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Porting and Optimizing BWA-MEM2
Using the Fujitsu A64FX Processor

Rubén Langarita, Adrià Armejach, Pablo Ibáñez, Jesús Alastruey-Benedé, Miquel Moretó

Abstract—Sequence alignment pipelines for human genomes are an emerging workload that will dominate in the precision medicine
field. BWA-MEM2 is a tool widely used in the scientific community to perform read mapping studies. In this paper, we port BWA-MEM2
to the AArch64 architecture using the ARMv8-A specification, and we compare the resulting version against an Intel Skylake system
both in performance and in energy-to-solution. The porting effort entails numerous code modifications, since BWA-MEM2 implements
certain kernels using x86 64 specific intrinsics, e.g., AVX-512. To adapt this code we use the recently introduced Arm’s Scalable
Vector Extensions (SVE). More specifically, we use Fujitsu’s A64FX processor, the first to implement SVE. The A64FX powers the
Fugaku Supercomputer that led the Top500 ranking from June 2020 to November 2021. After porting BWA-MEM2 we define and
implement a number of optimizations to improve performance in the A64FX target architecture. We show that while the A64FX
performance is lower than that of the Skylake system, A64FX delivers 11.6% better energy-to-solution on average. All the code used
for this article is available at https://gitlab.bsc.es/rlangari/bwa-a64fx.
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1 INTRODUCTION

Precision medicine aims to improve healthcare by exploiting
genomic information [1]. In recent years, the sharp reduction
in genome sequencing costs has driven a dramatic increase
in the amount of data generated for processing, which
has posed a significant computational and storage chal-
lenge [2]. Sequence alignment, one of the most demanding
computational problems addressed in sequencing studies,
has numerous applications, including read mapping. The
goal of read mapping is to align the reads extracted from
the sequencing machines against a reference genome, i.e.
for each read the objective is to find the best matching
locations when compared to a reference genome [3]. In order
to restrict the search space, a common strategy is to use
a seed-and-extend approach [4]. Reads are partitioned into
small pieces which are searched using exact matching in
order to find seeds in the reference genome. Then, a dy-
namic programming scheme, typically based on the Smith-
Waterman algorithm, is used to assign an alignment score
for each of the candidates [5, 6].

These workloads are becoming a whole new application
domain in High Performance Computing (HPC) [7]. There-
fore, porting and optimizing well-known sequence align-
ment tools like BWA-MEM2, that primarily target x86 64 ar-
chitectures, to new architectures and emerging technologies
is of particular interest. In recent years, Arm-based server
(Ampere [8]), cloud (Graviton2 [9]), and HPC (A64FX [10])
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Spain. E-mail: {adria.armejach, miquel.moreto}@bsc.es
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solutions are gaining market adoption. Moreover, Amazon
AWS EC2 instances that feature in-house chips like the
Graviton2 are becoming extremely popular. These trends
suggest that sequence alignment tools should be ready to
exploit Arm-based hardware.

In this paper we port BWA-MEM2 to the ARMv8-A
architecture specification and exploit the newly introduced
Arm Scalable Vector Extension (SVE). We provide details of
the porting effort required, which mainly involves moving
from x86 64 vectorization intrinsics to SVE code. SVE code
is vector length agnostic, that is, it can run on any archi-
tecture implementing SVE with vector lengths ranging from
128 to 2048 bits. We evaluate our port on Fujitsu’s A64FX
processor, the first to implement the SVE instruction set
(512-bit vectors), and used in the Fugaku Supercomputer
that was ranked 1st in the Top500 list from June 2020 to
November 2021 [11].

In addition, we propose several optimizations to im-
prove the performance of BWA-MEM2 on the A64FX. Some
of this optimizations are generic while others take ad-
vantage of the A64FX underlying architecture. Finally, we
compare performance and energy-to-solution of optimized
implementations running on the A64FX and an Intel x86 64
Skylake architecture that features AVX-512. We show that
the A64FX performance is below that of the Skylake sys-
tem, since sequence alignment applications are heavily con-
strained by memory latency and the Skylake architecture
is better optimized in this regard; whereas the A64FX is
optimized to provide high memory bandwidth. However,
we also show that the A64FX presents better energy-to-
solution results than the Skylake system.

Our main contributions can be summarized as follows:

• Port BWA-MEM2 to the AArch64 architecture and SVE.
• Optimize BWA-MEM2 for the A64FX processor by tak-

ing into account its architectural characteristics.

https://gitlab.bsc.es/rlangari/bwa-a64fx
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• Detailed comparison of BWA-MEM2 executions on Fu-
jitsu’s A64FX and a well-known Intel Skylake system.

This paper is structured as follows. Section 2 describes
the state of the art in relation to genomics algorithms.
Section 3 shows the architecture of the A64FX, and compares
it against an Intel Skylake system. Section 4 presents BWA-
MEM2, the application that concerns us. Section 5 describes
the porting process in order to run BWA-MEM2 on a ma-
chine with SVE support. Section 6 explains different per-
formance optimizations for the BWA-MEM2 code. Section 7
details the parameters and inputs used for the evaluation.
Section 8 presents the results obtained with the A64FX and
the Intel system. Finally, Section 9 concludes this work.

2 BACKGROUND ON SEQUENCE ALIGNMENT

Many tools have been created in the context of sequence
alignment [12, 13, 14, 15, 16, 17]; even outside the genomics
context, like the diff tool in Linux [18] or Shazam [19], the
popular application to recognize music. Read mapping tools
employ sequence alignment algorithms to find the place in
the reference (e.g. the human genome) where a sequence fits
better. These input sequences are generated by sequencing
machines that output read chunks of introduced samples.
These reads can range from hundreds (e.g., in Illumina
machines) to thousands of base-pairs (e.g., in PacBio ma-
chines) [7]. One of the main objectives of read mapping tools
is to reassemble these read chunks to obtain the complete
genome. In this process, a reference genome already assem-
bled is used, since the genome of two individuals from the
same species differs by approximately 0.1% [20].

Most read mappers are based on two key observations:
(i) the reference genome is large, i.e., around 3 giga base-
pairs (Gbp) for the human genome, which makes naive
approaches unfeasible, and (ii) DNA sequences of the same
species are likely to contain short highly matched sub-
strings. Considering these insights, most aligners follow a
strategy consisting of two steps: seeding and extending. The
seeding step locates the regions within the reference genome
where a substring of the short input read is highly matched.
This substring is known as a seed. After seeding, in the
extension step, the remaining part of the read is aligned
to the reference genome around the seed, allowing certain
number of differences.

2.1 Finding Seeds

In order to find seeds, most mappers use one of two algo-
rithmic approaches: FM-Index or hash tables. FM-Index can
search for a variable size chunk and is typically employed
if input read sequences are short, as search time is propor-
tional to the input read length. In contrast, hash tables define
a fixed size to be searched for, and are often employed for
long reads, as it yields better results [15]. Both algorithms
are memory bound due to their irregular memory access
patterns, and require a large amount of memory capacity to
store the data structures.

There are multiple existing approaches to improve the
performance of this step. A common approach is to per-
form multiple seed searches in parallel for different input
reads, as these are independent. Due to the irregular access

pattern nature of these algorithms, some approaches co-
locate data within the same cache line in order to have
better locality [21], while other approaches redefine the data
structure to compress its memory footprint and enable more
aggressive multi-base search steps [22].

2.2 Extend Using Smith-Waterman
For the extend part, the most used algorithm is Smith-
Waterman [23, 24] and variants that improve its perfor-
mance based on observations [5, 6, 25]. The algorithm builds
a matrix to score inexact matches of the reference and the
input read. To compute the (i,j) cell of the matrix, it needs
the (i-1,j), (i,j-1) and (i-1,j-1) cells, which causes a heavily
constrained computation due to these dependencies.

The seed-and-extend strategy allows to limit the search
space of the Smith-Waterman algorithm by only populating
the matrix around the seeds. Moreover, most seeds end up
with a low score in the extend process, which adds quite
a lot of compute overhead that is later discarded. For this
reason, some approaches identify and discard low quality
seeds, e.g., FastHASH [26], GateKeeper [27], and Shouji [28].

As in the seeding step, alignments for different seeds
are independent and can be efficiently distributed across
different threads. In addition, since this is a compute bound
algorithm over a matrix, there has been a significant effort
to vectorize it. We can differentiate two ways of vectoriza-
tion: intertask and intratask. Intertask vectorization places
a different alignment on each element of the vector. How-
ever, this leads to imbalance due to the variable size of
the matrices the algorithm needs to compute, and quickly
becomes inefficient. In contrast, intratask vectorization tries
to apply vectorization to a single alignment. However, this
again proves difficult due to the constraints imposed by
the algorithm in terms of dependencies. The straightfor-
ward implementation vectorizes the anti-diagonal [29], but
it delivers limited performance as the access pattern is
strided. Some approaches vectorize the columns, ignoring
certain constraints [30], or rebuilding vertical constraints in
a second run [31].

Since vectorizing this algorithm is not straightforward,
all implementations resort to hand-written ISA-dependent
intrinsics, as the compiler is not able to auto-vectorize it. As
a result, most aligners only have these vectorized versions
for what has been the dominant ISA in the last decades,
i.e., x86 64. Therefore, the optimized versions of the align-
ers only work out-of-the-box on x86 64 machines, and the
Smith-Waterman algorithm needs to be ported in order to
make it run with other ISAs.

2.3 Sequencing Technologies
Since the beginning of DNA sequencing, three generations
of machines have been created. The first generation uses the
Sanger sequencing method, which was used to sequence
the first human genome in 2001. These machines are being
replaced by the second and third generation.

The second generation is able to read fixed length se-
quences, usually around 100 bps, with a high throughput.
The third generation reads variable length sequences, with
a much larger size, usually around 10 Kbps. However, the
third generation has less throughput and the quality of the
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Fig. 1: A64FX scheme. We can distinguish the four different core
memory groups (NUMA domains), each one with 12 cores.

TABLE 1: Core out-of-order resources in number of entries.

A64FX SKX
Re-order buffer 128 224
Instruction window 20+20+10+10+19 97
Scalar registers 96 180
Vector registers 128 168

read sequences is extremely low [7]. The quality issue can
be mitigated by reading the same chunk multiple times, and
then going through a consensus process, which leads to final
read sequences that have higher quality and longer length
than those obtained from second generation machines.

2.4 Sequence Alignment Applications

Most aligners optimized for short reads produced by second
generation machines employ the FM-Index algorithm to
find seeds. Examples include BWA [12, 13], its newer version
BWA-MEM2 [14], Bowtie [32], GEM [17], and RMAP [33].
GEM keeps adding characters to a region until the number
of seeds for that region falls bellow a threshold; then, they
start a new region, and it repeats the process until the end
of the read. Later, GEM verifies the candidate matches using
Myers’ fast bit-vector algorithm [34]. When reading, the
sequencer assigns different qualities to the different base-
pairs of a read. RMAP exploits this information by reducing
the penalty of mismatches over base-pairs with low quality.

Minimap2 [15] is an example of an optimized aligner
for long reads produced by third generation machines. It
handles long reads in an efficient way by using hash tables
to collect seeds. Due to the fixed size of the seeds, Minimap2
perform an extra step of chaining seeds to reduce the search
space. This step looks up for seeds together in the query
and in the reference genome to chain several seeds and
increase the number of consecutive hits. For the extend part,
minimap2 runs Suzuki-Kasahara [35], a modification of the
Smith-Waterman algorithm that operates with the deltas
among the cells, and allows 8-bit computation regardless
of the size of the query. Recently, Kalikar et al. [36] detail a
series of optimizations to accelerate the three main compu-
tational kernels of the CPU version of minimap2.

2.5 Sequence Alignment Accelerators

Multiple FPGA and ASIC-based accelerators have been pro-
posed for genomics workloads. For instance, Darwin [37]
and follow-up work by Olson et al. [38] propose a pipeline
that has novel hardware-accelerated algorithms for seeding
and alignment. GenAsm speed-ups the process even further

TABLE 2: Memory hierarchy overview.

A64FX SKX
Private L1 64 KB (4-way) 32 KB (8-way)
Private L2 N/A 1 MB
Shared LLC 8 MB × 4 33 MB × 2
Mem. capacity 8 GB × 4 48 GB × 2
Peak bandwidth 256 GB/s × 4 120 GB/s × 2
Technology on-package HBM2 off-chip DDR4

at the cost of lower accuracy by leveraging a simpler align-
ment algorithm [39]. Finally, SeGraM extends the GenAsm
work by adapting the pipeline for a sequence-to-graph
alignment application [40].

We can also find hardware acceleration for specific
kernels. For example, Guo et al. [41] accelerate the chain
kernel from the Minimap2 tool; and Diab et al. [42] ac-
celerate sequence alignment using Processing in Memory
(PiM) systems from UPMEM. However, the adoption of
these proposals is hindered by the different barriers (e.g.,
monetary, knowledge, deployment) present when adopting
non cpu-centric technologies.

3 TARGET MACHINE: FUJITSU’S A64FX
In this work we make use of the Fujitsu A64FX. Some of the
software optimizations we propose in Section 6 take advan-
tage of the A64FX architecture, which differs significantly
from conventional x86 64 architectures. Therefore, in this
section we describe and characterize the A64FX architecture
to better understand its trade-offs and optimize for them.

The A64FX was launched in 2019, however, accessibility
to the machine was restricted until the second half of 2020.
Figure 1 shows an overview of the chip, which features a
total of 48 compute cores and four HBM2 interfaces. The
A64FX chip has been designed to perform well under HPC
workloads with stringent memory bandwidth requirements.
Its architecture is based on four Non-Uniform Memory
Access (NUMA) domains within the same chip and was
the first to implement SVE [43, 44, 45]. In this section, we
present an overview of the A64FX and compare its main
features against an Intel Xeon Skylake system (SKX), also
HPC oriented.

3.1 Core Out-of-Order Resources
The A64FX has moderate out-of-order resources, as we can
see in Table 1. The number of entries in the ROB is nearly
the double for SKX. A64FX divides its 79-entry instruction
window in 5 different reservation stations, one for each
execution path: 2 paths for arithmetic operations (20 entries
for each path), 2 paths for memory operations (10 entries for
each path), and 1 path for branch operations (19 entries). In
contrast, SKX has 97 entries in a unified instruction window.
In addition, the number of physical registers is lower in
the A64FX: 96 vs. 180 physical scalar registers, 128 vs. 168
physical vector registers, for A64FX and SKX, respectively.
Both architectures implement 512-bit vector functional units.

3.2 The A64FX Memory Hierarchy
The A64FX memory hierarchy differs significantly from the
traditionally employed in x86 64 platforms like SKX. The
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Fig. 2: Memory latencies measured by the lmbench benchmark for
A64FX and SKX.

A64FX chip is organized in 4 NUMA domains, also known
as core memory groups (CMG), each with 12 cores for
general compute. Each domain has its own local memory
interface, but it can also use the interfaces of the near domain
and the two far domains (Figure 1). The SKX system has
2 interconnected sockets, which translates into 2 NUMA
domains with 24 cores each, also totalling 48 cores.

Table 2 details the memory hierarchy of the two systems
we are comparing. Despite the A64FX having a larger L1
cache, we can see that the cache hierarchy of the SKX system
has an additional cache level with large private L2 cache of
1 MB per core, totaling 48 MB of cache in this additional
level. The A64FX has 8 MB of last level cache (LLC) for each
core group (12 cores), a total of 32 MB, while the SKX has
33 MB per socket (NUMA node), a total of 66 MB of LLC.
Also, the associativity of the L1 is bigger in SKX, 8 ways
versus 4 ways in A64FX.

Each of the 4 NUMA domains of the A64FX are con-
nected to 8 GB of on-package memory implemented using
HBM2 technology, leading to a total of 32 GB of main
memory that cannot be extended via conventional off-chip
DIMMS. In contrast, the SKX system has 48 GB of main
memory per NUMA domain, 96 GB in total. In the case
of SKX, the amount of memory can be further extended
if higher capacity DIMMS are used. This memory capacity
limitation is a negative factor for the A64FX, especially for
genomics applications, where memory capacity can usually
be traded for computation. However, bandwidth is the
strong point of the A64FX, as it has a peak bandwidth
of 256 GB/s per NUMA domain, reaching 1 TB/s total
peak bandwidth. The SKX system has a peak bandwidth
of 120 GB/s per NUMA domain, 240 GB/s in total.

3.3 Memory Hierarchy Latencies

To obtain the different memory latencies, we have executed
the lmbench benchmark [46]. lmbench instantiates an array
with a fixed capacity and performs random accesses to it.
If the array fits in a given cache level and not in lower

TABLE 3: Memory latency in nanoseconds obtained with lmbench
benchmark for A64FX and SKX. This table is a simplification of Figure 2.

A64FX SKX
Private L1 2.27 1.91
Private L2 N/A 6.68
Shared LLC 17.27 25.14
Local mem. 123.87 86.2
Near mem. 187.58 144
Far mem. 242 N/A

TABLE 4: lmbench bandwidth benchmark results in GB/s for A64FX
and SKX.

A64FX SKX
Mean Std Dev Mean Std Dev

Local 228.9 0.028 116.8 0.048
Near 130.0 0.125 34.4 0.029
Far 130.0 0.005
All 522.4 1.352 124.8 1.476
All-split 915.2 0.141 233.3 0.049

ones, lmbench can obtain the latency for that level, since the
random access ensures that the data is not in a lower level.

Figure 2 shows the obtained results, which present a
stair shape. Each step in the plots corresponds to a different
memory level, and the array capacity of each slope matches
with the capacity described in Table 2. For example, for the
A64FX, we can see a step between 0.0625 (64 KB) and 8
(8 MB), the capacity of L1 and a slice of LLC respectively,
this means that this latency corresponds to the LLC. For the
sake of simplicity, Table 3 shows the latencies for each cache
level in nanoseconds.

We observe that the LLC latency is 31% lower in A64FX
with respect to SKX. However, SKX has 1 MB of L2 cache
per core with a compelling latency. When accessing memory,
the latency is almost 50% higher in the A64FX for the local
domain. In addition, accessing a far NUMA domain in the
A64FX is really costly, nearly twice the latency of the local
memory. Memory latency has less importance in regular
applications that can benefit from spatial or temporal local-
ity, however, genomics applications can suffer a significant
penalty due to their irregular access patterns.

3.4 Memory Bandwidth
We also employ lmbench to measure bandwidth per NUMA
domain. lmbench runs a simple STREAM benchmark to
obtain the bandwidth. We explore several configurations:

• Local: threads from a NUMA domain request data to
their local memory.

• Near: threads from a NUMA domain request data to
their neighbour (near) memory.

• Far (only in A64FX): threads of a NUMA domain re-
quest data to a far memory.

• All: threads from all domains request data. The memory
is interleaved among all NUMA domains.

• All-split: in order to obtain the peak theoretical band-
width, we instantiate one process on each NUMA do-
main (four in A64FX and two in SKX) using the local
configuration.

We can see the results in Table 4, where we perform
three executions for each configuration, and we report the
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Fig. 3: SMEM process scheme.

average and the standard deviation. We can see that for the
local configuration, the results are consistent with the peak
bandwidth specified for each memory technology on both
machines. The near and far configurations are influenced by
the characteristics of the network-on-chip and the socket-
to-socket connection in the SKX case; consistently obtaining
lower performance. In the All configuration, we observe that
the measured bandwidth is far from the peak theoretical
bandwidth. Since the memory is allocated in an interleaved
manner, the requests from different NUMA domains are
hindering memory performance. Finally, with the All-split
configuration, we obtain a bandwidth close to the peak
theoretical bandwidth.

4 BWA-MEM2
For this work, our target application is BWA-MEM2. BWA-
MEM2 [14] is a popular sequence alignment tool that en-
hances its previous version, BWA [12, 13]. It contains mul-
tiple optimizations that considerably speed-up alignments
while maintaining the same output. It supports all kind of
reads, but it is optimized for short reads produced by second
generation sequencing machines.

BWA-MEM2 follows a seed-and-extend approach. To
profile the application, we define three regions of interest:

• SMEM: uses an FM-Index structure to find seeds based
on exact matching.

• SAL: a suffix array translates FM-Index positions to the
locations in the reference genome.

• BSW: the Banded Smith-Waterman algorithm extends
the seeds and scores the alignments.

These three regions account for between 76% and 86% of
the total user execution time of BWA-MEM2. The remaining
time accounts for thread synchronization, rearranging data
between phases (converting structure of arrays to arrays of
structures, and vice versa) and allocating data structures.

4.1 The SMEM Region

To obtain the seeds, BWA-MEM2 queries an FM-Index struc-
ture to perform exact search on portions of the input reads
and the reference genome. This structure occupies nearly 10
GB for the human genome. This process tries to find Super
Maximal Exact Matches (SMEM). A MEM is a fragment of
the read input that matches with the reference and it can

not be further extended. A SMEM is a MEM that is not
contained in any other MEM.

Figure 3 shows the process of getting the SMEMs. First,
we fix a point in the read input sequence to start from, the
left most blue base in the figure. By querying the FM-Index,
we keep expanding the seed (forward extension) until we
have no hits in the reference, the red base at the end of
the forward extension. During this forward extension, we
store the positions where the number of hits changes. These
points are called left extension points (LEP). In Figure 3, we
have three LEPs, when going from four hits to three hits
(LEP1), going from three hits to one hit (LEP2) and going
from one hit to no hits (LEP3). Then, the algorithm expands
backwards the LEPs until there are no hits in the reference
genome. Finally, to obtain the SMEMs, we discard the MEMs
that overlap with other MEMs. In our example, the MEM
produced by LEP2 is discarded since it overlaps with the
MEM produced by LEP3. Therefore, 2 SMEMs are found,
those originating from LEP1 and LEP3. These two seeds will
later be extended during the extend phase implemented in
the BSW region.

For each base-pair, the application has to do a random
access to the FM-Index structure. The value read determines
the row of the next access, which produces a chain of depen-
dent random accesses. Since the size of the FM-Index struc-
ture is usually prohibitive, BWA-MEM2 trades computation
for memory storage, like many other proposals. This is
achieved by only storing 1 out of every 64 entries of the FM-
Index. The missing values are restored using an auxiliary
data structure (BWT) that is encoded using 2 bits for each
base-pair and additional computation. The closest counter
for the required FM-Index row is read, and then with the
help of the BWT, it counts the base-pairs needed to reach
the final row. This process is in the critical path between
two dependent random accesses; therefore, performing this
additional computation quickly is essential to the overall
performance. In BWA-MEM2 this computation consists of
a vector comparison and a population count instruction to
count the occurrences of a base-pair in the BWT.

The use of the FM-Index produces a memory bound
execution, since one iteration depends on the previous one,
and each iteration requires a long latency random access
to the structure. In this case, the limitation is not memory
bandwidth but its latency. To mitigate the effects of this
latency, BWA-MEM2 implements software prefetching in
order to load the data in advance, thus reducing the time
that the CPU pipeline is blocked. Software prefetching is im-
plemented both for the forward and backward extensions.
In the case of the backward extension, the code is written
in such a way that the different LEPs are independent
and can be interleaved. Since the LEPs can be computed
independently, the backward extension memory accesses do
not block the CPU pipeline.

4.2 The SAL Region

The SMEM region finds the seeds based on exact match-
ing that will be later extended using BSW. However, the
position in the FM-Index found in the SMEM phase has
to be translated to obtain the position of the seed in the
reference. This is done through the Suffix Array (SA). For
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the human genome, an uncompressed SA requires 48 GB,
a considerable size that will not fit in certain systems. For
this reason the SA is also compressed. BWA-MEM2 offers a
configurable compression factor x, that samples the SA by
2x. This means that the SA will store 1 out of 2x entries,
potentially performing 2x operations to recover the original
value. We choose a compression factor of 3, i.e. our SA
occupies 6 GB (48/23) of memory.

4.3 The BSW Region
Finally, for the extend part, BWA-MEM2 uses the Banded
Smith-Waterman (BSW) algorithm and the affine-gap
penalty model [24]. The alignment is done by populating
a matrix with as many columns/rows as the input read.
Instead of computing all cells in the matrix, BSW only
computes the cells around the main diagonal. The width
of this band depends on the score of the previous rows.
If the score of one row drops drastically, the width of the
band is reduced or even the algorithm can stop. The affine-
gap penalty model adds a penalty for opening a gap. This
means that two separate gaps produce a worse score than
two consecutive gaps.

In contrast with SMEM and SAL, BSW is a compute
bound kernel. BWA-MEM2 uses x86 64 intrinsics to imple-
ment BSW, and it has 3 versions: SSE, AVX and AVX-512. It
uses an inter-task approach, this means that each element of
the vector computes one read input sequence.

5 PORTING THE CODE TO AARCH64
The main challenge when porting BWA-MEM2 to AArch64
and the ARMv8-A specification is that the BSW algorithm
is implemented exclusively using x86 64 intrinsics, that is:
SSE, AVX and AVX-512. Therefore, the main task is to port
this algorithm to an ARMv8-A compatible ISA. We under-
take this task and port the BSW algorithm to SVE, Arm’s
recently proposed vector extension that is vector length
agnostic (VLA), i.e., one implementation fits all lengths, and
supports vector registers of up to 2048 bits.

Since none of the existing implementations uses features
present in SVE such as predication or VLA, we selected
the SSE implementation to do the porting; as it has a
cleaner interface and the code is easier to reason about.
Certain intrinsics like arithmetic or load/store operations
have a 1-to-1 translation, in these cases we overload the SSE
intrinsic name with an inline function that reimplements its
functionality using equivalent SVE intrinsics.

For this purpose, we create a header file called
sse2sve.h that implements all the code related to SVE
direct translations. Additional details on how these func-
tions work and an example can be found in Section 5.3.
However, complex code regions such as boolean operations
or vector-width dependent code are translated in a case-by-
case basis, since SVE instructions have a different structure
and can benefit from features such as predication. Section 5.4
includes further details.

5.1 Data Types
The first step is to translate the data types between the two
architectures. SSE has only one data type __m128i, and

TABLE 5: Translations in the sse2sve.h file.

SSE intrinsic SVE translation
_mm_malloc aligned_alloc

_mm_free free

__rdtsc cntvct_el0 (hardware counter)

_mm_prefetch __builtin_prefetch

_mm_setzero_si128 svdup_s64(0)

_mm_set1_epi{8,16} svdup_s{8,16}
_mm_blend_epi{8,16} svsel

_mm_add_epi{8,16} svadd_x

_mm_adds_epu{8,16} svqadd

_mm_sub_epi{8,16} svsub_x

_mm_subs_ep{i,u}{8,16} svqsub

_mm_max_ep{i,u}{8,16} svmax_x

_mm_min_epu{i,u}{8,16} svmin_x

_mm_and_si128 (arithmetic) svand_z

_mm_and_si128 (predicate) svand_x

_mm_or_si128 (arithmetic) svorr_z

_mm_or_si128 (predicate) svorr_x

_mm_xor_si128 (arithmetic) sveor_x

_mm_andnot_si128 (arithmetic) svbic_x

_mm_andnot_si128 (predicate) svbic_z

_mm_cmpeq_epi{8,16} svcmpeq

_mm_cmpgt_epi{8,16} svcmpgt

_mm_cmpge_epi16 svcmpge

_mm_load_si128 svld1

_mm_store_si128 svst1

the data type of the lanes is selected using the intrinsic
suffix. For example, it would use epi16 for signed 16-bit
integers, and epu8 for unsigned 8-bit integers. However,
SVE specifies the data type of the lanes but not the vector
length. For example, the svint64_t data type indicates
that the vector lanes will be signed 64-bit integers, but it
does not specify how many elements the vector has, i.e.,
VLA programming. In our translations, we generalize the
data types to always be signed 64-bit integers:
typedef svint64_t __m128i;

Later, we use a reinterpret intrinsic in the translation
function to convert this generic data type (svint64_t) to
the data type of the operand in the original instruction
being translated. For example, we would use the intrinsic
svreinterpret_s8 to convert the variable to a signed 8-
bit integer. Note that while we use multiple intrinsics, the
final result of the translation is a single assembly instruction,
as we explain in the following example.

5.2 Porting Effort
In Table 5 we show all the SSE intrinsics we have translated
in sse2sve.h and their corresponding SVE translation. All
the functions are marked and forced to be inline to avoid
function calls and achieve 1-to-1 assembly translations.

5.3 add Translation Example
SSE instructions start with the prefix _mm, followed by
the instruction type, and the lane width. For example,
_mm_add_epi8 indicates an addition instruction with
signed 8-bit integers. We translate this intrinsic by declaring
a function that overloads its name:
inline svint64_t _mm_add_epi8(svint64_t a, svint64_t b) {

svint8_t a_aux = svreinterpret_s8(a);
svint8_t b_aux = svreinterpret_s8(b);
svint8_t r_aux = svadd_x(svptrue_b8(),a_aux,b_aux);
return svreinterpret_s64(r_aux);

}
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We reinterpret the source vector operands as signed 8-bit
integers, perform the svadd operation, and finally reinter-
pret the result back to signed 64-bit integers. svptrue_b8
indicates that all lanes are active, since SSE instructions
can not be predicated. By doing this, the original SSE code
remains unmodified. Even though there are 4 lines of C++
code, this function translates to a single SVE assembly
instruction that performs the vector addition:
add z7.b, p0/x, z7.b, z26.b

SVE architectural registers are {z0..z31} and the .b
suffix in a register name indicates that the register is inter-
preted as a vector of signed 8-bit integers. The p0 register
contains the predicate with all lanes active. The compiler
sets p0 only once for all SVE instructions within a function
block. The end result for all translations performed this way
is a 1-to-1 assembly instruction correspondence.

5.4 Boolean Translation Example
BWA-MEM2 uses two ways of storing boolean data types:

• A vector variable with all bits of each lane set to 1 if
true, or 0 if false. This is used to mask off elements in
vector operations.

• A scalar variable with single bits set to 1 or 0. It uses
these scalar variables to create boolean expressions.

SVE has a predicate data type, svbool_t, to store
booleans. We take as example the following code snippet:
uint32_t cval = _mm_movemask_epi8(cmp1);
if (cval == 0x00) break;

cmp1 is a vector variable, previously generated, which
acts as a boolean predicate to perform masking operations.
_mm_movemask_epi8 moves the least significant bit of
each lane to a scalar variable cval. Then, cval is checked
as an exit condition for a loop. Therefore, this code requires
the creation of the scalar cval mask and then a comparison
operation. However, we can translate this code to SVE in a
way that the comparison can be done directly using cmp1:
if (!svptest_any(svptrue_b8(),cmp1)) break;

cmp1 is already of type svbool_t, hence, there is
no need of converting it to a scalar data type. We use
svptest_any to check if any lane is active, and then,
we negate the result. Note that the result of the boolean
expression is the same as for the SSE version.

5.5 Challenges
BWA-MEM2 was not ready to execute on any AArch64
machine since certain parts (BSW) are exclusively written
using x86 64 intrinsics. Moreover, A64FX was the first to
implement SVE and employs a non-conventional memory
subsystem. Therefore, we found challenges at the applica-
tion code, system software, and machine level.

5.5.1 Application Code
BWA-MEM2 is widely used in the genomics community. It
was released in 2019 as an upgrade of BWA. Since then, it
remains in continuous development. The authors continue
solving issues and giving support to the users.

After the start of the port there have been two sig-
nificant new releases of BWA-MEM2. A stable version 2.0

TABLE 6: Execution time relative standard deviation for 10 runs using
D3, D4 and D5 inputs (see Section 7.1) and the three code regions, with
and without the thread affinity.

D3 D4 D5

SMEM SAL BSW SMEM SAL BSW SMEM SAL BSW

w/o affinity (%) 10.2 15.8 8.5 11.3 22.0 8.9 11.2 15.4 10.7
w/ affinity (%) 0.15 0.11 0.42 0.17 0.09 0.65 0.15 0.12 0.38

was released the 9th of July 2020, fixing several bugs, and
on the 15th of October 2020 a new feature that allows
compressing the Suffix Array (SA) was introduced. Prior
to this update we were not able to employ the widely-
used human genome, since it did not fit within the A64FX
memory capacity. The compression of the SA enables the
use of large genomes, including the human genome. Both
releases has a small impact on the porting itself as the BSW
code remained unchanged.

The main difficulty during the porting was to translate
the BSW x86 64 intrinsics to SVE. Most of the code is
translated using a header file created for this purpose,
which contains one-to-one intrinsics translations to SVE.
However, in some cases, we had to rewrite the original code
to maintain the semantics, as masks behave differently in
SVE (see Section 5.4).

5.5.2 System Software
Since the A64FX software stack is not mature yet, we have
found issues with compilers and libraries.

A64FX was the first processor to implement SVE. Due
to the novelty of SVE, at the time of writing this paper, not
many compilers support SVE intrinsics. For example, the
native Fujitsu compiler (FCC) has many optimizations that
target the A64FX but still lacks SVE intrinsics support and
we were not able to use it for our experiments. However,
FCC has a clang back-end mode that does support intrinsics
but at the cost of certain A64FX-specific optimizations. Both
GCC11 and Arm HPC compiler also support intrinsics.
Therefore, for this work we have employed the FCC com-
piler with clang backend, as it showed better performance
than the rest of the compilers. FCC obtained 3.46%, 4.10%,
and 6.07% better performance with respect to GCC11 (the
second best compiler) for D3, D4, and D5 inputs (see Sec-
tion 7.1), respectively.

Large memory pages are essential in applications with
irregular access patterns to lower the cost of virtual to
physical address translations. To use the larger 2 MB virtual
pages, the compiler needs a specific large page library. This
library had a bug that lead to performance inefficiencies,
and needed additional configuration steps via environment
variables that are not trivial. Once the library was fixed and
configured properly, the performance of the code compiled
with the FCC compiler improved considerably.

5.5.3 Execution Time Variance
We observed a lot of variability when comparing multiple
executions using 48 threads. Since the chip has multiple
NUMA domains, the custom thread scheduler tries to op-
timize thread placement, which leads to unexpected thread
migrations that were not observed on other machines. These
migrations would happen even among different core mem-
ory groups, leading to significant performance variation
across multiple executions.
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We solved this problem by using the pthread affinity
functionality, pinning each thread to a core. Table 6 shows
the relative execution time standard deviation for 10 differ-
ent runs, with and without the thread affinity functionality.
For OpenMP codes the flag OMP_PROC_BIND needs to be
used to prevent variability across executions.

6 OPTIMIZATIONS

This section describes several optimizations we have tried
over the ported code. First we describe optimizations that
apply to the entire application, and then those that target a
particular code region. These optimizations try to take ad-
vantage of the A64FX architecture, but are likely to perform
well on most systems. Some of the optimizations we tried
did not yield the expected result, but are explained regard-
less to provide the lessons learned. Each of the optimizations
that had a positive effect is later evaluated in Section 8.

6.1 General Optimizations
Split Input: The A64FX has 4 core memory groups, each
of them with 12 cores and 8 GB of shared HBM memory.
Each core group sees one group as a near domain, and the
other two groups as far domains. Accessing the near domain
has a significantly lower latency as shown in Section 3.3
compared to the far domain. In order to avoid accesses to
far domains, we have tried to split the input, and execute
two different processes, each one on two near domains. By
doing this, we would have two processes using 24 cores each
(2 CMGs), but each process would require copy of the index
and all necessary data structures. After trying multiple
combinations and compression schemes, we concluded that
this is not a feasible option on the A64FX due to its total
memory capacity of 32 GB.
Large Pages: In the A64FX, the default page size is 4 KB.
Such small pages are very inefficient on irregular memory
accesses since each access will likely go to a different page,
requiring a new virtual to physical address translation.
Larger 2 MB pages can be enabled when using the FCC
with a specific library. The amount of memory covered by
these larger pages makes it more common to have tempo-
ral page address translation hits, leading to better overall
performance. The random accesses into the large FM-Index
would benefit from support of even larger page sizes. Most
x86 64 HPC systems have support for so-called huge pages
of 1 GB, but the A64FX does not support pages larger than
2 MB.

6.2 SMEM Region
For the SMEM region, we have tried four optimizations,
from which three have lead to positive results.

6.2.1 Aggressive Inlining
We detected a performance issue when calling the function
backwardExt that performs the backwards extension to
find SMEMs. This function performs an access to the FM-
Index and then reconstructs the missing entries with a
comparison and a population count operation. Besides the
negligible overhead of the branch needed to do the function
call, this function has large struct parameter passed by
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Fig. 4: Interleaving four SMEM processes for different input reads.

value. In addition, the code before and after the function
call that manipulates parameters is significant.

While the compiler did not inline this function by using
the regular inline keyword due to its size, we forced
inlining by using the always_inline attribute:

inline __attribute__((always_inline)) SMEM
backwardExt(SMEM smem, uint8_t a);

By forcing this function to be inlined, the movement
of data on the stack is avoided, and the compiler is able
to optimize the code beyond the function limits. The code
reduction is substantial as the creation of the SMEM struct
that was passed by value is no longer needed.

6.2.2 Population Count (popcnt)

Counting the number of bits set in a register (the popcnt
operation) is a critical operation for the FM-Index algorithm
as it is on the critical path between two dependent irreg-
ular memory accesses. BWA-MEM2 relies on the compiler
built-in function __builtin_popcount, that on x86 64
translates into a single instruction as the hardware sup-
ports this operation. However, on the A64FX the built-
in performs the operation using bitwise operations with
masks and sums to obtain the result [47]. As opposed to
modern x86 64 architectures, the ARMv8.2-A specification
does not include an instruction to perform a popcnt over a
scalar register. However, SVE does have a specific vectorized
popcnt instruction. Therefore, we rewrote the code using
SVE intrinsics by moving the scalar register into a vectorial
one, performing the popcnt using the svcnt intrinsic, and
moving back the result to a scalar register again.

6.2.3 Interleaved Sequences

The A64FX has a high memory access latency compared
with HPC systems. However, it does have a significant
advantage in terms of memory bandwidth. As we explained
in Section 4.1, the forward extension used to obtain SMEMs
leads to chains of dependent long-latency memory accesses.
Therefore, the latencies of each individual access cannot be
hidden. To solve this issue and allow hiding these latencies,
we propose to interleave multiple accesses to the FM-Index
from different input reads, effectively performing several
forward extensions in parallel, as shown in the Figure 4. This
exposes more memory level parallelism as more accesses
are in-flight, hiding their latencies; and the core pipeline
has additional work to do with multiple forward extensions
running. Prior work showed this is an effective technique
when memory bandwidth is abundant [22].
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6.2.4 Manual Loop Fission

The A64FX has less out-of-order resources than other HPC
processors. Limiting the number of instructions within a
loop is very important to save resources, such as reorder
buffer storage or physical registers. To enable aggressive
loop unrolling the FCC compiler has an automatic loop
fission feature that can be configured via a specific pragma.
By using this technique loops can be split, providing smaller
loop bodies, which leads to a better utilization of the out-of-
order resources [48].

Unfortunately, support for automatic loop fission via the
specific pragma using the FCC compiler is not compatible
with the use of SVE intrinsics. The compiler cannot deter-
mine how to split the loop in the presence of intrinsics.
Therefore, we have decided to split manually three loops
in the SMEM region. However, this is a difficult process to
perform manually and our efforts did not produce satisfac-
tory results. Therefore, we defer this optimization to future
work, and will test again this feature once its support is
extended to accept SVE intrinsics within the loop body.

6.3 BSW Region

We focused on improving the port by taking advantage of
the predication feature present in SVE.

BWA-MEM2 uses a selection instruction for zeroing use-
less results within a vector. We can eliminate these instruc-
tions by predicating the instruction that produces the result.
As an example, we will take the following piece of code:

__m128i m11 = _mm_add_epi8(h00, sbt11);
__m128i cmp11 = _mm_cmpeq_epi8(h00, zero128);
m11 = _mm_blend_epi8(m11, zero128, cmp11);

In this code, after performing the add operation, a pred-
icate is built with _mm_cmpeq_epi8. _mm_blend_epi8
selects the lane from zero128 if cmp11 has a 1 stored for
that lane, or takes the value in m11 otherwise. zero128
contains 0s for all lanes. This means that the instruction
overrides the result obtained from the add with 0s where the
predicate cmp11 is 1. Since SVE has instruction predication
support, we do the following translation:

svbool_t cmp11 = svcmpne_n_s8(svptrue_b8(), h00, 0);
svint8_t m11 = svadd_z(cmp11, h00, sbt11);

First, we build the predicate in a similar fashion and
store it in cmp11. Then, the add operation can be directly
predicated, indicating that non-active lanes in the mask
need to be zeroed. This is accomplished with the appro-
priate z suffix. By doing this we save instructions within
performance critical tight loops. Note that we can not do
this by overloading the functions presented in Section 5.2
because we are combining two instructions into one. We
have applied this technique when possible. Since the algo-
rithm is compute bound and we are reducing the compute
pressure within tight loops, we are able to gain performance
by leveraging SVE’s predication.

7 EVALUATION METHODOLOGY

In this section, we describe the evaluation methodology
employed to assess our BWA-MEM2 port on the A64FX.

TABLE 7: Details for D3, D4 and D5 input datasets.

D3 [49] D4 [50] D5 [51]

Organism Homo Sapiens Homo Sapiens Homo Sapiens

Machine
Illumina Genome

Analyzer II
Illumina

HiSeq 2000
Illumina

HiSeq 2000
Seq. length 76 101 101

Num. of seq. 17.8 M 92.4 M 1,436.8 M
Run SRR043348 SRR622461 SRR622457

TABLE 8: Test machines configuration.

2 × Intel Xeon A64FX
Platinum 8160 (SKX)

Cores 2 × 24 48
Issue width 4 4
Frequency (GHz) 2.1 2.2
Last-level Cache (MB) 2 × 33 32
Vector extension AVX-512 SVE 512 bits
Main memory DDR4, 2×48GB, 2×120GB/s HBM2, 32GB, 1024GB/s

7.1 Reference and Inputs
We use as reference the human genome (GRCh38), which
was built in 2013 and contains 3.05 Gbp [52]. Therefore,
we build the FM-Index from this reference. This process
typically takes a few hours, however, this time is negligible
compared to the time spent processing the alignments, since
the index is built only once and can be reused as many
times as necessary for multiple alignment experiments. Pre-
computed indexes for popular alignment tools and reference
genomes can also be found online.

We use three real inputs from the National Center
for Biotechnology Information Sequence Read Archive se-
quenced with an Illumina machine, termed: D3 [49], D4 [50]
and D5 [51]. We randomly select 1.25 million sequences from
the original files. D3 has sequences of 76 bps long, while D4
and D5 have sequences of 101 bps. These datasets were also
used to evaluate BWA-MEM2 when it was released [14].
Table 7 shows the details of these datasets.

7.2 Evaluated Systems and Experiments
We evaluate two compute nodes: the A64FX, and one based
on Intel Xeon Platinum 8160 (SKX) that features two sockets.
A brief summary of their main characteristics can be found
in Table 8. In total, both systems have 48 physical cores.

We perform performance experiments on the A64FX
system to test the efficacy of our port and the proposed
optimizations. Then, we perform a vector length sensitivity
analysis on the A64FX. We evaluate vector lengths of 128,
256, and 512 bits, in order to demonstrate that our vector
length agnostic code port scales well. Finally, we compare
performance and energy-to-solution for the A64FX and the
Skylake system (SKX).

7.2.1 Energy-to-Solution Methodology
We aim to measure energy-to-solution of the three regions
of interest, avoiding I/O operations that depend on com-
ponents other than the processors we are studying, i.e., file
systems or disk technology. Therefore, we want to avoid
measuring the energy outside the regions of interest, which
includes loading the index and the input sequences, as well
as writing the final output.
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On the SKX system, Slurm [53] allows us to measure
the energy of the entire job. Therefore, we perform two
executions, the first one just loads the index and exits right
before starting the first region of interest. The second run
executes the application normally until the end of the last
region of interest and exits. To obtain the final result we
subtract the energy of the first run from the second one.

On the A64FX we use the power API from Fujitsu [54].
The power API allows us to measure the energy of a specific
code region by reading a special register each time we
invoke a particular API function. We placed the API calls
to avoid the load of the index and the final output writing,
measuring the same region as in the SKX machine.

To avoid the load of the input sequences, which happens
on a per batch basis, we preload them into memory.

7.3 BWA-MEM2 Configuration
BWA-MEM2 admits multiple configuration parameters. The
most relevant define the compression factors of the main
data structures. We fix the level of compression for the SA
to eight, this means that the SA stores one entry out of
eight, potentially performing eight operations to recover a
missing value. This compression is enough to fit the human
genome index structures in the 32 GB of HBM2 available
in the A64FX system. Similarly, the FM-Index compression
factor is fixed to 64, this means that it stores 1 out of 64
entries. The missing values are restored with the BWT, that
encodes the base-pairs with 2 bits.

BWA-MEM2 employs software prefetching instructions
in the SMEM region in order to load data in advance,
with the objective to mitigate access latency overheads. We
disable the software prefetching temporarily to measure
its impact. We observe an average speed-up when using
software prefetching of 47.9% and 38.3% for A64FX and SKX
respectively in the SMEM region. The A64FX benefits more
from software prefetching as it has a higher memory access
latency. Since the software prefetching feature is beneficial,
and enabled by default in BWA-MEM2, we keep it enabled
in all experiments.

We evaluate the application with different thread counts:
1, 12, 24 and 48. 48 threads is the maximum number for
both systems, SKX and A64FX. BWA-MEM2 processes the
sequences in batches. We set up the number of base-pairs
per batch to 10 M per thread. We use the pthread affinity
functionality in order to pin threads to physical cores, as we
explained in Section 5.5.3.

In order to measure performance we count execution
cycles. We have used perf to extract this information via
hardware performance counters [55]. We have placed perf
probes near the markers of each region of interest in the
original code: SMEM, SAL and BSW regions.

For the A64FX and SKX, we use SVE 512 bits and AVX-
512 respectively for all experiments unless otherwise stated.

7.4 Porting Correctness
In order to check the correctness of our porting effort, we
compared the output files obtained using the SKX system
with the unmodified BWA-MEM2 code against those pro-
duced by our port using the A64FX. Both binaries generated
the exact same alignments for D3, D4, and D5 inputs.
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Fig. 5: Speed-ups when using large pages with respect to not using
them on A64FX with 48 threads. Showing data for D3, D4, and D5
inputs and the three code sections.

D3 D4 D5
Input

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

d-
up

 w
he

n u
sin

g i
n-

lin
e f

un
cti

on

1.21 1.24 1.34

(a) In-line (SMEM)

D3 D4 D5
Input

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

d-
up

 w
he

n u
sin

g p
op

 co
un

t

1.05 1.05 1.07

(b) Popcnt (SMEM)

D3 D4 D5
Input

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

d-
up

 w
he

n u
sin

g p
re

dic
ati

on

1.02 1.05 1.05

(c) Predicates (BSW)

Fig. 6: Speed-ups for (a) in-line, (b) population count and (c) predication
optimizations for D3, D4, and D5 inputs on A64FX with 48 threads.

8 EXPERIMENTAL RESULTS

8.1 A64FX Optimizations Evaluation

We use as the initial baseline the BWA-MEM2 code de-
scribed in Section 5. Then, we evaluate the different op-
timizations described in Section 6. We progressively add
one optimization at a time to determine its impact on
the final performance. When adding an optimization, all
previously evaluated optimizations are also present. All the
experiments presented in this section employ 48 threads,
one per core.

8.1.1 Large Pages

Figure 5 shows the speed-ups when using large pages for
each input and region of interest. The average speed-up
among all the sections and all the inputs is 4.8%. However,
the SMEM section is the most affected by this optimization
since it is a latency bound kernel, and it has a large memory
footprint, showing an speed-up of 1.11× with the D3 input.

8.1.2 Function Inlining

Figure 6a shows the obtained speed-ups when using the
inline directive in the backwardExt function. This opti-
mization only affects the SMEM section, and achieves a
1.27× average speed-up in this application phase. Therefore,
the function call with parameters passed by value has a
significant overhead that can be avoided.

8.1.3 Population Count

Figure 6b shows the speed-ups when adding the
population count (svcnt) SVE instruction in the
SMEM region. By replacing a sequence of arithmetic in-
structions for a single instruction primitive we achieve an
average 5.7% performance improvement.
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Fig. 7: Average speed-ups for the interleaved sequences optimization
on SMEM for D3, D4, and D5 inputs on A64FX with 48 threads.
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Fig. 8: A64FX normalized execution time with respect to the unopti-
mized baseline. Showing executions with 1, 12, 24 and 48 threads using
D3, D4, and D5 inputs.

8.1.4 Interleaved Sequences

Figure 7 shows the speed-ups obtained when interleav-
ing multiple accesses to the FM-Index from different in-
put reads, i.e., performing several forward extensions in
parallel. Again, this optimization only affects the SMEM
section. We observe that the best configuration is when
using 4 interleaved sequences, which gives an average 8.1%
performance improvement with respect to not using inter-
leaved sequences. Therefore, we will use four interleaved
sequences from now on.

8.1.5 BSW SVE Predication

In Figure 6c, we can see the speed-ups when using SVE
predication in the BSW section. Despite we only predicated
a few instructions inside the inner loop of the kernel, we
achieve an average 3.7% performance improvement in BSW.

8.1.6 Final Version

In total we have performed five optimizations over the
baseline implementation. We can see the performance im-
provements achieved by all the optimizations in Figure 8.
The figure shows, for multiple thread counts and for each
input, the normalized execution time when all optimizations
are applied (Optimized) with respect to the ported code (Base-
line). We obtain an execution time improvement of 23.2% on
average for 48 threads. In the figure, we can also distinguish
each code region. SMEM is the region that experiences the
largest performance gain, 36.9% on average for 48 threads.
We also observe that the optimizations have a similar effect
regardless of thread count. Therefore, they are not targetting
any bottlenecks that appear due to core count scaling. As
we show in Section 8.4 the application scales almost linearly
with thread count.
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Fig. 9: BSW region speed-up for 48-thread executions with respect to
single-threaded and SVE 128 bits for D3, D4, and D5 inputs.

TABLE 9: Billions of committed instructions for a single threaded
execution of BSW, and instruction reductions with respect to SVE 128.

D3 D4 D5
total reduction total reduction total reduction

SVE 128 197 - 230 - 298 -
SVE 256 151 30.5% 153 50.3% 192 55.2%
SVE 512 124 58.9% 108 113.0% 131 127.5%

8.2 SVE Vector Length Analysis

In order to test the vector length scalability of our SVE port,
we perform experiments with additional vector lengths of
128 and 256 bits. While the A64FX supports up to 512
bit vectors, the hardware can be instructed to use shorter
vectors if desired. We execute the same binary for all the
vector length, since SVE is a vector length agnostic ISA. As
expected, we observe that the SMEM and SAL regions
are not affected by vector length, as their code is not
vectorized. Therefore, we only show the speed-ups for the
BSW region. Figure 9 shows the performance improvements
when changing the vector length for the 3 inputs on 48-
thread runs, normalized to single-thread SVE 128 bits. We
also observe average speed-ups of 37.6% when going from
128 to 256, and 79.0% when going from 128 to 512 SVE
bits. These results correlate with the reduction in terms of
committed instructions shown in Table 9. This indicates that
the performance improvements we obtain in terms of SVE
scaling are the expected ones, and that memory bandwidth
is not limiting the performance of this kernel.

8.3 Scalability Analysis

Figure 10 shows average performance scaling with 12, 24
and 48 threads for the different regions as well as the
entire execution. All the regions attain good scalability for
all thread counts, reaching 44.53×, 44.31× and 43.08× for
SMEM, SAL and BSW, respectively, with 48 threads. These
numbers are close to the theoretical peak (48×), proving that
the bandwidth is not limiting performance.

8.4 Comparison with SKX

In this section we compare performance and energy-to-
solution of the A64FX against the SKX system, both de-
scribed in Table 8.

8.4.1 Performance Comparison
Figure 11 shows performance results for the A64FX and
the SKX system for the three regions as well as the entire
execution using 24 and 48 threads.
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Fig. 11: Average speed-ups with respect to one thread in A64FX for each
region and for the entire execution using 24 and 48 threads using D3,
D4, and D5 inputs.

For the SMEM region, SKX clearly outperforms the
A64FX on a performance per thread (core) basis, 2.01× with
48 threads. This is due to two factors: (i) the aggressive out-
of-order pipeline of the SKX is much more effective at hiding
long latency misses, and (ii) the memory access latency of
the SKX system is significantly lower (see Figure 2). If we
compare on a socket-to-socket basis, i.e., 24 threads of SKX
versus 48 threads of A64FX, the results are more on par with
a 10.6% advantage for SKX on average.

The SAL region presents similar results to SMEM. The
workload characteristics are similar and the performance
per thread difference in this region for 48 thread runs is
of 2.31× on average. In a socket-to-socket basis the SKX
systems outperform the A64FX by 27.7% on average.

The BSW region is much more compute intensive. On a
per thread performance basis the SKX system still outper-
forms the A64FX by 1.47× on average for 48 threads. In
this instance the main factors are: (i) the SKX core has more
out-of-order resources (see Table 1), and (ii) the memory
hierarchy of the SKX system has significantly more cache
capacity, with 1 MB of private L2 per core (no private L2
in A64FX) and 33 MB of LLC per socket (32 MB of LLC on
A64FX). However, when comparing on a socket-to-socket
basis the A64FX outperforms the SKX system by 24.2%.

When adding up the three regions together, SKX outper-
forms the A64FX by 1.89× on average for 48 threads. If we
compare on a socket-to-socket basis, the performance gap
drops to a 4.0% advantage for SKX on average.

8.4.2 Energy-to-Solution Comparison
Figure 12 shows energy-to-solution for different thread
counts on both systems for the entire region of interest;
which includes SMEM, SAL and BSW. We can observe
that SKX is more energy efficient, 71.1% and 38.9% on
average than the A64FX for 1 and 12 threads, respectively.
However, for 24 threaded executions the A64FX starts to
gain efficiency with respect to the SKX system, and the
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Fig. 12: Energy-to-solution comparison of the A64FX and SKX systems
for the entire region of interest using D3, D4 and D5 inputs.

advantage is reduced significantly to 15.0%. Note that we
have to consider that for 24 threads the SKX system has the
advantage of only using a single socket, as the other one
is in idle state; while the A64FX chip is using half its cores.
With 48 threads the SKX system fails to scale well in terms of
energy-to-solution (13.2% of improvement over 24 threads)
since it has to use the second socket, which increases the
power consumption significantly. Therefore, performance
gains are offset by the increase in power consumption.
However, the A64FX system continues to scale well in terms
of energy-to-solution and beats the SKX system by 11.6% on
average. If we compare in a socket-to-socket basis the A64FX
also has better energy-to-solution by 26.4% on average.

8.5 Discussion
In summary, BWA-MEM2 is a memory latency-bound appli-
cation that benefits from aggressive out-of-order cores and
lower memory access latencies present in the SKX system.
In addition, this application is not able to exploit the main
advantage of the A64FX, its memory bandwidth. While SKX
has a substantial performance advantage on the SMEM and
SAL code regions, and also a moderate advantage in perfor-
mance on BSW; in terms of energy-to-solution, the A64FX
system outperforms SKX both at equal thread count and
when comparing socket-to-socket. SKX’s aggressive out-of-
order execution and large caches have an energy cost that
is difficult to amortize via performance gains. Overall, the
A64FX provides moderate per core performance but a good
balance when considering energy footprint, which leads to
better energy-to-solution on an application that is not the
best fit for the A64FX architecture.

8.5.1 Lessons Learned
From the application side, we have found that working
with the BSW code is tedious and error prone. For this
kernel, there is one implementation for each vector ISA (i.e.,
SSE2, AVX2 and AVX512BW) as it is based on intrinsics.
Since each vector ISA has different characteristics (e.g.,
support for masks) the implementations of the algorithm
is also different. While the use of intrinsics may lead to
performance gains, the drawbacks in terms of code main-
tenance, readability, and extensibility to new architectures
might offset the benefits. SVE’s vector length agnosticism is
a step in the right direction, as any machine regardless of
the implemented vector length can execute the code.

From the A64FX architecture side, the main take away
is that it requires programmers and users to be aware of its
memory capacity and NUMA characteristics, which expose
certain trade-offs. First, the 32 GB of main memory can
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be limiting in some scenarios. Second, efficiently use the
available bandwidth requires to perform accesses to the
local NUMA node, as going to other nodes leads to worse
bandwidth utilization (see Table 4) and higher latency (see
Figure 2). Therefore, careful placement of processes, threads
and data allocation to minimize accesses to different NUMA
nodes is a paramount.

9 CONCLUSIONS

The rapid growth of Arm-based server solutions and the
stringent computing needs of genomics workloads demands
that widely used genomics applications become ready to
execute on ARMv8-A platforms and take advantage of
technologies like SVE. In this paper, we have successfully
ported a well-known genomics application, BWA-MEM2.
Our porting effort enables the use of BWA-MEM2 on any
ARMv8-A system that supports SVE. In addition, we have
proposed several performance optimizations, some of which
target our final evaluation platform, the Fujitsu A64FX
processor. We evaluate the optimized version of the port
on the A64FX and show almost linear thread-level and the
expected data-level (SVE) parallelism.

Finally, we compare the A64FX system with an estab-
lished SKX system and show that the SKX system performs
better: 1.89× on average for 48 threads and a 4.0% when
comparing on a socket-to-socket basis. However, in terms
of energy-to-solution, the A64FX presents better results,
both when comparing executions with the same thread
count using 48 threads, by 11.6%, and when comparing
socket-to-socket executions, by 26.4%. We conclude that the
strength of A64FX is to be an energy efficient CPU with
higher memory bandwidth than traditional HPC systems.
In contrast, the A64FX has a higher memory access latency
than other HPC systems, which negatively affects its perfor-
mance when executing applications with random memory
access patterns.
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