
RISC-V for Genome Data Analysis:
Opportunities and Challenges

Lorién López-Villellas∗, Esteve Pineda-Sánchez†, Asaf Badouh†, Santiago Marco-Sola‡†, Pablo Ibáñez∗,
Jesús Alastruey-Benedé∗, Miquel Moretó§†
∗Universidad de Zaragoza, Zaragoza, Spain

†Barcelona Supercomputing Center, Barcelona, Spain
‡Universitat Autònoma de Barcelona, Barcelona, Spain
§Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—The RISC-V ISA has gained significant momentum
in High-Performance Computing (HPC) research and market due
to its open-source nature, fostering collaborative research and
innovation. The ever-growing RISC-V-based hardware/software
ecosystem has made it an attractive option for HPC application
development and production. Within the field of biomedical
research, genome data analysis has emerged as a crucial step
towards personalized medicine, demanding substantial computa-
tional resources and more efficient tools.

This paper presents a benchmark suite of genome analysis
kernels ported to RISC-V and their evaluation on modern RISC-V
systems. Our work evaluates the RISC-V toolchain’s maturity
and the software/hardware ecosystem’s readiness for its adoption
for genome data analysis. This study aims to provide valuable
guidance for researchers and practitioners interested in adopting
RISC-V for genome analysis, and provides feedback to the RISC-
V community on the challenges that need to be addressed for
RISC-V to become an efficient HPC platform.

Index Terms—RISC-V, Genome Analysis, Benchmarking, HPC

I. INTRODUCTION

Over the past years, the RISC-V instruction set architecture
(ISA) has gained significant momentum and popularity, largely
due to its open nature, which allows for free use, modification,
and distribution. This characteristic has made it an affordable
and accessible alternative to traditional and proprietary ISAs,
like Intel’s x86 and ARM. RISC-V’s modular design allows
for easy customization and scalability, making it adaptable to
a wide range of applications and computing devices, from low-
power devices to large-scale HPC supercomputers. The RISC-
V project has garnered support from industry and academia,
helping to drive its development forward. Developing RISC-
V microprocessors has become a strategic priority for the
European Union, as evidenced by many ongoing initiatives
and research projects. To ensure competitiveness, it is crucial
to consolidate a strong RISC-V community that can foster
research and development of RISC-V technology for HPC-
demanding applications, including climate modelling [1],
molecular simulations [2], machine learning [3], and com-
putational genomics [4].

With the advent of sequencing technologies, genome data
analysis tools have gained special relevance in biomedical
and healthcare research. Moreover, the wide accessibility
to sequencing technologies has enabled the development of
personalized medicine [5] for the early detection of diseases,
such as hereditary cancers (e.g., Lynch syndrome and breast

cancer [6]) and other genetic conditions [7]. As sequencing
technologies evolve, the cost of sequencing a human genome
drops exponentially, and the current sequencing data production
is outpacing Moore’s Law. This situation has resulted in an
increasing computational bottleneck in the genome analysis
pipelines [8]. To face this challenge, an increasing number of
algorithms [4] and cutting-edge hardware accelerators [9] have
been developed to accelerate the genome analysis pipelines.

This paper describes the porting of the GenArchBench
benchmark suite to the RISC-V ISA. GenArchBench is a
selection of 13 kernels belonging to widely used genomics
tools that cover the most important steps of genome sequencing.
We evaluate our port on two RISC-V systems to explore the
maturity and suitability of RISC-V core designs for executing
genomics applications. Our study aims to help other developers
working on RISC-V porting and to guide the designers of RISC-
V processors by pointing out the identified shortcomings.

This study makes the following contributions:
• We present a porting of the GenArchBench benchmark

suite to the RISC-V architecture, exploiting the RISC-V
vector extension when possible.

• We discuss the challenges and limitations encountered
during the RISC-V porting, regarding the development
toolchain, the availability of libraries and software for
RISC-V, and the support level from the ISA, with
particular emphasis on the RISC-V vector extension.

• We analyze the performance of GenArchBench on two
different RISC-V platforms (Unmatched by SiFive and
Allwinner by Alibaba) compared to an Intel Xeon Skylake-
based server baseline for reference.

II. TARGET HARDWARE SYSTEMS

Our study and experimental evaluation involve two RISC-
V platforms. Additionally, we include an x86 64 machine
for comparison to provide baseline performance for a well-
established and widely used architecture in HPC environments.
The main characteristics of the systems are shown in Table I
and are described throughout this section.

A. HiFive Unmatched

The HiFive Unmatched from SiFive is a RISC-V Linux
development board released in May 2021. It is powered by the
SiFive Freedom U740 (FU740) system-on-chip that operates
at 1.2 GHz and features a dual-issue in-order 64-bit execution

Table I
OVERVIEW OF THE MACHINES OF THE EXPERIMENTAL SETUP.

Unmatched Allwinner SKX

CPU Freedom U740 XuanTie C906 Skylake Platinum 8160
ISA RV64GC+IMAC RV64GCV x86 64
VLEN — 128 bits 128/256/512 bits
Cores 4 + 1 1 24
Pipeline in-order in-order out-of-order
Commit 2 instr. 1 instr. 4 µOP
Frequency 1.2 GHz 1 GHz 2.1 GHz
L1I 32 KB 32 KB 32 KB
L1D 32 KB 32 KB 32 KB
L2 — — 1 MB
LLC 2 MB — 33 MB
Memory 16 GB DDR4 2 GB DDR3 48 GB DDR4

pipeline. It includes four SiFive U74 compute cores, each with
a 32 KB instruction cache and a 32 KB data cache. These
cores implement the RV64GC instruction set architecture (G
and C extensions). The FU740 also includes one SiFive S71
auxiliary core for real-time applications. This core has a 16 KB
instruction cache and an 8 KB data tightly integrated memory
(DTIM) and implements the RV64IMAC ISA. The FU740 SoC
includes a 2 MB coherent banked L2 cache and 16 GB of
DDR4 memory operating at 1866 MT/s.

B. Allwinner D1
The Allwinner D1 (D1-H) is a system-on-a-chip (SoC)

manufactured by Allwinner and released on April 2021. It is
equipped with a single Alibaba T-Head XuanTie C906 core
running at 1 GHz. This core implements the RISC-V base
64-bit instruction set architecture (ISA) and the G, C, and
V extensions (RV64GCV). Additionally, it implements the
RISC-V vector ISA v0.7.1, supporting a vector length of up
to 128 bits. The core has an in-order single-issue execution
pipeline, a 32 KB L1I, and a 32 KB L1D. The SoC is equipped
with 2 GB of DDR3 memory.

C. Intel Xeon Skylake
As part of our experimental setup, we include an x86 64

compute node alongside the RISC-V systems previously de-
scribed, which serves as a performance reference for production
environments. This compute node, which we refer to as SKX,
is powered by an Intel Xeon Skylake Platinum 8160 processor
with 24 cores running at a peak clock speed of 2.1 GHz. Each
core has a 32 KB L1I and a 32 KB L1D and is capable
of retiring up to 4 micro-operations1 per cycle. The system
also includes a 33 MB last-level cache (LLC). The x86 64
CPU supports SSE, AVX2, and AVX-512 single instruction on
multiple data (SIMD) extensions, enabling vector operations
on 128, 256, and 512 bits registers, respectively.

III. GENARCHBENCH

The GenArchBench benchmark suite, available at https:
//github.com/LorienLV/genarchbench, compiles a set of rep-
resentative kernels belonging to widely-used tools and li-
braries for genome analysis. It includes ten kernels from

1Instructions of the x86-64 ISA are broken down into simpler operations
inside the CPU pipeline.

the GenomicsBench test suite and three additional kernels:
the Bit-Parallel Myers algorithm, the Wavefront Alignment
algorithm, and a SIMD-accelerated version of Minimap2’s
chaining implementation (FAST-CHAIN). Table II shows the
name, brief description, use-case, application of origin, and
characterization of each kernel from GenArchBench.

The GenArchBench kernels cover a broad range of common
steps of genome analysis pipelines. The starting point for
many standard genome analysis pipelines is basecalling, i.e.,
processing the output from sequencing machines. GenArch-
Bench includes the ABEA kernel (from Nanopolish) and the
NN-BASE kernel (from Bonito) as representative basecalling
kernels. Once the sequenced DNA bases are known, most
genome analyses require locating those sequences into a
previously known reference genome by performing the read
mapping step. Notable applications for read mapping are BWA-
MEM2 or Minimap2. GenArchBench includes the BPM, BSW,
WFA, CHAIN, FAST-CHAIN, and FMI kernels from this step.
For some studies, there is no reference genome to read map
against. In those situations, we need to perform a de-novo
assembly of the genome before any read mapping can be
performed. GenArchBench includes the DBG (Platypus) and
KCNT (Flye) kernels, used within standardized and widely
used assembly tools. When the sequenced DNA is located
in the reference genome, we can detect variations between
the sample and the reference genome. This process, known
as variant calling, comprises GenArchBench’s kernels NN-
VARIANT (Clair3) and PILEUP (Medaka).

Additionally, the GenArchBench suite comprises a set of
representative input datasets to execute the aforementioned
kernels. It is important to note that genome analysis pipelines
generally process large datasets, requiring large memory
footprints. Alas, the RISC-V machines of our experimental
setup are quite modest in memory capacity. Thus, we used
GenArchBench’s reduced input datasets (small inputs) to enable
agile development and reasonable execution tests. Furthermore,
we generated tiny inputs for the most memory-intensive kernels
(FMI, KCNT, and POA) to enable their porting and execution.

IV. PORTING GENARCHBENCH TO RISC-V

This section presents the outcomes of porting the genomics
benchmark suite GenArchBench to RISC-V. We describe the
set of kernels successfully ported for RISC-V architectures,
the methodology and tools employed, and a primer for
accelerating these kernels using RISC-V vector extensions
(RVV). Furthermore, we discuss the challenges and limitations
encountered during the porting, including the software and
toolchain support for RISC-V, the RISC-V ISA suitability for
genomics kernels, and other system and hardware caveats.

1) RISC-V GenArchBench Porting: From the initial 13
genomic kernels included in the GenArchBench, we have
successfully ported and executed 10 of them. Unfortunately,
the lack of RISC-V support from the toolchain, libraries,
or hardware has prevented the porting of some kernels. In
particular, the lack of RISC-V support from the widely-used
Pytorch and Tensorflow libraries prevented the porting of the
DL-based kernels (NN-Base and NN-Variant). As will be
discussed later, the FAST-CHAIN kernel has been successfully

https://github.com/LorienLV/genarchbench
https://github.com/LorienLV/genarchbench

Table II
KERNELS INCLUDED IN GENARCHBENCH.

Kernel Description Use-Case Genomics Tool Characterization

ABEA Adaptive Banded Signal to Event Alignment Basecalling Nanopish Compute-bound
BPM Bit-Parallel Myers Alignment Read mapping GenArchBench Compute-bound
BSW Banded Smith-Waterman Read mapping BWA-MEM2 Compute-bound
CHAIN Seed Chaining Read mapping Minimap2/GenomicsBench Compute-bound
FAST-CHAIN SIMD-enabled Seed Chaining Read mapping Minimap2/GenomicsBench Compute-bound
DBG De-Bruijn Graph construction De-novo assembly Platypus Compute-bound
FMI FM-Index Read mapping BWA-MEM2 Memory-bound
KCNT K-mer Counting De-novo assembly Flye Memory-bound
NN-BASE Neural Network-based Base Calling Basecalling Bonito Compute-bound
NN-VARIANT Neural Network-based Variant Calling Variant calling Clair3 Compute-bound
PILEUP Pileup Counting Variant calling Medaka Compute-bound
POA Partial-Order Alignment De-novo assembly SPOA Compute-bound
WFA Wavefront Alignment Algorithm Read mapping AnchorWave Compute-bound

ported to RISC-V by emulating certain vector instructions.
However, we have been unsuccessful in executing the vectorized
version of the kernel on Allwinner, the only RISC-V machine
with support for the vector extension. FAST-CHAIN is a variant
of the CHAIN kernel that has been modified to eliminate
all heuristics in order to enable vectorization. Accordingly,
assessing its scalar performance is not relevant or informative.
Thus, Section V does not include data on FAST-CHAIN.

For the porting, we followed a straightforward development
approach based on porting, verifying, and optimizing iteratively.
We compiled ground-truth results from the input datasets to
ensure the ported kernels behave as expected. Moreover, we
used an automatic validation system to test all the ported
kernels during development.

As a first step, we focused on the scalar adaptation of the
kernels with particular emphasis on validating the results. Then,
we proceeded to perform executions on scalar cores and gather
profiling information. Afterwards, we worked on extending
the porting to vector instructions (RVV) to accelerate the
kernels’ execution on RVV-enabled processors. Compared to
the scalar adaptation, the RVV extensions have little software
and hardware support, limiting the development to simulated
environments using experimental tools.

2) Software and Libraries Support: Due to its recent
introduction, RISC-V-based platforms still lack widespread
application and library support. As a result, most applica-
tions and libraries require recompilation and careful ad-hoc
optimizations to exploit the capabilities of current RISC-V
processors. In some cases, these libraries lack specific RISC-V
support, tampering the efficient porting of high-performance
applications. Notable examples in genome sequence data
analysis include libraries for common file-format management
(like HDF5 and HTSlib libraries) and Deep Learning (DL)
frameworks (like Pytorch and TensorFlow).

Nowadays, Deep Learning (DL) libraries and tools have
gained widespread adoption in multiple research areas and
industrial applications. In particular, DL-based applications
for genome analysis rely on the popular Pytorch and Tensor-
Flow libraries. These DL frameworks depict many libraries’
dependencies and lack precompiled versions for RISC-V.
Moreover, due to the computationally intensive nature of these
libraries, straightforward and non-optimized porting to RISC-V

could result in significant execution inefficiencies. For that,
many efforts from the HPC community aim to enable high-
performance execution of DL-libraries on RISC-V.

3) Development Toolchain Support: To address the chal-
lenges of porting and optimising widely-used applications and
libraries, it is paramount to have mature and robust toolchain
support. We have utilised several development tools for the
genomics porting to RISC-V; some are stable and upstream
available, others experimental and under active development.

System infrastructure. For the porting development and
evaluation, we performed multiple executions on commercial
RISC-V scalar cores running standard Linux distributions;
i.e., Ubuntu 20.04 (Unmatched), Fedora 33 (Allwinner), SUSE
Linux Enterprise Server 12 SP2 (SKX). In addition, we utilised
a QEMU virtual machine to emulate a generic 64-bit RISC-
V processor for development, profiling, and RVV emulation
purposes. Note that the selected QEMU virtual machine does
not natively support RVV extension. We utilised the Vehave
emulator for vectorial kernels, which enabled us to debug
and functionally validate the ported kernels and perform
performance profiling and analysis on an emulated environment.

Compilers. We mainly used GCC v10.3.0 and LLVM-based
v12.0.0 compilers to compile libraries and tools. Both compilers
have shown no difficulties to generate scalar binaries. However,
RVV and auto-vectorization support is still under development
for mainstream compilers. As a result, compiling vector code
has been challenging and error-prone in many situations. For
that reason, we resort to BSC-Clang, an extended Clang
compiler from the EPI project supporting RVV extensions via
auto-vectorization, pragma annotations, and C-Style intrinsics.

Debuggers and profilers. Currently, commonly used tools
for profiling and debugging (Valgrind, GNU Debugger (GDB),
and Perf) offer limited support for RISC-V. For instance, the
RISC-V support disassembling instructions (using RISC-V
mnemonics) is a crucial feature when developing applications
for RISC-V platforms. Therefore, fully-compliant RISC-V
disassembling in GDB debugger is paramount, including
instructions on the extended ISA. In that regard, we observe that
the llvm-mc tool (Clang toolchain) is more mature, being able
to convert opcodes to mnemonics and vice versa. Moreover,
we noticed that the widely used Valgrind does not support
RISC-V. Due to its importance and usefulness, there is an

ongoing effort to port to RV64GC (https://github.com/petrpavlu/
valgrind-riscv64).

Regarding profilers, like perf tools, we found current RISC-
V cores lack numerous standard counters mapped on other
architectures. In the case of the RISC-V cores studied in this
work, we were only able to measure cycles and instructions in
Unmatched. The Allwinner does not have counters.

To provide a better understanding of the kernel’s performance
and guide the development and optimization on RISC-V
platforms, profiling utilities like Paraver have been promptly
upgraded. Paraver can be used in conjunction with software
emulators like Vehave to produce performance traces and
analyse them using a versatile GUI. This tool allows analyzing
performance metrics (like instructions and register usage),
studying the memory access pattern, displaying annotated
timelines with events, and more. These tools allowed us to
inspect the critical regions and identify potential performance
overheads. Moreover, we were able to investigate vectorial
kernels without the need for a real vector machine.

4) ISA support: Ratified elemental extensions of the RISC-V
architecture, such as the multiplication/division (M), floating-
point (F), and double-precision (D) extensions, have been
available for more than a decade and are generally adopted by
commercial hardware and mainstream compilers. Most kernels
ported on this project rely solely on these basic extensions,
allowing its straightforward compilation and execution on any
compliant RISC-V core. However, some RISC-V cores lack
support for specific instructions from the specification. For
example, the Allwinner machine does not support the optional
fence.tso instruction used by the POA kernel.

Porting the genomic kernels to the RISC-V vector (RVV)
extension has proven challenging in many cases. We found that
only one kernel could be partially vectorized automatically by
the compiler (i.e., WFA). For the kernels BSW and CHAIN, we
develop a vectorial implementation based on RVV-intrinsics.
For the remaining kernels, we found that the current RVV
extension lacks essential instructions used by genomic kernels.

In particular, we found that, unlike AVX-512 (x86 64)
or SVE (Arm) ISAs, the well-known count leading zeros
(clz) and count trailing zeros (ctz) instructions lack a vector
counterpart in the RVV specification, useful for the CHAIN
and WFA kernels. The scalar versions of clz and ctz are
part of the ratified bit manipulation extension (B), and their
vector versions are currently part of the cryptography extension
proposal. Beyond genomic kernels, clz and ctz are useful
for multiple applications, including square root computation,
Huffman decoding, binary logarithm computation, and hash
tables indexing. Although their functionality can be emulated by
executing other arithmetic instructions, the overall instruction
overhead has a non-negligible toll on performance.

Similarly, the RVV specification lacks specific support to
reverse the order of the elements within a vector register, a
helpful operation for some genomic kernels. Vector reverse
can be conveniently implemented using the vid instruction
to compute an index vector and the vrgather instruction to
generate the final result. However, some additional instructions
are needed to rearrange the indices produced by vid. We
claim that a more powerful version of the vid instruction

is possible. If RVV supported an instruction similar to vid,
allowing to specify the starting, ending, and increment values
(akin to the functionality of Linux’s seq command), we could
reverse a vector using fewer instructions. Additionally, this new
instruction would be useful in a wide range of scenarios, since
vid usually requires to be paired with additional instructions
to compute the desired vector of indices.

In practice, we have encountered issues executing vector
kernels on Allwinner, the only RVV-enabled core. Although
this processor implements the RVV extension v0.7, it may not
execute correctly in certain scenarios. For example, it throws
an illegal instruction error when executing the vmv instruction,
which is used on the kernels BSW, CHAIN, and WFA. Upon
further investigation, we found that these kernels used a 64-bit
element width (SEW=64), and Allwinner does not support RVV
instructions for 64-bit element widths, resulting in an illegal
instruction exception. Although the kernels could be adapted to
use a smaller element width, the compiler emits 64-bit element
width by default. Another example is the execution of RVV
gather instructions, required by some kernels like WFA, which
also result in a run-time error when executed on Allwinner.

It is important to acknowledge that the RVV specification
and cores implementing it are still in the process of being
refined and made more robust with future developments. A clear
example of this is the specification of the masked instructions,
which require using register v0 for the mask operand, although
a mask can be stored in any register. Using RVV v0.7, moving
a mask register to v0 required several instructions. However,
with the introduction of RVV 1.0, this can be achieved with a
single instruction. Although the scalar specification and cores
prove to be more mature and stable, the RVV specification
and hardware are rapidly evolving to be competitive with well-
establish vector extensions in the industry like AVX and SVE.

5) Platform Limitations: In the exploration of the maturity
and limitations of RISC-V processors to execute genomic
applications, we have encountered other technical challenges.
Most notably, genomic kernels usually process big amounts
of data, requiring large memory footprints. Considering the
memory available on current RISC-V platforms, we found
that real executions at genome-scale are not feasible as of
today. Specifically, Allwinner is with only 2 GB of memory.
Considering that representative genomics datasets and databases
are usually of the order of tens of gigabytes, we were forced
to use reduced inputs for testing the execution of the ported
kernels. In some cases, we even had to produce tiny datasets
to benchmark the most memory-intensive kernels as described
in Section III.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the two
RISC-V machines presented in Section II when executing
GenArchBench. First, we present the execution time results for
scalar and single-thread executions performed in the RISC-V
and SKX machines. Next, we present a scalability analysis
for scalar multi-threaded executions on the SiFive Unmatched
machine. Due to the challenges and limitations discussed in
Section IV, we have not included results for the RVV versions
of the kernels.

https://github.com/petrpavlu/valgrind-riscv64
https://github.com/petrpavlu/valgrind-riscv64

ABEA BPM BSW CHAIN DBG FMI KCNT PILEUP POA WFA Average
Application

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

2.
32
×

3.
61
×

2.
01
×

Unmatched Allwinner SKX

Figure 1. Single-thread and scalar execution time of GenArchBench’s kernels. The results are normalized to the performance on the Unmatched machine.

A. Single-thread scalar execution

Figure 1 shows the execution time of GenArchBench’s
kernels when performing scalar and single-thread executions
on the two RISC-V machines, Unmatched and Allwinner, and
the reference x86 64 machine, SKX (see Table I). The results
have been normalized to the performance on Unmatched. We
selected the Unmatched for normalization reference as it is the
only RISC-V machine that can successfully execute the scalar
version of all the kernels.

We observe that, compared to the SKX, Unmatched shows
slowdowns between 3.8× and 12×, for KCNT and POA,
respectively. The average slowdown of Unmatched compared
to SKX is 6.6×. This is an expected result considering
the characteristics of both processors. In particular, SKX
works at a higher frequency (1.75×), has a higher superscalar
degree (2×), and implements an out-of-order pipeline while
Unmatched implements an in-order core. In addition, SKX
has significantly larger L2 and L3 caches (16×) and includes
hardware prefetchers in L1 and L2 while Unmatched does
not implement any prefetcher. These features of their memory
hierarchies can make a big difference in some applications.

Moreover, we noticed that Allwinner is consistently slower
than Unmatched for all kernels, showing slowdowns ranging
between 1.01× and 3.6×. These results are consistent with
the characteristics of the machines, as Unmatched operates at
a higher frequency (×1.2) and implements a superscalar core
(×2). Furthermore, the memory hierarchy may significantly
affect the performance of some kernels, considering that
Allwinner has only one cache level, divided into L1I and
LID (32 KB each).

It would be noteworthy to perform a more detailed analysis
to understand the influence of the memory hierarchy on the
results. However, this analysis is not possible due to the lack
of the necessary hardware counters in the RISC-V systems.

B. Multi-thread scalar execution

The Unmatched processor includes 4 cores, allowing multi-
threaded executions using up to 4 threads. Figure 2 shows the
speedup of each kernel executing with 2 and 4 threads compared
to single-thread execution. Most kernels exhibit near-perfect
scalability as the number of threads increases. In particular, 9
of the 10 kernels achieve speedups above 1.85×, using two
threads, and above 3.5×, using four threads. The WFA kernel

ABEA
BPM

BSW
CHAIN DBG FMI

KCNT
PILEUP

POA
WFA

Application

0

1

2

3

4

Sp
ee

du
p

ov
er

Se
ri

al

2 Threads 4 Threads

Figure 2. Speedup over serial execution of GenArchBench’s kernels on the
Unmatched machine. We show the achieved speedup using 2 and 4 threads.

presents the worst scaling behaviour, showing speedups of
1.7× and 2.8× for 2 and 4 threads, respectively.

VI. RELATED WORK

The RISC-V architecture has gained significant traction in
recent years. As a result, many efforts have been to extend its
toolchain and improve RISC-V core design. Moreover, there
are several ongoing European projects targeting the design of
RISC-V processors. The European Processor Initiative (EPI)
aims to design RISC-V processors for HPC. EPAC is the
first chip designed as part of the EPI project, combining
several domain-specific accelerators with a dual-issue core
and a vector processing unit. The eProcessor project is aimed
to deliver the first fully open-source European full-stack
ecosystem based on a RISC-V CPU and multiple diverse
accelerators. The DRAC project targets to design, verify,
implement, and manufacture a RISC-V high-performance
processor, incorporating different accelerators with applications
to security, autonomous navigation, and genomics [10].

Regarding the RISC-V toolchain, we can find studies
comparing different RISC-V compilers, such as the work by
Poorhosseini et al. [11], which examines the performance and
size of binaries generated by GCC and LLVM, and compares
the performance of the compilers themselves. Other studies,
such as the one by Adit and Sampson [12], have focused on
compiler auto-vectorization. We observe there is an increasing
interest in extending the RISC-V support to compilers, such
as the JIT compiler [13].

Moreover, we find surveys on the RISC-V specifications [14]
and many proposals to speed up critical kernels in the genomics
field. For instance, Sargantana [15] is a RISC-V processor
with support for a subset of the instructions part of the
RISC-V vector extension. Additionally, it includes custom
vector instructions to speed up the WFA kernel studied in
this project. Furthermore, we find other accelerator proposals
for genomics based on the RISC-V ISA [16], [17]. Similarly,
we can find works leveraging the RVV extensions to speedup
critical kernels in different domains, such as the post-quantum
cryptography [18] or deep-learning [19]. Ramı́rez et al. [20]
present a vector benchmark suite for RISC-V. Further, we
find several studies benchmarking the performance of HPC
applications across different RISC-V cores [21], [22] and
different architectures [23].

VII. CONCLUSIONS

RISC-V’s open nature and unique characteristics make
it a highly promising ISA for future computing systems.
Despite recent advancements, current RISC-V development
lacks critical support from tools, applications, libraries, and
hardware. In particular, compilers do not offer full support
for some of the latest ratified extensions (including RVV),
and development tools such as debuggers and profilers offer
limited functionality on RISC-V platforms. Moreover, critical
libraries (PyTorch and TensorFlow) lack an efficient port to
RISC-V. Additionally, RISC-V machines do not provide reliable
hardware support for some ISA extensions and offer limited
support for hardware counters. Currently, RISC-V core designs
are constrained in resources and not mature enough to compete
with established architectures such as x86 64 or Arm.

The extensibility and openness of RISC-V present vast
opportunities for developing new domain-specific extensions
and accelerators. In this regard, leveraging vector instruc-
tions represents a significant leap towards achieving better
performance and energy efficiency. Thus, future HPC RISC-
V designs require support for the recently ratified vector
extension. Notwithstanding the several challenges that need to
be addressed, RISC-V has the potential to foster a powerful
ecosystem for HPC computing, in general, and genome data
analysis, in particular.

ACKNOWLEDGMENT

This work has been partially supported by
the Spanish Ministry of Science and Innovation
MCIN/AEI/10.13039/501100011033 (contracts PID2019-
107255GB-C21 and PID2019-105660RB-C21), by the
Generalitat de Catalunya (contract 2017-SGR-1328), by
the Gobierno de Aragón (T58 23R research group), and
by Lenovo-BSC Contract-Framework Contract (2020).
Santiago Marco was supported by the Agencia Estatal de
Investigación (Spain) under Juan de la Cierva fellowship grant
IJC2020-045916-I. Miquel Moretó was partially supported by
the Agencia Estatal de Investigación (Spain) under Ramón y
Cajal fellowship number RYC-2016-21104.

We want to thank Roger Ferrer, Kilian Peiro, and Pablo
Vizcaino for all of their useful help.

REFERENCES

[1] W. M. Washington et al., “The computational future for climate and
earth system models: on the path to petaflop and beyond,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 367, no. 1890, pp. 833–846, 2009.

[2] G. Martinez-Rosell et al., “Drug discovery and molecular dynamics:
methods, applications and perspective beyond the second timescale,”
Current topics in medicinal chemistry, vol. 17, no. 23, pp. 2617–2625,
2017.

[3] M. S. Louis et al., “Towards deep learning using tensorflow lite on risc-
v,” in Third Workshop on Computer Architecture Research with RISC-V
(CARRV), vol. 1, 2019, p. 6.

[4] M. Alser et al., “From molecules to genomic variations: Accelerating
genome analysis via intelligent algorithms and architectures,” Compu-
tational and Structural Biotechnology Journal, vol. 20, pp. 4579–4599,
2022.

[5] H. K. Brittain et al., “The rise of the genome and personalised medicine,”
Clinical Medicine, vol. 17, no. 6, p. 545, 2017.

[6] R. F. Green et al., “Evaluating the role of public health in implementation
of genomics-related recommendations: a case study of hereditary cancers
using the cdc science impact framework,” Genetics in Medicine, vol. 21,
no. 1, pp. 28–37, 2019.

[7] D. P. Germain et al., “The benefits and challenges of family genetic
testing in rare genetic diseases—lessons from fabry disease,” Molecular
Genetics & Genomic Medicine, vol. 9, no. 5, p. e1666, 2021.

[8] G. Lightbody et al., “Review of applications of high-throughput sequenc-
ing in personalized medicine: barriers and facilitators of future progress
in research and clinical application,” Briefings in Bioinformatics, vol. 20,
no. 5, pp. 1795–1811, Jun. 2019.

[9] T. Robinson et al., “Hardware acceleration of genomics data analysis:
challenges and opportunities,” Bioinformatics, vol. 37, no. 13, pp. 1785–
1795, 05 2021.

[10] J. Abella et al., “An academic risc-v silicon implementation based on
open-source components,” in 2020 XXXV Conference on Design of
Circuits and Integrated Systems (DCIS). IEEE, 2020, pp. 1–6.

[11] M. Poorhosseini et al., “A compiler comparison in the RISC-v ecosystem,”
in 2020 International Conference on Omni-layer Intelligent Systems
(COINS). IEEE, aug 2020.

[12] N. Adit et al., “Performance left on the table: An evaluation of compiler
autovectorization for RISC-v,” IEEE Micro, vol. 42, no. 5, pp. 41–48,
sep 2022.

[13] Q. Ducasse et al., “Porting a JIT compiler to RISC-v: Challenges and
opportunities,” in Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes. ACM, Sep. 2022.

[14] E. Cui et al., “Risc-v instruction set architecture extensions: A survey,”
IEEE Access, vol. 11, pp. 24 696–24 711, 2023.

[15] V. Soria-Pardos et al., “Sargantana: A 1 ghz+ in-order risc-v processor
with simd vector extensions in 22nm fd-soi,” in 2022 25th Euromicro
Conference on Digital System Design (DSD), 2022, pp. 254–261.

[16] Z. Wu et al., “An fpga implementation of a portable dna sequencing
device based on risc-v,” in 2022 20th IEEE Interregional NEWCAS
Conference (NEWCAS), 2022, pp. 417–420.

[17] L. D. Tucci et al., “Salsa: A domain specific architecture for sequence
alignment,” in 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2020, pp. 147–150.

[18] S. Pircher et al., “Exploring the risc-v vector extension for the classic
mceliece post-quantum cryptosystem,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021, pp. 401–407.

[19] M. Cococcioni et al., “Vectorizing posit operations on RISC-v for faster
deep neural networks: experiments and comparison with ARM SVE,”
Neural Computing and Applications, vol. 33, no. 16, pp. 10 575–10 585,
Feb. 2021.

[20] C. Ramı́rez et al., “A risc-v simulator and benchmark suite for designing
and evaluating vector architectures,” ACM Trans. Archit. Code Optim.,
vol. 17, no. 4, nov 2020.

[21] A. Dörflinger et al., “A comparative survey of open-source application-
class risc-v processor implementations,” in Proceedings of the 18th ACM
International Conference on Computing Frontiers, ser. CF ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 12–20.

[22] A. Sarihi et al., “Performance evaluation of an out-of-order risc-v cpu: A
spec int 2017 study,” in 2022 IEEE International Performance, Computing,
and Communications Conference (IPCCC), 2022, pp. 418–419.

[23] Y. Liu et al., “Performance evaluation of various risc processor systems:
A case study on arm, mips and risc-v,” in Cloud Computing – CLOUD
2021, K. Ye et al., Eds. Cham: Springer International Publishing, 2022,
pp. 61–74.

	Introduction
	Target Hardware Systems
	HiFive Unmatched
	Allwinner D1
	Intel Xeon Skylake

	GenArchBench
	Porting GenArchBench to RISC-V
	RISC-V GenArchBench Porting
	Software and Libraries Support
	Development Toolchain Support
	ISA support
	Platform Limitations

	Experimental Evaluation
	Single-thread scalar execution
	Multi-thread scalar execution

	Related Work
	Conclusions
	References

