Selection of the Register File Size and the Resource Allocation Policy on SMT Processors

J. Alastruey¹, T. Monreal¹, F. J. Cazorla², V. Viñals¹, M. Valero^{2,3} ¹gaZ – I3A - Universidad de Zaragoza ²BSC, Barcelona Supercomputing Center ³DAC, Universitat Politècnica de Catalunya HiPEAC - High-Performance Embedded Architecture and Compilation

International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) Campo Grande, Brasil, 2008

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Introduction

. . .

- Context: SMT processors
 - Private resources: PC, Map Table,
 - Shared resources: Register File, IQ,

managed through resource allocation policies

Introduction

HPEAG

UPC

- Context: SMT processors
 - Private resources: PC, Map Table,
 - Shared resources: Register File, IQ, ...

managed through resource allocation policies

Physical Register File (PRF) shared among all threads

Motivation

- Two critical design issues in SMT
 - PRF sizing
 - Large PRFs \Downarrow rename stalls $\rightarrow \uparrow \uparrow$ IPC
 - Small PRF \uparrow frequency \rightarrow \uparrow IPS
 - Resource allocation policy
 - Multiple choices

HPEAG

Contributions

Contributions

HIPEAG

UPC

Outline

• Resource Allocation Policies (RAP)

- Experimentation
- Performance sensitivity to PRF size and RAP
- PRF size and RAP selection procedure
- Conclussions

- Distribution of SMT shared resources driven by
 - Fetch policy
 - Which thread fetch instructions
 - Resource usage constraining policy
 - Trigger events: L2 misses, threshold crossing ...
 - Constraining actions: fetch-stall, flush.

Many approaches !!

Classification

Fetch bandwith distribution among threads

Outline

- Resource allocation policies (RAP)
- Experimentation
- Performance sensitivity to PRF size and RAP
- PRF size and RAP selection procedure
- Conclussions

Processor model

Except PRF, same configuration for 2 and 4 threads smtsim¹ based simulator

¹ D.Tullsen, S. Eggers, H. Levy. "Simultaneous multithreading: Maximizing on-chip parallelism". *ISCA* 1995.

Workload

• SPEC2000

- 12 int + 13 fp (all but fma3d)
- Representative parts, 300M
- Workload

HIPEAG

- 2-SMT: 24 pairs, 4-SMT: 12 quartets
- Balanced composition of int-fp and high-low ilp benchmarks

	high-ILP	low-ILP	mix	
int	bzip2-eon, gzip-gcc	vpr-mcf, vortex-twolf	perlbmk-vortex, gcc-gap	
int- fp	perlbmk-apsi, crafty-galgel	gap-swim, parser- mgrid	crafty-art, gzip-mgrid	
	bzip2-mesa, eon-sixtrack	vpr-lucas, mcf-equake	twolf-galgel, parser-ammp	
fn	mass sixteady among warming	lucas aqualza applu art	anci annlu facarac outim	

Metrics

Outline

- Resource allocation policies (RAP)
- Experimentation
- Performance sensitivity to PRF size and RAP
- PRF size and RAP selection procedure
- Conclussions

- 2. Resource allocation policy sensitivity
- 3. 2-4 threads comparison

- 2. Resource allocation policy sensitivity
- ¹ S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi and J.Owens, "Register Organization for Media Processing", *HPCA* 2000.

- Resource allocation policy sensitivity
- 2-4 threads comparison 3.

1.

2.

- PRF size sensitivity
- Resource allocation policy sensitivity
- 3. 2-4 threads comparison

1.

- PRF size sensitivity
- 2. Resource allocation policy sensitivity
- 3. 2-4 threads comparison

- 2. Resource allocation policy sensitivity
- 3. 2-4 threads comparison

3. 2-4 threads comparison

1.

2.

- PRF size sensitivity
- Resource allocation policy sensitivity
- 3. 2-4 threads comparison

- 2. Resource allocation policy sensitivity
- 3. 2-4 threads comparison

Outline

- Resource allocation policies
- Experimentation
- Performance sensitivity to PRF size and RAP
- PRF size and RAP selection procedure
- Conclussions

- Goal: select PRF size and resource allocation policy that maximizes performance
 - IPS vs. fairness tradeoff
 - Procedure
 - 1. For each policy, selects the best performing PRF size
 - 2. Comparison of obtained design points

PRF size selection

	2-threads			4-threads		
Policy	R			R		
Hill-climbing	320			384		
Dcra	320			384		
Sra	320			384		
Flush	224			288		
Stall	256			320		
Icount	320			448		

HIPEAC

R_{IPS} for all resource allocation policies

	2-threads			4-threads		
Policy	R	BIPS	Hmean	R	BIPS	Hmean
Hill-climbing	320			384		
Dcra	320			384		
Sra	320			384		
Flush	224			288		
Stall	256			320		
Icount	320			448		

HIPEAC

Comparison among RAPs

gaZ

	2-threads			4-threads		
Tipo	R	BIPS	Hmean	R	BIPS	Hmean
Hill-climbing	320	1.03	0.72	384	1.27	0.36
Dcra	320	0.92	0.71	384	1.22	0.40
Sra	320	0.93	0.72	384	1.23	0.40
Flush	224	0.93	0.63	288	1.27	0.37
Stall	256	0.84	0.65	320	1.10	0.34
Icount	320	0.78	0.63	448	1.14	0.39

HPEAC

- 2 threads: Hill-climbing with 320r
- 4 threads
 - IPS: Flush-288r
 - Hmean: Sra-384r

Outline

- Resource allocation policies
- Experimentation
- Performance sensitivity to PRF size and RAP
- PRF size and RAP selection procedure
- Conclussions

Conclussions

- Combined performance sensitivity to PRF size and resource allocation policy
 - Small PRFs: Flush
 - Large PRFs
 - IPS: Hill-climbing
 - Fairness: Sra or Dcra
- Selection of PRF size and resource allocation policy procedure
 based on two metrics (IPS, fairness)
 - 2 threads: Hill-climbing-320r
 - 4 threads

UPC

- IPS: Flush-224r
- Fairness: Sra-384r

From 2 to 4 threads

– Better IPS (23%) but worst fairness(-44%)

Selection of the Register File Size and the Resource Allocation Policy on SMT Processors

J. Alastruey¹, T. Monreal¹, F. Cazorla², V. Viñals¹, M. Valero^{2,3} ¹gaZ – I3A - Universidad de Zaragoza ²BSC, Barcelona Supercomputing Center ³DAC, Universitat Politècnica de Catalunya HiPEAC - High-Performance Embedded Architecture and Compilation

International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) Campo Grande, Brasil, 2008

Barcelona Supercomputing Center Centro Nacional de Supercomputación

