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Abstract— Continuous Petri nets are an approximation of
discrete Petri nets introduced to cope with the state explosion
problem typical of discrete event systems. In this paper we
start the problem of state estimation for timed continuous Petri
nets with finite server semantics. Under the assumption that no
observation is available, and thus the set of consistent markings
only depends on the time elapsed, we study the observation
based on the time-reachability analysis.

I. INTRODUCTION

State estimation is a fundamental issue in system theory.
Reconstructing the state of a system from available mea-
surements may be considered as a self-standing problem, or
it can be seen as a pre-requisite for solving a problem of
different nature, such as stabilization, state-feedback control,
diagnosis, filtering, and others. Despite the fact that the
notions of state estimation, observability and observer are
well understood in time driven systems, in the area of discrete
event and of hybrid systems there are relatively few works
addressing these topics and several problems are still open.

In the case of discrete event systems modeled by (discrete)
Petri net models, there exist different frameworks for observ-
ability. An approach for reconstructing the initial marking
(assumed only partially known) from the observation of
transition firings was presented [8] and later extended to the
observation and control of timed nets [9]. In other works it
was assumed that some of the transitions of the net are not
observable [5] or undistinguishable [7], thus complicating the
observation problem. Benasser [4] has studied the possibility
of defining the set of markings reached firing a “partially
specified” step of transitions using logical formulas, without
having to enumerate this set. Ramirez et al. [12] have
discussed the problem of estimating the marking of a Petri
net using a mix of transition and place observations. Ru and
Hadjicostis [14] have presented an approach for the state
estimation of discrete event systems modeled by labeled Petri
nets.

Recently, a particular hybrid model based on Petri nets
has received some attention. This model is called continuous
Petri net (contPN) [6], [15]. It can be seen as a relaxation of
Petri nets where the constraints that markings and transitions
firings are integer are removed. There exist two interesting
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Fig. 1. ContPN system for which the marking [0, 0]T is lim-reachable in
the untimed system but reachable in the timed one if w = 2.

timed versions of this model: timed contPN with infinite
server semantics and with finite server semantics1.

The problem of state estimation has only been studied for
timed continuous nets with infinite server semantics [11].

In this paper, we consider the observation problem for
timed continuous Petri nets with finite server semantics. We
make these assumptions:

(A1) the initial marking m0 is known;
(A2) the net structure is known.
(A3) all transitions are unobservable or silent, i.e., their firing

cannot be measured directly.
In addition to the untimed case, the state estimation of

timed continuous nets should take care of the following
remarks: (1) transitions may fire in parallel and what we
observe is the instantaneous firing speed of observable tran-
sitions; (2) timing constraints must be taken into account
and embedded into the state estimation procedure. For these
reasons, the results in [5], where the state estimation of
discrete nets is studied, cannot be applied in our case.

For example, let us consider the net in Fig. 1 with arc
weight w = 1, where the instantaneous firing speed of each
transition must belong to the interval [0, 1]. Assume that the
observed flow of transition t2 is v2(τ) = 0.5 during a time
interval [0, 0.5], while the flow v1 of transition t1 cannot be
observed. We want to determine the marking consistent with
this observation, given that it holds that m1(τ) = 1− (v1 −
v2)·τ and m2(τ) = (v1−v2)·τ . Since t2 is firing with firing
speed 0.5, to keep the marking of p2 non negative, transition
t1 must have been firing in parallel during this time interval,
with an average speed of at least 0.5. However, t1 may be
firing with an even greater speed, up to v1 = 1; thus the set
of consistent markings in the considered observation interval
is:

C(v2(·), τ) = {[1−m, m]T | 0 ≤ m ≤ 0.5τ}.
This shows that the set of consistent markings explicitly
depends not only on the observed firing speeds but also on

1Timed continuous Petri nets with finite server semantics can be con-
sidered as the purely continuous version of First Order Hybrid Petri Nets
defined in [3].



the elapse of time.
We present a first approach to the state estimation of timed

continuous nets with finite server semantics. We assume that
no observation is available, thus the observation problem
reduces to determining the set of markings C(τ), in which the
net may be at time τ . This problem is similar to that of time-
reachability for continuous models: this is why in Section III
we also study the equivalence between reachability of the
continuous untimed model and reachability of the timed one
showing under which conditions it holds. For some classes,
a procedure to compute the minimum time such that the set
of consistent markings is the same as the reachability space
is given. Conclusions are presented in Section IV.

II. CONTINUOUS PETRI NETS

A. Untimed Continuous Petri nets

Definition 2.1: A contPN system is a pair 〈N ,m0〉,
where:
• N = 〈P, T, Pre, Post〉 is the net structure with two

disjoint sets of places P and transitions T ; pre and
post incidence matrices Pre, Post : P × T → R≥0,
denote the weight of the arcs from transitions to places
(respectively, places to transitions);

• m0 : P → R≥0 is the initial marking. ¥
The input and output set of a node x ∈ P ∪ T is denoted

by •x and x•, respectively. The token load of a place pi at
the marking m is denoted by m[pi] or simply by mi.

A transition tj ∈ T is enabled at a marking m iff ∀pi ∈
•tj , m[pi] ≥ 0 and the enabling degree of tj at m is:

enab(tj , m) = min
pi∈•tj

mi

Pre[pi, tj ]
(1)

When a transition tj is enabled at a marking m it can
be fired. The main difference with respect to discrete Petri
nets is that in the case of contPNs it can be fired in any
real amount α, with 0 ≤ α ≤ enab(tj , m) and it is not
limited only to a natural number. Such a firing yields to a
new marking m′ = m+α·C[·, tj ], where C = Post−Pre
is the token flow matrix (or incidence matrix). This firing is
also denoted m[tj(α)〉m′.

If a marking m is reachable from the initial marking
through a firing sequence σ = tr1(α1)tr2(α2) · · · trk(αk),
and we denote by σ : T → R≥0 the firing count vector
whose component associated to a transition tj is:

σj =
∑

h∈H(σ,tj)

αh

where H(σ, tj) = {h = 1, . . . , k|trh
= tj}, then we can

write m = m0 + C · σ, which is called the fundamental
equation or state equation.

The set of all fireable sequences in the net is L(N ,m0),
while the set of all markings that are reachable with a finite
firing sequence is denoted by RSut(N , m0). An interesting
property of RSut(N , m0) is that it is a convex set [13].
That is, if two markings m1 and m2 are reachable, then
any marking m3 = α ·m1 + (1 − α) ·m2, ∀α ∈ [0, 1] is
also a reachable marking.

Left (right) natural annulers of C are called
P−(T−)semiflows. A P-semiflow y represents a token-
conservation laws y ·m = y ·m0 that it is satisfied for any
making m reachable from m0. A T-semiflow x represents
a repetitive behavior: m = m + C · x, i.e., any firing
sequence with count vector x from m brings back to m. If
they are integer annulers are called P−(T−)flows. The net
N is called conservative iff ∃y > 0 such that y ·C = 0 and
it is consistent iff ∃x > 0 such that C · x = 0. The support
of a vector v is denoted by ||v|| and represents the indexes
of its not null components.

A contPN is bounded when every place is bounded, i.e.,
for all p ∈ P , there exists bp ∈ R≥0 such that m[p] ≤ bp,
for all m ∈ RSut(N , m0).

Reachability may be extended to lim-reachability assum-
ing that infinitely long sequences can be fired. From the point
of view of the analysis of the behavior of the system, it is
interesting to consider these markings since in the limit the
system may converge to it. The set of all reachable markings
at the limit is denoted by lim−RSut(N ,m0).

Example 2.2: For the contPN in Fig. 1 with w = 2, the
marking [0, 0]T is lim-reachable firing the infinite sequence
t1(1/2)t2(1/2)t1(1/4)t2(1/4) . . .. Observe that each firing
of t1t2 halves the tokens in p1 but “0” is never reached.

The following characterization of RSut(N , m0) and
lim − RSut(N , m0) is given in [10]. Let us define first
the set of all sets of transitions FS(N , m0) for which there
exists a sequence fireable from m0, that contains those and
only those transitions in the set.

Definition 2.3: [10] FS(N , m0) = {θ| there exists a
sequence fireable from m0, σ, such that θ = ||σ||}. ¥

Then, the full characterization of the lim−RSut space is
given by:

Theorem 2.4: [10] A marking m ∈ lim−RSut(N , m0)
iff

1) m = m0 + C · σ, σ ≥ 0
2) ||σ|| ∈ FS(N ,m0).
In Theorem 2.4, the condition 2) is difficult to check

because the set FS has exponential dimension. Anyhow,
in [10] an algorithm to compute it is provided. For some
subclasses, there exists a more simple characterization:

Theorem 2.5: [13] Let 〈N , m0〉 be a contPN system. If
it is consistent and all transitions are fireable the following
statements are equivalent:

1) m is lim-reachable
2) ∃σ ≥ 0 s.t. m = m0 + C · σ ≥ 0
3) BT

y ·m = BT
y ·m0, m ≥ 0 where By is a basis of

P-flows.

B. Timed Continuous Petri nets

When the notion of time is introduced, the state equation
depends on time: m(τ) = m0 + C · σ(τ), where σ(τ) is
the firing count vector in the interval [0, τ ]. Differentiating
it with respect to time we obtain: ṁ(τ) = C · σ̇(τ). The
derivative of the firing count vector represents the flow of
the net and it is denoted by v(τ) = σ̇(τ). In this paper we



consider the continuous part of the First Order Hybrid Petri
Nets [3].

Definition 2.6: A timed contPN system 〈N , m0,V〉 is a
contPN system 〈N , m0〉 together with a function V : T →
R≥0 × R>0 that associates to each transition tj a firing
interval V(tj) = [V j

m, V j
M ]. ¥

The firing interval [V j
m, V j

M ], associated to the transition
tj ∈ T through the function V has the following interpreta-
tion: V j

m represents the minimum firing speed at which tj can
fire and V j

M represents the maximum firing speed at which
tj can fire.

In the untimed case, a contPN evolves sequentially and
only one transition is fired at a time instant. When time is
present, more than one transition can be fired. There are two
types of enabled transitions: strongly enabled and weakly
enabled.

A transition tj is strongly enabled if ∀pi ∈ •tj , mi > 0.
When ∃pi ∈ •tj such that mi = 0, then tj is weakly enabled
iff all input empty places are feeded by other transitions. If
some input empty place cannot receive input flow then the
transition is not enabled.

Observe that we consider the same notion of enabling
given in [1] that is different from the one used in [3]. The
notion used in [1] prevents the firing of transitions that
belong to an empty cycle. See Section 4.3. in [2] for more
details.

At a marking m, the instantaneous firing speed (IFS) (or
the flow) of a transition tj , denoted vj is given by:

• if tj is not enabled then vj = 0;
• if tj is strongly enabled then it may fire with any firing

speed vj ∈ [V j
m, V j

M ];
• if tj is weakly enabled then it may fire with any firing

speed vj ∈ [V j
m, V̄ j ], where

V̄ j = min

{
min

pi∈•tj |mi=0

{
∑

tk∈•pi

vk·P ost[tk,pi]
P re[pi,tj ]

}
,

V j
M

}

(2)

The value V̄ j in (2), corresponding to a weak enabled
transition tj , is computed in such a way that the marking
of the input places of tj that are empty will not become
negative. Hence, the flow of tj depends on the input flows in
the empty input places, i.e. it is the minimum for all pi ∈ •tj
with mi = 0 of the input flows in pi weighted by the pre
and post arcs. If the input flow is greater than V j

M then the
flow is bounded by this value. We assume that the net is
well defined, such that V̄ j ≥ V j

m for all reachable markings.
Observe that in the case of V j

m = 0 the net is well defined.
The instantaneous firing speed is piecewise constant. It

remains constant until a macro-event happens. We have two
types of macro-events: (1) internal macro-events appearing
when a place becomes empty and a new flow-computation
is required to ensure the non-negativity of the markings
and, (2) external macro-events appearing when the external
operator change the IFS of some transitions. Therefore, a

timed contPN is a piecewise constant system and the period
in which the IFS is constant is called macro-period.

A procedure to compute the set of admissible IFS vectors
at m is given in [3] based on a set of linear equations and
inequations. Let Tε be the set of enabled transitions and v
be a feasible solution of the following linear set:





vj = 0 ∀tj ∈ T \ Tε

vj ≤ V j
M ∀tj ∈ Tε

vj ≥ V j
m ∀tj ∈ Tε

C[p, ·] · v ≥ 0 ∀p ∈ P with m[p] = 0

(3)

The first two equations in (3) correspond to the bounds of
the IFS that should be respected by all transitions (strongly
and weakly enabled), while the last equation corresponds
to (2). Finally, let S(N ,m) be the set of all admissible IFS
vector at marking m.

III. STATE ESTIMATION OF TIMED CONTPN
As is stated in Section I, we assume that no transition is

observed, and we try to estimate the possible markings after
some time has elapsed. This represents a time-reachability
problem, in the sense that the reachability space will depend
not only on net structure N and the initial marking m0 but
also on time. Let us define the following sets:

1) RSτ (N , m0) = {m|∃ an admissible IFS vector v(·) :

m = m0 +
τ∫
0

C ·v(τ) ·dτ}, that is the set of markings

in which the net may be at time τ .
2) RSt(N ,m0) =

⋃
τ≥0

RSτ (N , m0), that represents the

set of reachable markings in the timed system.
Example 3.1: Let us consider the contPN system in Fig. 1

with w = 1 and assume V(t1) = [V 1
m, V 1

M ] = [0, 1] and
V(t2) = [V 2

m, V 2
M ] = [0, 1]. At time τ = 0.1, the set of

reachability markings is:

RS0.1(N ,m0) = { [m1,m2]T |m1 ∈ [0.9, 1],
m2 ∈ [0, 0.1],m1 + m2 = 1}

because the maximum number of tokens that can be removed
from p1 and the maximum number of tokens that can enter
in p2 is V 1

M · τ = 0.1. At τ = 0.2,

RS0.2(N ,m0) = { [m1,m2]T |m1 ∈ [0.8, 1],
m2 ∈ [0, 0.2],m1 + m2 = 1}

The reachability space of the timed system is:

RSt(N , m0) = { [m1,m2]T |m1,m2 ≥ 0,
m1 + m2 = 1} = RSut(N , m0).

Note that we assume that the IFS vector is kept constant
during a macro-period. As shown before, some markings are
reachable in the limit in the untimed continuous system (see
Ex. 2.2). In the case of the timed system, since the flow is
kept constant, these markings can be effectively reached in
finite time.

Example 3.2: Going back to the contPN in Fig. 1 but
assuming now w = 2, the marking [0, 0]T is lim-reachable in
the untimed model (Ex. 2.2). While as timed, if V(ti) = [0, 1]
then v = [1, 1]T ∈ S(N , m0) and [0, 0]T is reached after 1
time unit.



If the minimum firing speed of each transition is “0” then
all the markings that are lim-reachable in the untimed net
are reachable in the timed one.

Theorem 3.3: Let 〈N ,m0,V〉 be a timed contPN and
∀tj ∈ T , V j

m = 0. Then lim − RSut(N , m0) =
RSt(N ,m0).

Proof: Obviously, RSt(N , m0) ⊆ lim −
RSut(N , m0). In fact each marking m that is reachable
in a timed net satisfies the state equation and, since we are
assuming that empty cycles cannot be fired, according to
Theorem 2.4 the same firing sequence also ensures that m
is also lim-reachable in the untimed net.

Conversely, let us take m ∈ lim−RSut(N ,m0), there-
fore, according to Theorem 2.4, there exists a vector σ such
that m = m0 + C · σ and a firing sequence σ with the
same support that is fireable at m0. Hence transitions in the
support of σ cannot belong to empty cycles.

Let us construct an IFS v using σ that can be fired in the
timed net. First, let

V min
M = min

j,σj>0
{V j

M}

be the maximum firing speed at which a proportion of σ can
fire and

σmax = max
j
{σj}.

Now,

v =
V min

M

σmax
· σ

can be fired in the timed net since for every

vj =
V min

M

σmax
· σj

the following is true:

0 ≤ V min
M · σj

σmax
≤ V min

M ≤ V j
M .

If v is fired for a time
σmax

V min
M

then m is reached in the timed model. ¤
In the previous theorem, the condition that the minimum

firing speed of every transition is zero is fundamental. If it is
not satisfied there can exist markings that are lim-reachable
in the untimed system but not reachable in the timed one.
This happens because with a minimum firing speed greater
than zero, some transition firing sequences are not possible
in the timed system.

Example 3.4: Let us go back to the timed contPN system
of Fig. 1 with w = 2 and let us assume now V(t1) = V(t2) =
[0.1, 0.1]. In the untimed system, m = [0, 0.5]T is reachable
firing σ = t1 but in the timed net system it is not since
v1(τ) = v2(τ) = 0.1, ∀τ implying ṁ2(τ) = v1(τ)−v2(τ) =
0 with m2(0) = 0. Hence, place p2 remains empty.

The reachability space of a timed contPN system is, by
definition, the union of all markings that can be reached in
a time τ ≥ 0. In general, the reachability space is not a
monotonous function of time, i.e, given two time instants

2t

[1,1]

p t

[1,1]

(a) (b)

t

[1,1]

p1 1 1 1

Fig. 2. ContPN system in which some markings reachable as untimed
cannot be reached in the timed model.

τ1 ≤ τ2, the condition RSτ1(N , m0) ⊆ RSτ2(N ,m0) does
not necessarily hold.

Example 3.5: Let us consider the timed contPN in
Fig. 2(a). For τ1 = 0, RS0(N ,m0) = {m0} = {[0]} but for
τ1 = 1, RS1(N , m0) = {m0} = {[1]} because transition
t1 has v1(τ) = 1, ∀τ > 0.

However, under some conditions this monotonicity prop-
erty holds.

Theorem 3.6: Let 〈N ,m0,V〉 be a timed contPN and
∀tj ∈ T , V j

m = 0. If τ1 ≤ τ2 then RSτ1(N ,m0) ⊆
RSτ2(N , m0).

Proof: Since the minimum firing speed of every transi-
tion is null then all the markings that are reachable in a time
τ1 can be reached in τ2 just stopping all transitions after τ1.

¤
Computation of the reachability space of a timed contPN

system is very difficult as long as it is necessary to compute
the markings reached in a time τ for all τ ≥ 0. In the case
of a contPN system that it is bounded as timed there exists
a time instant τmin such that

⋃

0≤τ≤τmin

RSτ (N ,m0) = RSt(N , m0).

Moreover, if V j
m = 0 for all tj ∈ T , according to Th. 3.6

⋃

0≤τ≤τmin

RSτ (N , m0) = RSτmin(N , m0).

In other words, the markings reached before τmin form the
reachability space of the timed net system.

Proposition 3.7: Let 〈N , m0,V〉 be a timed contPN
and ∀tj ∈ T , V j

m = 0. There exists τmin such that
RSτ (N , m0) = RSt(N , m0), ∀τ ≥ τmin iff the net is
bounded as timed.

Proof: “=⇒” Let us assume that the net is not bounded
as timed. Then exists a place pi whose marking is growing
firing at least one transition tj . If mi is reached in minimum
τ0 time units, then the infinite sequence

mi,mi + 1,mi + 2,mi + 3, . . .

is reached at (minimum) time instants

τ0 < τ1 < τ2 < τ3 < . . . .

This is impossible because by hypothesis there exists τmin

such that all the markings can be reached in this time. Hence
the net is bounded as timed.

“⇐=” If the net is bounded as timed the reachability space
is a closed convex and each marking can be reached in a finite
time, thus there exists a τ such that every markings can be



reached in a time τ ′ with τ ′ ≤ τ . The minimum firing speed
is assumed to be null, then according to Theorem 3.6 all
markings reachable in a time τ ′′ ≥ τ are reachable in a time
τ . Taking τmin = τ , the result holds. ¤

Observe that in the previous theorem we require only
boundedness as timed, not boundedness as untimed.

Example 3.8: Let us consider the net in Fig. 2(b). This
net is not bounded as untimed because t1 can infinitely fire
and the marking of p1 is unbounded. But this net is bounded
as timed for the time intervals associated, and according to
Prop. 3.7, there exists τmin such that all reachable markings
can be reached in a time inferior to τmin. For this system,
τmin = 0 because RSt(N , m0) = {m0}.

An interesting problem is the computation of such τmin

ensuring that each reachable marking is reachable within this
time. Here we characterize τmin for a particular class of
nets (consistent and conservative) that although restricted,
are significant for many real applications. The idea of these
computations is to search for the longest time to reach the
markings at the border of lim−RSut.

Definition 3.9: Let 〈N ,m0〉 be a contPN system. A
marking m1 ∈ lim−RSut is an extreme marking if it is not
inside any line segment contained in lim − RSut. In other
words, if m1 = αm2 + (1− α)m3, where m1,m2, m3 ∈
lim−RSut, implies α = 0 or α = 1, then m1 is an extreme
marking. ¥

Proposition 3.10: Let 〈N ,m0〉 be a consistent, conser-
vative contPN system. Assume that each transition can be
fired at least once and m1 ∈ lim−RSut(N , m0). If there
exists a P-semiflow y such that ∀pi ∈ ||y||, m1[pi] 6=

max
m∈lim−RSut(N ,m0)

{m[pi]} then m1 is not an extreme

marking.
Proof: Let m1 ∈ lim − RSut(N ,m0) and y a P-

semiflow such that ∀pi ∈ ||y||, m1[pi] 6= max{m[pi]}.
Since for every place in the support of y, the marking is not
maximal then ∃pk, pl such that m1[pk], m1[pl] > 0 with
pk, pl ∈ ||y||. We construct two reachable markings such
that m1 is the midpoint of the line segment defined by these
markings. Using the fact that pk and pl are the support of
the same P-semiflow and their corresponding markings at m1

are neither maximum, neither minimum, there exists α > 0
such that m2 and m3 defined as:

m2[ph] =





m1[ph], if ph 6= pk and ph 6= pl

m1[ph] + α, if ph = pk

m1[ph]− y[pk]
y[pl]

· α, if ph = pl

m3[ph] =





m1[ph], if ph 6= pk and ph 6= pl

m1[ph]− α, if ph = pk

m1[ph] + y[pk]
y[pl]

· α, if ph = pl

are reachable according to Theorem 2.5. It is obvious that
1
2 (m2 + m3) = m1 and m1 6= m2 6= m3 and according
to Def. 3.9, m1 is not an extreme marking. ¤

Using the previous theorem, the set of extreme markings
can be computed for the class of conservative and consistent

contPN just ensuring that in each P-semiflow there exists one
place marked with the maximum number of tokens.

Proposition 3.11: Let PM ⊆ P be a subset of places such
that for every P-semiflow yi, |{||yi|| ∩ PM}| = 1. In other
words, there exists only one place in PM support of any P-
semiflow yi, and let pM : P → [0, 1] be such that pM [pi] =
1 if pi ∈ PM and pM [pi] = 0 otherwise. The solution of
the following linear programming problem (LPP) gives an
extreme point

min τ −M · pM ·m
s.t.

{
m = m0 + C · h
τ · V m ≤ h ≤ τ · V M

(4)

where M is a big value such that the performance index
corresponds to the minimum time τ to reach the maximum
number of tokens in places PM ; h = v·τ and it is introduced
to obtain a linear state equation; the last constraints are the
bounds for the IFS written in terms of h; V m and V M are
the vectors containing the minimum and the maximum for
IFS.

Proof: The result is immediate applying Prop. 3.10. ¤
Theorem 3.12: Let 〈N ,m0〉 be a consistent, conservative

contPN system. Assume that each transition can be fired at
least once and ∀tj ∈ T , V j

m = 0. For any τ ≥ τmin where
τmin = max τk with τk the solutions of LPP (4) for all
possible sets PM , RSτ (N , m0) = RSt(N , m0).

Proof: According to Theorem 3.6, all markings reach-
able in a time τ < τmin can be reached in a time τmin.
We have to prove that all markings in RSt(N , m0) can be
reached in the time τmin. Since τmin is the minimum time
to reach all extreme markings, it is enough to prove that
all other markings at the border of the reachability space
can be reached in τmin. Obviously, the interior points of the
reachability space are reached in a time less than the time
to reach the markings at the borders.

Let m2 and m3 be two extreme markings. We are going to
prove that m1, a linear combination of these two markings,
can be reached in a time equal to the maximum of the
minimum time needed to reach m2 and m3. Since m2

and m3 are reachable, there exist 0 ≤ v2 ≤ V M , τ2,
0 ≤ v3 ≤ V M and τ3, such that

m2 = m0 + C · v2 · τ2

and
m3 = m0 + C · v3 · τ3.

Computing m1 = α ·m2 +(1−α) ·m3 from the previous
equations, we obtain:

m1 = m0 + C · (α · v2 · τ2 + (1− α) · v3 · τ3).

Let us assume τ2 ≤ τ3, then m1 can be reached first
obtaining an intermediate marking:

m′
1 = m0 + C · (α · v2 · τ2 + (1− α) · v3 · τ2)

and then

m1 = m′
1 + C · (1− α) · v3 · (τ3 − τ2).
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Fig. 3. ContPN system for which the marking [0, 0]T is lim-reachable in
the untimed system but reachable in the timed one.

The marking m1 is reachable from m′
1 because the condi-

tions of Theorem 2.5 are satisfied. Then, the time need to
reach m1 is

τ ′ = α · τ2 + (1− α) · (τ3 − τ2)
= (2 · α− 1) · τ2 + (1− α) · τ3

≤ (2 · α− 1) · τ3 + (1− α) · τ3

≤ α · τ3

≤ τ3

¤
Example 3.13: Let us consider the timed contPN system

in Fig. 3 with V(t1) = V(t2) = V(t4) = V(t5) = [0, 1],
V(t3) = V(t6) = [0, 0.1]. This net has one P-semiflow:
y = [5, 5, 5, 2]T . Solving LPP (4) for VM = {pi}, i =
1, . . . , 4 we obtain the following results: for p1 the minimum
time to reach m = [2.8, 0, 0, 0]T is 20 t.u., for p2 the
minimum time to reach m = [0, 2.8, 0, 0]T is 20 t.u., for
p3 the minimum time to reach m = [0, 0, 2.8, 0]T is 20 t.u.,
for p4, the minimum time to reach m = [0, 0, 0, 7]T is 50
t.u. corresponding to the firing of h = [3.5; 3.5; 0; 0; 0; 5]T .
Hence for τ ≥ 50 all lim-reachable markings of the untimed
model can be reached in the timed one.

The computation of such τmin is important for the state
estimation without any measurement because if V m = 0,
and the time is greater than τmin, then all reachable markings
are possible. If the time at which the estimation is performed
is less than τmin, the following constraints provide the space
of all possible markings, that, in fact, is the set RSτ (N ,m0):

m(τ) = m0 + C · h(τ) (5)
τ · V m ≤ h(τ) ≤ τ · V M (6)

Obviously, for each marking, the corresponding vector
h should be such that there is no empty cycle that fires.
In the case of conservative and consistent contPN with
all transitions fireable and V m = 0, if the time that is
considered is greater than τmin then the constraint (6) can
be ignored and the possible states belongs to RSt(N ,m0).

IV. CONCLUSIONS

In this paper we have discussed the state estimation of
continuous Petri nets. We have considered timed contPNs

with finite server semantics and the problem of the state esti-
mation in the absence of any measurement is presented. This
problem is equivalent with the time-reachability problem of
timed contPNs. We have shown under which conditions the
reachability space of the timed net coincide with that of the
untimed one. We have also tackled the problem of computing
the minimum time necessary to reach all possible markings.
For the particular case of consistent and conservative nets,
an algorithm is given to compute it.

The results of this paper can be used also to derive
some controllability results of timed continuous Petri nets
with finite server semantics defined in [6] (see Section 5.5.
in [11]). Our future research will explore the observability
of the timed net when the flow of some transitions can be
observed. Also, the observability problem when the initial
marking is not known will be investigated.
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