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Abstract— In this paper we propose four transformation
rules to estimate the marking of a net, discrete or continuous,
satisfying the following assumptions: the set of transitions is
partitioned into observable and unobservable transitions; the
net structure and the initial marking is known. For each rule
we derive a set of linear algebraic constraints that characterize
the set of markings of the original net that are consistent with
the observed firing sequence.

I. INTRODUCTION

This paper presents an original approach for the state

estimation of Petri nets based on net transformations.

As in other works we assume that the set of transitions of

the net is partitioned into two subsets: observable transitions

whose firing can be detected by an external observer, and

unobservable transitions whose firing cannot be detected. The

initial marking of the net is assumed to be known.

Problems of this kind have been addressed by several

authors. Benasser [1] has studied the possibility of defining

the set of markings reached firing a “partially specified”

set of transitions using logical formulas, without having to

enumerate this set. Ramírez at al. [2] have discussed the

problem of estimating the marking of a Petri net using a mix

of transition firings and place observations. In the context of

continuous nets observability has been studied by Mahulea

[3].

In a previous work two of us have formally proved that

—under some technical assumptions on the structure of the

unobservable subnet— the set of markings consistent with

the observed word can be represented by a linear system

with a fixed structure that does not depend on the length of

the observed word [4].

In this paper we present two new contributions:

1) we study the observability problem by means of net

transformations;

2) we generalize our approach so that it can be applied

to both discrete and continuous nets (untimed).

A classical Petri net analysis technique, called analysis by

transformation, is based on the definition of reduction rules

that preserve the properties of interest, while simplifying

the structure of the net. Examples of this technique were

presented by Berthelot [5] and include place transformations,

that reduce the net structure by eliminating redundant places

but do not modify the state space; transition transformations,

which by fusing transitions reduce both structure and state

space of the net. Another approach has been developed by
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Fig. 1. A motivational example.

Silva and et al. and is based on the determination of implicit

places (see [6] for a review).

In this paper we propose to use transformation techniques

for the state estimation of nets with unobservable transitions.

The idea is that of removing the unobservable transitions and

merging their input-output places so as to create new places,

without influencing the rest of the net. The transformed

net only contains observable transitions and its marking

(including the marking of the new places) can be easily

updated after each observable transition firing.

To reconstruct the marking of the original net it is neces-

sary to determine the markings of the merged places. These

markings can be expressed as the solution of a linear system

that expresses their dependence from the marking of the new

places plus eventually a set of additional constraints that keep

track of the information on the initial marking.

As an example, consider the net in Fig. 1(a) where the

occurrence of transitions t1 and t2 can be observed while

transition t3 is not observable. We may transform this net

removing transition t3 and merging its input/output places

p2 and p3 to obtain the net in Fig. 1(b), that contains the

new place p23. The transformed net contains only observable

transitions and its marking is known. It is also possible to

reconstruct the possible markings of the original net (i.e.,

the markings of the merged places) given the marking of the

transformed net and the observed sequence σ as follows:






m2 + m3 = m23(σ)
m3 ≥ 1 − σ2

m2,m3 ≥ 0

where m2 and m3 are the (unknown) markings of places p2

and p3, m23(σ) is the (known) marking of place p23 and

σ2 is the (observed) firing quantity of transition t2. The first

equation specifies that the sum of the markings of p2 and p3

must be equal to the marking of p23. The second equation

specifies that the marking of place p3, that initially contains

one token, cannot be less than m0,3 minus the tokens

removed by the firing of t2: its marking can, however, be

greater than this quantity because the unobservable transition

t3 may have fired without being observed.

Note, finally that the same approach can be used for

untimed discrete nets and for untimed continuous nets. If

the net is discrete then σ2, m2 and m3 must be non-negative
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integers. If the net is continuous then σ2, m2 and m3 must

be non-negative real numbers.
An approach that is similar in spirit with the one we

propose has been recently presented by Gourcuff et al. in

[7], [8]. In these papers the authors propose a technique

to reduce the number of variables in a PLC program by

exploiting algebraic relationships between them. The goal is

that of simplifying the subsequent formal verification phase.
As a final remark, if we compare the approach based on

transformation with the approach presented in [4] we observe

that in both approaches the set of markings consistent with

the observed sequence is given by the solutions of a set

of linear inequalities that depend on a set of parameters:

the marking of new places in the former approach and

the so-called basis markings in the latter. However, the

computation of the marking of the new places is easier

than the computation of the basis marking. This is the main

advantage of the proposed technique.
In the rest of the paper a series of transformation rules are

described. So far the rules we present can only be applied to

classes of nets more restrictive than those considered in [4].

We believe, however, that the approach can be extended to

richer classes of nets and this will be the goal of our future

work.

II. BACKGROUND ON UNTIMED CONTPN

Definition 1: A contPN system is a pair 〈N ,m0〉, where:

• N = 〈P, T, Pre, Post〉 is the net structure with two

disjoint sets of places P and transitions T ; pre and

post incidence matrices Pre, Post : P × T → R≥0,

denote the weight of the arcs from transitions to places

(respectively, places to transitions);

• m0 : P → R≥0 is the initial marking. ¥

The input and output set of a node x ∈ P ∪ T is denoted

by •x and x•, respectively. The token load of a place pi at

the marking m is denoted by m[pi] or simply by mi.
A transition tj ∈ T is enabled at a marking m iff ∀pi ∈

•tj , m[pi] ≥ 0 and the enabling degree of tj at m is:

enab(tj , m) = min
pi∈•tj

mi

Pre[pi, tj ]
(1)

When a transition tj is enabled at a marking m it can

be fired. The main difference with respect to discrete Petri

nets is that in the case of contPNs it can be fired in any

real amount α, with 0 ≤ α ≤ enab(tj , m) and it is not

limited only to a natural number. Such a firing yields to a

new marking m
′ = m+αC[·, tj ], where C = Post−Pre

is the token flow matrix (or incidence matrix). This firing is

also denoted m[tj(α)〉m′.
If a marking m is reachable from the initial marking

through a firing sequence σ = tr1(α1)tr2(α2) · · · trk(αk),
and we denote by σ : T → R≥0 the firing count vector

whose component associated to a transition tj is:

σj =
∑

h∈H(σ,tj)

αh

where H(σ, tj) = {h = 1, . . . , k|trh
= tj}, then we can

write m = m0 + C · σ, which is called the fundamental

equation or state equation.
Note that a discrete net can be seen as a particular case of

this model where m, Pre, Post, α take only integer values.

III. PROBLEM STATEMENT

We propose a set of transformation rules to estimate

the marking of a net, discrete or continuous, satisfying the

following assumptions:

• the set of the transitions is partitioned into T = To∪Tu,

where To is the set of observable transitions and Tu is

the set of unobservable transitions;

• the structure of the net and its initial marking m0 is

known.

We provide a certain number of constructive rules to

determine a transformed net and a set of linear algebraic

constraints that characterize the set C(σ) of σ−consistent

markings, i.e., the set of markings in which the original net

can be after we have observed firing sequence σ.

One of the main features of the proposed approach is

that the number of constraints depends on the structure

of the original net and on the number of its unobservable

transitions, but it is independent on the actual observation.

Therefore, when a new observation occurs, we need to update

certain parameters that define the set of constraints, while the

structure of the constraints remains the same.

In this paper the presentation will be kept at an informal

level. Moreover, in order to provide simpler and more

intuitive explanations, we deal only with ordinary nets. A

more formal and general derivation of the approach will be

the object of our future work.

IV. THE OBSERVER DESIGN

In this section we present four different structures of the

original net 〈N , m0〉, and let us discuss the rules to construct

the reduced net 〈NR, mR
0 〉, and to derive the relative sets

of constraints characterizing the set of consistent markings.

Then, in the next section we will discuss a numerical example

that clarifies how to combine the different rules given in this

section when different structures appear simultaneously in

the original net.

A. Rule 1: join unobservable transition

Let us consider an unobservable transition t satisfying the

following assumptions.

(i) It is contact-free with other unobservable transitions,

i.e., it does not share input and output places with other

unobservable transitions. Thus, ∀t̄ ∈ Tu \ {t}, it holds
•t• ∩ •t̄• = ∅.

(ii) It is conflict-free1 and attribution-free2 with observable

transitions3, i.e., ∀t̄ ∈ To, it holds •t ∩ •t̄ = ∅ and

t• ∩ t̄• = ∅.

(iii) It only has one output place, i.e., |t•| = 1.

As an example, let us consider the net in Fig. 2(a) where

we have only one unobservable transition (tk+1) with k input

places (p1 to pk).

Note that for simplicity, we only consider one input

transition to each place p1, . . ., pk (namely t1, . . ., tk,

1Two transitions are conflict-free if they do not share a common input
place.

2Two transitions are attribution-free if they do not share a common output
place.

3Note that assumption (i) implies that it is also conflict-free with other
unobservable transitions.
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(a) (b)

Fig. 2. Join unobservable transition.

respectively), but the approach can be trivially generalized to

the case of more input observable transitions. Analogously,

we assume that pk+1 has only one output transition (namely

tk+2).

The reduced net is shown in Fig. 2(b) and it has been

obtained by simply removing the unobservable transition

tk+1 and merging places p1–pk+1, . . ., pk–pk+1. Thus, for

any observation σ, the marking of the reduced net is given

by:










mR
1 (σ) = m1 + mk+1,

...

mR
k (σ) = mk + mk+1.

(2)

Obviously, in the reduced net transition tk+2 is an output

transition from all places pR
1 , . . ., pR

k .

Let us observe that (2) is an application "one to many". In

fact, it only has k equations in k+1 unknowns (m1, . . ., mk,

mk+1). Therefore, to avoid spurious solutions, we need one

additional constraint that keeps track of the initial marking

of the original net, that is known by assumption.

As an example, we can can consider as additional con-

straint

mk+1 ≥ m0,k+1 − σk+2

where σk+2 = σk+2(σ) is the amount transition tk+2 has

fired during the whole observation σ. Note that we put

the symbol ≥ instead of = because pk+1 has also one

input unobservable transition (tk+1) whose flow cannot be

measured.

Note that we may alternatively assume as additional con-

straint, any of the following constraints

mi ≤ m0,i + σi, i = 1, . . . , k.

Summarizing, given a generic observation σ, it holds:


























mR
1 (σ) = mR

0,1 + σ1 − σk+2

= m0,1 + m0,k+1 + σ1 − σk+2,
...

mR
k (σ) = mR

0,k + σk − σk+2

= m0,k + m0,k+1 + σk − σk+2,

where σj is the total amount transition tj has fired during

the observation σ.

The set of markings consistent with a generic σ is thus

given by:

(a) (b)

Fig. 3. Fork unobservable transition.

C(σ) =























m1 + mk+1 = mR
1 (σ) (1)

...

mk + mk+1 = mR
k (σ) (k)

mk+1 ≥ m0,k+1 − σk+2 (k + 1)
m1, . . . , mk, mk+1 ≥ 0

(3)

where, as previously discussed, constraint (k+1) is crucial

to avoid spurious solutions.
Remark 2: Constraint (k+1) in (3) is active until σk+2 =

m0,k+1; after that it becomes redundant. ¥

B. Rule 2: fork unobservable transition

We now consider an unobservable transition t satisfying

the following three assumptions.

(i) It is contact-free with other unobservable transitions.

(ii) It is conflict-free and attribution-free with observable

transitions.

(iii) It only has one input place, i.e., |•t| = 1.

An example of this is given in Fig. 3(a) where we have

one unobservable transition (tk+1) with k output places (p1

to pk). Note that for simplicity, we assumed that pk+1

has only one input observable transition; however, all the

results presented below can be trivially extended to the case

of more input observable transitions to pk+1. Analogously,

we assumed that each place p1 to pk has only one output

observable transition, but this not a requirement.
Using the same reasoning as in the above case, it is

easy to obtain the reduced net sketched in Fig. 3(b) where

the unobservable transition tk+1 has been removed, and

the generic place pR
i (i = 1, . . . , k) has been obtained by

merging places pi and pk+1.
For any observation σ, the set of consistent markings can

be written as follows, where once again we have k equality

constraints in k + 1 unknowns (p1, . . ., pk, pk+1), plus an

additional inequality constraint (the (k + 1)-th) that keeps

track of the initial marking of the original net and avoids

spurious solutions:

C =























m1 + mk+1 = mR
1 (σ) (1)

...

mk + mk+1 = mR
k (σ) (k)

mk+1 ≤ m0,k+1 + σk+2 (k + 1)
m1, . . . , mk, mk+1 ≥ 0

(4)

where
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(a) (b)

Fig. 4. Series of unobservable transitions.



























mR
1 (σ) = mR

0,1 + σk+2 − σ1

= m0,1 + m0,k+1 + σk+2 − σ1,
...

mR
k (σ) = mR

0,k + σk+2 − σk

= m0,k + m0,k+1 + σk+2 − σk.

We finally remark that the constraint (k +1) in (4) can be

replaced by any of the following constraints:

mi ≥ m0,i − σ1, i = 1, . . . , k.

The constraint becomes redundant as soon as σi = m0,i (see

Remark 2).

C. Rule 3: series of unobservable transitions

A series of transitions is defined as a set of transitions {t1,

. . ., tk} such that

•t1 = {p0},
t•i =• ti+1 = {pi}, i = 1, . . . , k − 1
t•k = {pk}.

We now consider a series of unobservable transitions that

satisfies the following assumption.

(i) All transitions of the series are contact-free with other

unobservable transitions.

(ii) It holds p•i = {ti+1} for i = 0, . . . , k − 1, and •pi =
{ti} for i = 1, . . . , k, i.e., no other transition may input

in the places of the series (except for the initial one p0)

or may output from the places of the series (except for

the final one pk).

As an example, let us consider the series of k unobservable

transitions in Fig. 4(a), where for simplicity we only consid-

ered one input observable transition to p0 and one output

observable transition from pk.

The reduced net is reported in Fig. 4(b) and it has been

obtained by simply merging places p0 to pk, thus getting

the new place pR. Here pR has as input flow the flow

coming from t0. Finally, pR has only one output transition

that coincides with tk+1.

Using the same notation as in the previous subsections,

the set of markings consistent with the generic observation

σ can be written as follows:

C(σ) =











































∑k

i=0 mi = mR(σ) (1)
mk ≥ m0,k − σk+1 (2)
∑k

i=k−1 mi ≥
∑k

i=k−1 m0,i − σk+1 (3)
...

∑k

i=2 mi ≥
∑k

i=2 m0,i − σk+1 (k)
∑k

i=1 mi ≥
∑k

i=1 m0,i − σk+1 (k + 1)
m0 m1, . . . , mk ≥ 0

(5)

where
mR(σ) = mR

0 + σ0 − σk+1 =
k

∑

i=0

m0,i + σ0 − σk+1

Note that in such a case we have k + 1 unknowns

(namely the marking of places p0, p1, . . ., pk), while in

(5) we only have one equality constraint (the first one)

plus k inequality constraints that keep track of the initial

marking of the original net. The physical meaning of the

inequality constraints can be easily deduced using the same

considerations as in the previous subsections.

D. Rule 4: free-choice conflict of observable and unobserv-

able transitions

We now consider the case of a free-choice conflict of

unobservable and observable transitions. In particular, we

denote as Tc = p• the set of transitions that are in conflict,

where p is a given place in P . In the following we call Tc

the conflict set.
We assume that transitions in Tc satisfy:

(i) They do not share output places, i.e., ∀t, t̄ ∈ Tc it holds

t• ∩ t̄• = ∅.

(ii) They only have one input place, i.e., ∀t ∈ Tc, it holds
•t = {p}.

(iii) Unobservable transitions in Tc are contact-free with

other unobservable transitions not in Tc, i.e., ∀t ∈
Tc ∩ Tu and ∀t̄ ∈ Tu \ Tc it holds •t• ∩ •t̄• = ∅.

(iv) There is no self-loop involving unobservable transitions

in Tc.

An example of this conflict is given in Fig. 5(a) where

Tc = {t1, . . . , tk, tk+1}, t1, . . . , tk ∈ Tu and tk+1 ∈ To.
Note that here for simplicity we assumed that p1 has

only one input transition, and all places in T •
c have only

one output observable transition. Clearly, the results that

follow can be easily generalized to the case of an arbitrarily

large number of observable transitions entering and/or exiting

place p1 and places in T •
c .

The reduced net is reported in Fig. 5(b). To get this net

we removed unobservable transitions t1 to tk, and merge

places p1–p1,1, . . ., p1–p1,r1
, . . . p1–pk,1, . . ., p1–pk,rk

, thus

obtaining places pR
1,1, . . ., pR

1,r1
, . . ., pR

k,1, . . ., pR
k,rk

.
We assume that a fraction γi of the total flow that has

entered p1 —and that has not been removed by tk+1— is

reserved for the firing of transition tj . Thus we assign the

same weight to arcs tk+2–pR
1,1, . . ., tk+2–pR

1,r1
(namely γ1),

. . ., and to arcs tk+2–pR
k,1, . . ., tk+2–pR

k,rk
(namely γk).

When transition tk+2 fires we have a flow entering place

p1 in the original net, and consequently places pR
1,1, . . ., pR

1,r1
,

. . ., pR
k,1, . . ., pR

k,rk
in the reduced net. In particular, if no

unobservable transition fires, the same flow enters pR
j,1, . . .,
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(a)

(b)

Fig. 5. Free-choice conflict of observable and unobservable transitions.

pR
j,rj

, for j = 1, . . . , k. On the contrary, if transition tj fires

the same flow enters places pR
j,1, . . ., pR

j,rj
, for j = 1, . . . , k.

The weight of arcs pR
1,1–tk+1, . . ., pR

1,r1
–tk+1, . . ., pR

k,1–

tk+1, . . ., pR
k,rk

–tk+1 originates from the fact that the reduced

net is representative of the original one if and only if the

firing of tk+1(α)tk+2(α), for any α ≥ 0, is such that no

flow is accumulated in places pR
1,1, . . ., pR

1,r1
, . . ., pR

k,1, . . .,

pR
k,rk

.

Note that for simplicity of presentation we only assumed

one observable transition in Tc. However, in general cases,

we can have q > 1 observable transitions in Tc. In such a

case we simply have to add one arc from each place pR
j,i,

j = 1, . . . , k, i = 1, . . . , rj , to each observable transition

in Tc. The weight of the generic arc going from pR
j,i to the

generic transition in Tc will be equal to γj .

The set of consistent markings is

C(σ) =







































































































γ1 · m1 + m1,1 = mR
1,1(σ)

...

γ1 · m1 + m1,r1
= mR

1,r1
(σ)











r1

...

γk · m1 + mk,1 = mR
k,1(σ)

...

γk · m1 + mk,rk
= mR

k,rk
(σ)











rk

∑k

j=1 γj = 1

m1,1 ≥ m0,1,1 − σ1,1

...

mk,1 ≥ m0,k,1 − σk,1











k

mj,1, . . . ,mj,rj
≥ 0, j = 1, . . . , k

γj ≥ 0, j = 1, . . . , k

(6)

where

mR
j,i(σ) = mR

0,j,i + γj · σk+2 − σj,i

= m0,1 + m0,j,i + γj · σk+2 − σj,i

and j = 1, . . . , k, i = 1, . . . , rj .
The above constraints characterizing C(σ) are clearly

nonlinear. However, they can be easily linearized by defining

k dummy variables:

xj = γj · m1, j = 1, . . . , k.

In particular, they can be rewritten as:

C(σ) =







































































































x1 + m1,1 = mR
1,1(σ)

...

x1 + m1,r1
= mR

1,r1
(σ)











r1

...

xk + mk,1 = mR
k,1(σ)

...

xk + mk,rk
= mR

k,rk
(σ)











rk

∑k

j=1 xj = m0,1 · m1 + σk+2 · m1

m1,1 ≥ m0,1,1 − σ1,1

...

mk,1 ≥ m0,k,1 − σk,1











k

mj,1, . . . ,mj,rj
≥ 0, j = 1, . . . , k

xj ≥ 0, j = 1, . . . , k

(7)

where mR
j,i(σ), j = 1, . . . , k and i = 1, . . . , rj , are defined

as already specified above.

Note that here we have
∑k

j=1 rj + 1 + k unknowns, i.e.,

the marking of the output places of unobservable transitions

(namely mj,i for j = 1, . . . , k, i = 1, . . . , rj), the marking of

p1, and xj for j = 1, . . . , k. The number of constraints is still

equal to
∑k

j=1 rj +1+k, where the first
∑k

j=1 rj constraints

are equality constraints, while the remaining k + 1 are

inequality constraints that keep track of the initial marking

of the original net.
An important remark needs to be done. The last k in-

equality constraints in (6) (or equivalently in (7)) have been

written by looking at the marking of places p1,1, . . ., pk,1.

However, we can replace such constraints with any other set

of k constraints of the same form, where each constraint is

relative to an (arbitrarily) selected output place of a different

unobservable transition.

V. A NUMERICAL EXAMPLE

Let us consider the net in Fig. 6(a) where the initial mark-

ing is m0 = [m0,1 m0,2 m0,3 m0,4 m0,5 m0,6 m0,7 m0,8

m0,9 ]T = [1 0 0 0 0 0 0 0 0]T and the observable transitions

are To = {ti} for i = 1, . . . , 5. We want to reduce this net

with the rules defined in the previous section. In the first step

shown in Fig. 6(b), according to Rule 3, we substitute the

series p5−t9−p7−t11−p9 with the place p10. In the second

step shown in Fig. 6(c), according to Rule 3, we substitute

the series p4 − t8 −p6 − t10 −p8 with the place p11. Finally,

in the third step reported in Fig. 6(d), according to Rule 4,

we reduced the free-choice conflict of observable transition

t1 and unobservable transitions t6 and t7 with places p12 and

p13.
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(a) (b)

(c)

 

γ6 
γ6 

γ6 

t1 

p11 

p10 

t3 

t4 t5 

γ7 

t2 

γ7 p13 p12 

γ6 
γ7 

γ6+γ7=1 

γ6 γ7 

γ7 

(d)

Fig. 6. The numerical example in Section V.

Note that the reduced net obtained, shown in Fig. 6(d), is

a Petri net with a parameterized structure,i.e., the marking

of places p12 and p13, equal respectively to γ6 and γ7, are

unknown variables, not numbers.
The σ-consistent markings, i.e., all the markings that are

consistent with the observed firing sequence are all solutions

of the following system:

C(σ)=



















































































m5 + m7 + m9 = m10(σ)
m7 + m9 ≥ m0,7 + m0,9 − σ5

m9 ≥ m0,9 − σ5







step 1

m4 + m6 + m8 = m11(σ)
m6 + m8 ≥ m0,6 + m0,8 − σ4

m8 ≥ m0,8 − σ4







step 2

γ6m1 + m2 = m12(σ)
γ7m1 + m3 = m13(σ)
m2 ≥ m0,2 − σ2

m3 ≥ m0,3 − σ3

γ6 + γ7 = 1
m1 + m2 + m3 ≥ 1 − σ1 − σ2 − σ3



























step 3

γ6, γ7, m ≥ 0

where










































m10(σ) = m0,10 + σ3 − σ5

= m0,5 + m0,7 + m0,9 + σ3 − σ5

m11(σ) = m0,11 + σ1 − σ4

= m0,4 + m0,6 + m0,8 + σ1 − σ4

m12(σ) = m0,12 + γ6(σ4 + σ4 + σ5 − σ1) − σ2

= m0,1 + m0,2 + γ6(σ4 + σ4 + σ5 − σ1) − σ2

m13(σ) = m0,13 + γ7(σ2 + σ4 + σ5 − σ1) − σ3(τ)
= m0,1 + m0,3 + γ7(σ2 + σ4 + σ5 − σ1) − σ3(τ)

The 12th constraint, i.e., m1+m2+m3 ≥ 1−σ1−σ2−σ3,

is added to tackle the initial marking in the original net. This

constraint will become redundant when the sum of the firings

of transitions t1, t2 and t3 will be greater than 1.

We linearize the above constraints introducing the dummy

variables: x = γ6m1, y = γ7m1. We substitute the value of

the initial marking previously introduced and we obtain:

C(σ) =















































































m5 + m7 + m9 = 0
m7 + m9 ≥ −σ5

m9 ≥ −σ5

m4 + m6 + m8 = 0
m6 + m8 ≥ −σ4

m8 ≥ −σ4

x + m2 = γ6

y + m3 = γ7

m2 ≥ −σ2

m3 ≥ −σ3

x + y = m1

m1 + m2 + m3 ≥ 1 − σ1 − σ2 − σ3

x, y, γ6, γ7, m ≥ 0

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have provided a solution to the problem

of estimating the marking of a net, based on four transfor-

mation rules. For each rule we have given a set of linear

algebraic constraints that characterize the set of markings of

the original net that are consistent with the observed firing

sequence. An interesting application of these results can be

in fault detection when the faulty behavior is modeled by

unobservable transitions [9]. Since here the computational

effort of obtaining the set of consistent markings with an

observed firing sequence is smaller than in [9] we can expect

to obtain better results. We plan to extend this technique to

more general classes of Petri nets and also to timed Petri

nets.
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