with controllability
matrix C(m):

C(m) = −
[

C · · · (C ·Λ ·Π(m))n−1 · C
]

(16)

Proposition 31 If all transitions are controllable, ∀m ∈ RS, the spaces
generated by the columns of C(m) and C are equal. Thus rank(C(m)) =
rank(C) = |P | − dim(By).

Proof: Since the columns of C are contained in C, it is immediate that
the space generated by the columns of C contains the space generated by
the columns of C. Thus we only need to prove that it cannot be greater.
Observe that (C ·ΛΠ(m))n−1 · C = C · (ΛΠ(m) · C)n−1.
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Thus, C = C · [I · · · (Λ · Π(m) · C)n−1]. Notice that any P-flow of C is
also a P-flow of C. Hence, rank(C) = rank(C) = |P | − dim(By). �

Notice that C(m) depends on Π(m), but the space generated by its
columns is always the same, just that one defined by matrix C. This is
something that can be easily expected because all transitions have been
assumed to be controllable.

5.2 Uncontrollable zero valued poles and decomposition

Token conservation laws given by the net structure (P-flows) produce non
controllable contPN systems in a classical sense. This was observed in
[?] and happens because the P-flows based token conservation laws make
|P | − rank(C) places linearly-redundant. Using a proper similitude trans-
formation (the QN matrix that will be given in Definition 33) it may be
possible to obtain a decomposition into a controllable subsystem and an un-
controllable one (similar to the Kalman controllable canonical form). The
uncontrollable subsystem has only zero valued poles and they will be called
uncontrollable (zero) valued poles.

Example 32 Let us consider the contPN system in Figure 1 with λ =
[α, β, γ, δ]T . This net has three linearly independent token conservation laws
derived from P-(semi)flows: m1 + m2 = 1,m3 + m4 = 6 and m5 + m6 = 1.
Thus ṁ1 + ṁ2 = ṁ3 + ṁ4 = ṁ5 + ṁ6 = 0, which means that three uncon-
trollable zero valued poles will appear.

The following transformation matrix is used to change the reference in
which the marking vector is expressed. This will be useful for studying
the controllability of the system. The kind of transformation matrix to be
considered will have in this context a particular structure.

Definition 33 Let N be a contPN. A transformation matrix QN , is formed
with rows from a basis of P-flows and elementary vectors in order to build
a full rank matrix.

Example 34 For the timed models in Figure 11 and Figure 1, P-flow basis
are respectively:

By
T
1 =

[

1 1
]

and By
T
2 =





1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



 (17)

Adding elementary vectors, Q matrices can be, for example:
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Q1 =

[

1 1
0 1

]

and Q2 =

















1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

















(18)

The system described by equation (15) can be rewritten in new coordi-
nates m̄, when matrix QN is used as a state vector transformation matrix.
Let m̄ = QN · m.

Definition 35 Let 〈N ,λ,m0〉 be a timed contPN described by equation
(15), where QN is a transformation matrix of N . Then

•
m̄=QNCΛΠ(m)Q−1

N m̄ − QNCu (19)

will be called a Q-canonical representation of equation (15).

Theorem 36 Let Σ = 〈N ,λ,m0〉 be a contPN system, then:
1) In the linear system dynamics under Π(m) the number of zero valued

poles is given by the dimension of the right annullers of C · Λ · Π(m).
2) The number of non controllable poles is |P | − rank(C) and they are

zero valued.

Proof: 1) The zero eigenvalues of the matrix CΛΠ(m) are:

CΛΠ(m) · v = 0 · v = 0

2) Making the change of variables m̄ = QN · m, (19) is obtained. For
each P-flow of the basis one zero row appears in QN · C.

Without loss of generality, assume that the row i of QN · C is zero,
then the row i of QNCΛΠ(m)Q−1

N is zero. Therefore the value of the state
variable m̄i is never affected by other state variables, or by the input, thus
m̄i is uncontrollable. Each one of these m̄i comes from a P-flow equation,
a linear constraint among variables (i.e. token conservation law: bi

T · m̄ =
bi

T · m̄0). Thus the pole value associated to m̄i is zero and there exist
dim(By) uncontrollable zero valued poles. According to Proposition 31,
rank(C(m)) = |P |−dim(By), then there exist no more uncontrollable poles.
Otherwise stated, if there are more zero valued poles, they are controllable
(as we will see in Section 5.3). �
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Example 37 Let us consider the contPN system in Figure 11. It has the
following equation:

ṁ =

[

−1 1
1 −1

]

· m −

[

−1 1
1 −1

]

· u (20)

The controllability matrix of this timed net is the following:

C =

[

−1 1 2 −2
1 −1 −2 2

]

Its rank being one, it has only one controllable pole (equal to −2) and one
non controllable pole (equal to 0). A transformation matrix is:

Q =

[

1 1
0 1

]

and, the corresponding Q-canonical representation is:

•
m̄ =

[

0 0
1 −2

]

m̄ −

[

0 0
1 −1

]

u

5.3 Token conservation laws and controllable zero valued

poles

In addition to those expressed by P-flows, other token conservation laws
corresponding to zero valued poles can appear.

Example 38 Let us consider the contPN system shown in Figure 1 with
λ = [α, β, γ, δ]T . Clearly, ṁ1 + ṁ2 = ṁ3 + ṁ4 = ṁ5 + ṁ6 = 0 are token
conservation laws that correspond to zero valued uncontrollable poles (as
mentioned in Example 32).

If we fix m2,m3 and m5 as state variables then m1,m4 and m6 are
redundant. The linear dynamic system corresponding to the configuration
{(p1, t1), (p2, t2), (p5, t3), (p6, t4)} is:







ṁ2 = −β · m2 + α · (1 − m2) = −(α + β) · m2 + α
ṁ3 = −β · m2 + γ · m5

ṁ5 = −γ · m5 + δ · (1 − m5) = −(γ + δ) · m5 + δ

Eliminating all variables in the right hand side:

−
β

α + β
· ṁ2 +

γ

γ + δ
· ṁ5 + ṁ3 =

γ · δ

γ + δ
−

α · β

α + β
= q
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Therefore, if q = 0 a new token conservation law appears introducing an
additional zero valued pole (that it is not rooted in a P-flow): − β

α+β
· m2 +

γ
γ+δ

·m5 + m3 = constant. If q 6= 0, sooner or later the above configuration
will be left. This is evident since at least one of the variables (m2,m3 or
m5) will grow (or decrease) while the system is in the configuration. This
can also be deduced using the fact that the steady state flow has to be a T-
semiflow of the net. Since it has only one minimal T-semiflow [1, 1, 1, 1]T ,
in steady state: f1 = f2 = f3 = f4.

f1 = f2 =⇒ α · m1 = β · (1 − m1) =⇒ f1 =
α · β

α + β

f3 = f4 =⇒ γ · m5 = δ · (1 − m5) =⇒ f3 =
γ · δ

γ + δ

f1 = f3 ⇐⇒
α · β

α + β
=

γ · δ

γ + δ
⇐⇒ q = 0

Thus, if q 6= 0 the configuration will not be an equilibrium configuration.
Globally speaking, this new system has the following poles: (0,0,0,-2,0,-

2) (for λ = [1, 1, 1, 1]T ) and three linearly independent P-flows. The fourth
zero valued pole appears in the configuration and is given by a new token
conservation law which depends on λ.

Obviously, the non controllable poles (P-flow related) appear in all the
configurations. On the other hand, the controllable poles can have different
values depending on the configuration. For example, if we consider the same
system and the configuration {(p1, t1), (p3, t2), (p5, t3), (p6, t4)}, the poles are:
(0,0,0,-1,-1,-2).

Example 39 This shows that for a specific value of λ, additional token
conservation laws and zero valued poles can appear. Let us consider the
net in Figure 10 with λ = [α, β, γ]T and let us assume the configuration
{(p4, t1), (p4, t2), (p3, t3)}. For place p2 we can write:

ṁ2 = f1 − f2 = α ·
m4

2
− β · m4 = m4 ·

(α

2
− β

)

1. α
2 = β =⇒ ṁ2 = 0. In this situation, a new zero valued pole introduces
a new token conservation law. For example, if α = 2, β = 1, γ = 1 the
poles of this configuration are: (0, 0, 0,−4).

2. α
2 > β =⇒ ṁ2 > 0. Now, the marking of p2 will increase and since the
net is bounded, this configuration will be left sooner or later. Moreover,
a positive pole appears. If λ = [3, 1, 1] the configuration poles are:
(0, 0, 0.0981,−5.0981).
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Figure 12: Choice-Free timed contPN system for Example 40.

3. α
2 < β =⇒ ṁ2 < 0. The marking of p2 will decrease and the only
solution to be an equilibrium configuration is to reach the deadlock (m4

should be 0). All the controllable poles are negative. For λ = [1, 1, 1]
they are (0, 0,−0.1771,−2.8229).

So, other token conservation laws can appear depending on λ (here when
α
2 = β) that introduce new zero valued but controllable poles.

5.4 Token conservation laws and controllable non zero val-

ued poles

New token-invariant laws may appear depending on 〈N ,λ,m0〉 (i.e. depend-
ing not only on the net structure as those derived from the P-semiflows),
but also on λ and the precise marking m0. Let us present a simple case.

Example 40 Consider now the contPN in Figure 12 with λ = [α, β, δ, γ]T .
There exist two P-semiflows: m1+m2+m3 = 1 and m1+m4+m5 = 1. Then
there are only three state variables, for example m1, m3 and m5. The dy-
namic linear system associated with the configuration {(p1, t1), (p2, t2), (p3, t3), (p4, t4)}
is:







ṁ1 = δ · m3 − α · m1

ṁ3 = −δ · m3 + β · (1 − m1 − m3)
ṁ5 = −δ · m3 + γ · (1 − m1 − m5)

Nevertheless, if β = γ, ṁ3 − ṁ5 = −β · (m3 − m5). Making a linear trans-
formation in order to compute: m̄35 = m3 − m5, then ˙̄m35 = −β · m̄35. If
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Figure 13: Continuous mono-T-semiflow reducible net system with λ = 1.

m0[p3] = m0[p5] =⇒ ˙̄m35 = 0. In this case, the pole is different from 0, and
depends on m0, thus m3 = m5 is a token conservation law that is not rooted
in a zero valued pole.

6 Case study

Let us consider the manufacturing system sketched in Fig. 13 which consists
in three machines (M1, M2 and M3) and two intermediate buffers (Buffer1

and Buffer2). Assume that each operation takes 1 time unit. Hence, the
firing rate of all the transitions is 1.

This net has 5 P-semiflows (y1 = p1 +p2 +p9 +p10 +M1, y2 = p3 +p11 +
Buffer1, y3 = p4 + p5 + p12 + p13 + M2, y4 = p6 + p14 + Buffer2, y5 =
p7 + p8 + p15 + p16 + M3) introducing in every configuration 5 uncontrolled
zero valued poles. Computing the optimal steady-state (maximum flow) for
the controlled contPN, the solution is: ϕ = 0.2 · 1 and u = 0.

This net has γ = 256 configurations and for each one Theorem 19
tells that all the equilibrium points have the same flow in steady state
(i.e. 0.2) for the same control input u = 0. Nevertheless, as expected,
the equilibrium marking is not unique. For example, the configuration
{(p1, t2), (p2, t3), (p4, t5), (p5, t6), (p7, t8), (p8, t9), (p9, t11), (p10, t12), (p12, t14), (p13, t15),
(p15, t17), (p16, t18), (M1, t1), (M1, t10), (M2, t4), (M2, t13), (M3, t7), (M3, t16)}
has:

rank

[

Π

By
T

]

= 17 (21)

Therefore, this configuration may contain an infinite number of equilib-
rium markings (Theorem 22). It is easy to see that the places corresponding
to the P-semiflows given by the buffers (y2 and y4) can be loaded in any
quantity greater than 0.2 and an equilibrium marking is obtained.
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Computing the poles of this configuration we obtain 9 zero valued poles,
three of them equal with −2 + i, other three −2 − i and six equal with
−1. Five of these zero valued poles are uncontrollable and are given by
the P-semiflows and the other four are given by some token conservation
laws given by the particular value of λ and the considered configuration.
Anyhow, these are controllable and can be moved using appropriate control
law.

7 Conclusions

This work has dealt with some control problems of continuous Petri nets.
Necessary conditions for the equilibrium points in steady-state are given by
some easy algebraic equations. For continuous EQ nets the steady-state
flow is unique, even if several steady-state markings are possible. For gen-
eral contPNs, a necessary condition for the existence of several steady-state
markings with different flows is presented. An optimal steady-state flow and
input control problem is addressed by means of an LPP, that can be solved in
polynomial time. In the last part of the paper the constraints on the actions
are relaxed, and classical controllability theory of linear dynamic systems is
used to provide a first interpretation to the class of systems that appear in
our field. All transitions are assumed to be controllable, because otherwise
it has been shown that the global system is not controllable. Controllability
and control schemes are currently topics under consideration.

Appendix

Let us consider a time-invariant linear system expressed by:

{

ẋ(τ) = A · x(τ) + B · u(τ)
y(τ) = S · x(τ) + D · u(τ)

(22)

where x(τ) ∈ Xn is the state of the system, u(τ) ∈ Um the input control
and y(τ) ∈ Y l is the output.

Definition 41 [?] [?] A dynamic system (22) is said to be completely state
controllable if for any time τ0, it is possible to construct an unconstrained
control vector u(τ) that will transfer a given initial state x(τ0) to a final
state x(τ) in a finite time interval.
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A very well-known controllability criterion exists which allows to decide
whether a continuous linear system is controllable or not. Given a linear
system (22), the controllability matrix is defined as:

C = [B · · ·AkB · · ·A(n−1)B] (23)

Proposition 42 [?] [?] A linear continuous-time system (22) is completely
controllable iff C is full rank (i.e. rank(C) = n). If C is not a full rank
matrix then the controllable subspace has dimension rank(C).

Equation (22) corresponds to a state-space representation of the sys-
tem description. Other representation is the input/output one. Applying
Laplace transform to the first equation in (22) and considering null initial
conditions (x(0) = 0, which can always be obtained by translation) we have:
s · x(s) = A · x(s) + B · u(s) and combining with the second equation, the
transfer-matrix function is obtained:

G(s) =
y(s)

u(s)
= S · (s · I − A)−1 · B + D =

S · adj(s · I − A)B + ∆(s)D

∆(s)
(24)

where, adj(s · I − A) is the adjoint of the matrix (s · I − A) and ∆(s) the
determinant of the same matrix.

The roots of the denominator of the transfer function are called the
poles of the system and they can be obtained by solving the characteristic
equation: ∆(s) = det(s · I − A) = 0. Notice that the poles of the transfer
function matrix and the eigenvalues of the matrix A are the same.

The poles play a very important role in system analysis and design. For
example, if all poles have negative real part then the system is stable (for any
bounded input, the output is bounded). If one pole has positive real part
then the system is unstable. Zero valued poles corresponds to integrators.
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