
Computer Physics Communications 288 (2023) 108742

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Accurate and efficient constrained molecular dynamics of polymers

using Newton’s method and special purpose code ✩

Lorién López-Villellas a,1, Carl Christian Kjelgaard Mikkelsen b, Juan José Galano-Frutos c,
Santiago Marco-Sola a,d, Jesús Alastruey-Benedé e,∗, Pablo Ibáñez e, Miquel Moretó a,d,
Javier Sancho c, Pablo García-Risueño 2

a Barcelona Supercomputing Center, Barcelona, Spain
b Department of Computing Science and HPC2N, Umeå, Sweden
c Department of Biochemistry, Molecular and Cellular Biology / Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Zaragoza,
Spain
d Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
e Departamento de Informática e Ingeniería de Sistemas / Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2022
Received in revised form 21 March 2023
Accepted 24 March 2023
Available online 29 March 2023

Keywords:
Molecular dynamics
Constraint algorithms
Non-linear equations
Newton’s method
SHAKE
LINCS

In molecular dynamics simulations we can often increase the time step by imposing constraints on bond
lengths and bond angles. This allows us to extend the length of the time interval and therefore the range
of physical phenomena that we can afford to simulate. We examine the existing algorithms and software
for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance
the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins
accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated
SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton’s method rather
than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a
specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint
equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the
number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different
sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions
and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than
P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the
simulation of polymers.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction and motivation

Molecular simulation is a powerful research tool for scientific
and technological purposes. It is applied to a wide range of prob-
lems in chemistry and biology, such as the development of novel
materials [1] or biomedicines, e.g., for fighting cancer [2] and infec-
tious diseases, like the SARS-CoV-2 [3,4]. One of the most widely
used techniques for molecular simulations is molecular dynamics

✩ The review of this paper was arranged by Prof. W. Jong.

* Corresponding author.
E-mail addresses: jalastru@unizar.es (J. Alastruey-Benedé), risueno@unizar.es

(P. García-Risueño).
1 Now at Departamento de Informática e Ingeniería de Sistemas / Aragón Institute

for Engineering Research (I3A), Universidad de Zaragoza.
2 Independent scholar.
https://doi.org/10.1016/j.cpc.2023.108742
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
creativecommons .org /licenses /by-nc -nd /4 .0/).
(MD) [5,6], which calculates the time evolution of molecular sys-
tems subject to Newton’s equations, thus enabling the calculation
of a variety of quantities whose measurement in laboratories is
frequently either difficult or unfeasible. The impact of molecular
simulation is expected to increase greatly due to the continuous
improvement of available computational capabilities [7] and calcu-
lation methods [8]. Among the former, we highlight the successive
generations of the Anton supercomputers [9]; among the latter, the
solution of the protein folding problem by AlphaFold2 [10]. The
availability of 3D structures of proteins provided by AlphaFold2
will probably boost their simulations, e.g., for analysing their ca-
pabilities as catalysts or medicines or for a more accurate inter-
pretation of the effect of mutations on the phenotype [11]. The
availability of accurate and efficient methods for such simulations
does hereby acquire a novel boost.
le under the CC BY-NC-ND license (http://

https://doi.org/10.1016/j.cpc.2023.108742
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108742&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jalastru@unizar.es
mailto:risueno@unizar.es
https://doi.org/10.1016/j.cpc.2023.108742
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742
In molecular dynamics the time step can be incremented
through the imposition of constraints on internal degrees of free-
dom, which raises the total simulated time for equal computational
effort. Imposing a constraint on a bond between two atoms con-
sists in fixing a constant distance between these atoms equal to
the length of the bond. This enables researchers to simulate a
wider collection of phenomena of interest, which frequently take
place at large time scales.

Imposing constraints on all the bonds of a molecule is a difficult
problem to parallelize because the constraints introduce depen-
dencies between every pair of atoms. Some molecular dynamics
packages limit the imposition of constraints to small clusters of
atoms (LAMMPS [12]) or to bonds involving Hydrogen atoms only
(NAMD [13]). This limitation implies that either the goal of increas-
ing the simulation time step is forgone or a larger error is tolerated
for bonds for which no constraints have been imposed. On the
other hand, tools like GROMACS allow to impose bond constraints
between all the bonds of the molecule and even angle constraints.

In this article we consider the unfortunate effects of solving the
constraint equations inaccurately and we present a constraint algo-
rithm that is not only accurate but also very fast. We expect that
the new algorithm will allow for simulations that are more accu-
rate and faster than the current state-of-the-art. In addition, our
article provides a proof-of-concept of the utility of software that is
designed specifically for the simulations of polymers. Our method
is expected to cross disciplinary boundaries because it can be ap-
plied to numerous problems in physics, chemistry and biology.

We shall now explain why it is necessary to advance the state-
of-the-art for the problem of solving nonlinear constraint equa-
tions in parallel. To this end, we ask our readers to consider their
favourite simulation of molecular dynamics with constraints. It is
extremely likely that the majority of the run-time is spent outside
the constraint solver. It is therefore possible to argue that improv-
ing the constraint solver serves no purpose because the reduction
of the run-time will be relatively low. We shall now examine
the flaws of this argument. The argument assumes that the con-
straint solver will always converge. The successful application of
the LINCS and P-LINCS algorithms hinges on the rapid convergence
of a specific power series. There exist molecules for which the se-
ries diverges [14,15]. The argument also assumes that the chosen
simulation is representative of all future simulations. This cannot
be true. In particular, it is likely that we will continue to extend
the length of our simulations. At this point we have to contemplate
the quality of our simulations. Are they a faithful representation of
the underlying physics? Unless the constraint equations are solved
exactly, they will be introducing an increasing distortion in the to-
tal mechanical energy. It is an experimental fact that the rate of
the energy drift is an increasing function of the tolerance used by
the constraint solver. It is also an experimental fact that the en-
ergy drift tends to increase with the length of the time interval. In
short, if the length of the interval is long enough and if the toler-
ance is large enough, then the violation of the underlying physics
can be arbitrarily large [16,17]. In this case, we have to choose be-
tween two options. We either prove that the conclusions drawn
from the simulation are valid or we reduce the issue as much as
possible by solving the constraint equations as accurately as the
hardware will allow. We fear that the first option is impossible
in general, but we believe that the second option is practical for
general polymers. In this paper we take the first major step by
considering proteins.

The paper is organized as follows. Section 2 motivates the need
for a constraint algorithm to achieve high performance and ensure
constraint enforcement to a high degree of accuracy. In Section 3
we propose ILVES-PC, a constraint algorithm that performs calcula-
tions of constraint forces for proteins made of the 20 proteinogenic
amino acids. Section 4 describes our experimental methodology. In
2

Section 5 we present the evaluation of ILVES-PC, which has been
integrated into GROMACS. Finally, Section 6 outlines our conclu-
sions and future work.

2. Background

2.1. Notation

All vectors are written using bold lowercase letters. All vec-
tors are column vectors by default. When we need a row vector,
then we shall explicitly transpose a column vector. The Euclidean
norm of a vector x = (x1, x2, . . . , xn)T ∈ Rn is written as ‖x‖ and
is the nonnegative number ‖x‖ given by ‖x‖2 = ∑n

j=1 x2
j . All ma-

trices are written using bold uppercase letters. If the function
f = (f1, f2, . . . , fn)T :Rn →Rn is differentiable, then the Jacobian
F (x) of f at the point x ∈Rn is the matrix A = [aij] ∈Rn×n given
by

aij = ∂ f i

∂x j
(x). (1)

We shall now define the notation used to describe a system of
m atoms. Let mi > 0 denote mass of the ith atom and let mi ∈R3

and the diagonal mass matrix M ∈R3m×3m be given by

mi = (mi,mi,mi)
T , M = diag(mT

1 ,mT
2 , . . . ,mT

n) . (2)

In addition, let qi, v i, f i ∈ R3 denote the position of, the velocity
of, and the force acting on the ith atom, and let q ∈R3m , v ∈R3m ,
and f ∈R3m be given by

q = (qT
1 ,qT

2 , . . . ,qT
m)T , v = (v T

1 , v T
2 , . . . , v T

m)T ,

f = (f T
1 , f T

2 , . . . , f T
m)T .

(3)

2.2. Fundamentals of constrained molecular dynamics

By Newton’s second law, the equations of motion of a system
of m atoms are

q′(t) = v(t), (4)

M v ′(t) = f (t) , (5)

where the prime indicates differentiation with respect to the time
t . In nature, the motion of atoms is continuous in time; however,
a computer simulation customarily uses a sequence of discrete
time steps. The standard algorithm for this problem is the velocity
Verlet-algorithm [18]. It is well-known that certain motions such
as bond stretching, bond bending, and torsional vibrations are all
periodic with characteristic frequencies that depend on the atoms
involved [19]. It is generally accepted that in order to accurately re-
solve periodic motion one needs at least five time steps per period.
Hence the fastest vibration imposes a limitation on the maximum
time step that can be used and this limits the length of the time
interval one can afford to simulate. In order to simulate phenom-
ena with a longer duration it is customary to constrain the fastest
degrees of freedom. Let n denote the number of constraints. Math-
ematically, the problem consists of solving the following system of
differential algebraic equations

q′(t) = v(t) ,

M v ′(t) = f (t) − G(q(t))T λ(t) ,

g(q(t)) = 0 ,

(6)

with respect to q, v , and λ. Here g : R3m → Rn is the constraint
function, i.e.,

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742
g = (g1, g2, . . . , gn)
T , (7)

where gi : R3m → R is the ith constraint function and G(q) ∈
Rn×3m is the Jacobian of g at the point q. The vector −G(q(t))Tλ(t)
is the constraint force.

2.3. Constrained MD solvers

Numerous algorithms for constrained molecular dynamics have
been proposed [20–29]. Their main objective has been the reduc-
tion of the time-to-solution of the constraint equations. The most
popular algorithms are SHAKE [30] and (P-)LINCS [15]. The SHAKE
algorithm solves the system of differential algebraic equations (6)
using a pair of staggered uniform grids with fixed time step h > 0.
SHAKE’s equations take the form:

vk+1/2 = vk−1/2 + hM−1
(

f (qk) − G(qk)
T λk

)
, (8)

qk+1 = qk + hvk+1/2 , (9)

g(qk+1) = 0 . (10)

Here qk ≈ q(tk) and vk+ 1
2

≈ v(tk+ 1
2
), where tk = kh and tk+ 1

2
=

(k + 1/2)h. Equation (10) is a nonlinear equation for the unknown
Lagrange multiplier λk , namely

g(φk(λ)) = 0 , (11)

where φk is the function given by

φk(λ) = qk + h(vk− 1
2

+ hM−1(f (qk) − G(qk)
T λ)). (12)

It is known that SHAKE is second order accurate in the time
step [18]. The original SHAKE algorithm solved the constraint
equations using the nonlinear Gauss-Seidel method, which con-
verges locally and linearly subject to certain mild conditions
(see [31] and the references therein). The LINCS and P-LINCS
algorithms use a truncated Neumann-series to approximate the
solution of the relevant linear systems. The Neumann-series con-
verges linearly at best and there are physically relevant cases for
which it does not converge at all [14,15,32]. Therefore, solving the
constraints to the limit of machine precision is currently a time-
consuming process.

Many authors have already sought to apply Newton’s method
for solving nonlinear equations in the context of constrained
molecular dynamics. M-SHAKE [26] treats the linear systems as
dense and solves them using Gaussian elimination with partial piv-
oting. This approach is limited to small molecules because the time
complexity for computing an LU factorization of a dense matrix of
dimension n is O (n3). MILC-SHAKE [23] computes an LU factor-
ization of a tridiagonal matrix rather than a fully dense matrix.
MILC-SHAKE and the related algorithm MILCH-SHAKE [29] achieve
a low, linearly-scaling time complexity, but are applicable only to
linear chains and n-alkanes, respectively.

The authors of the papers [27,33] all approximate the relevant
matrices using matrices that are symmetric positive semi-definite
and apply the conjugate gradient (CG) algorithm to solve these sys-
tems. The main advantages of this approach are twofold: the sim-
plicity of the parallelisation of the CG algorithm, and the potential
for accelerating the process using a preconditioner. The disadvan-
tage of this approach is the difficulty of finding a preconditioner
whose quality can be guaranteed mathematically.

We shall now describe how Newton’s method can be applied in
the context of molecular dynamics with constraints. We begin by
stating the method in the case of a general nonlinear equation. Let
f : Rn → Rn be a differential function and consider the problem
of solving
3

f (x) = 0 (13)

with respect to x ∈Rn . If the Jacobian F of f is nonsingular, then
Newton’s method is defined and takes the form

F (xl)zl = f (xl), (14)

xl+1 = xl − zl, (15)

where the initial value x0 must be chosen by the user. In general,
we expect that Newton’s method will converge locally to a zero of
f and that the convergence will be quadratic.

We now return to the nonlinear constraint equation (10). To
this end, we introduce the matrix function A :R3m ×R3m →Rn×n

given by

A(x, y) = −h2G(x)M−1G(y)T . (16)

Then Newton’s method for the Lagrange multiplier λk is given by

A(φk(λk,l),qk)zk,l = g(φk(λk,l)) (17)

λk,l+1 = λk,l − zk,l , (18)

where the initial value λk,0 must be chosen by the user. The simple
choice of λk,0 = 0 is the de-facto standard choice.

2.4. Bond constraints

We now limit the discussion to general bond-length constraints.
Note that constraints on bond angles are commonly enforced by
constraining distances between two atoms. Our objective is to
present a formula for the entries of the matrix A(x, y). Let the
ith bond have length σi > 0 and let ai and bi denote the indices of
the two bonded atoms. Then the ith constraint can be written as

gi(q) = 0 (19)

where

gi(q) = 1

2

(
σ 2

i − ‖qai
− qbi

‖2
)

. (20)

A direct calculation establishes that

∂ gi

∂qc
= (qai

− qbi
)
(
δbi ,c − δai ,c

)
. (21)

Here δi is Kronecker’s delta, i.e.,

δi j =
{

1 i = j ,

0 i �= j .
(22)

In particular, we observe that

∂ gi

∂qc
= 0, c /∈ {ai,bi} . (23)

Now let i and j denote the indices of two bonds. There are exactly
3 distinct possibilities:

1. The two bonds have no atoms in common.
2. The two bonds share a single atom.
3. The two bonds are identical, i.e., i = j.

Let bond i link atoms ai and bi and let bond j link atoms a j and
b j . The (i, j)th entry of the matrix A(x, y) is given by the weighted
inner-product

aij = (xT
ai

− xT
bi

)(ya j
− yb j

)wij , (24)

where the weight wij is given by

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742
wij =⎧⎪⎨
⎪⎩

0 {ai,bi} ∩ {a j,b j} = ∅,
1

mc
(δai ,a j + δbi ,b j − δai ,b j − δbi ,a j) {ai,bi} ∩ {a j,b j} = {c} ,

1
mai

+ 1
mbi

{ai,bi} ∩ {a j,b j} = {ai,bi} .

(25)

When the matrix A(x, y) represents bond constraints for a real
molecule, then it is necessarily quite sparse. Consider the row cor-
responding to the bond between a pair of atoms with valence r1
and r2. For this row of the matrix A(x, y), there can be at most
r1 + r2 − 1 nonzero entries, regardless of the overall size of the
molecule.

The bond lengths σi are normally constant3 during MD simula-
tions and their values are set by the force fields used.

2.5. The importance of solving constraints accurately

Presently, MD simulations usually accept a large relative er-
ror when solving the constraint equations. The default value of
GROMACS [35] for the maximum allowed relative error for satis-
fying any constraint with the SHAKE algorithm (shake_tol) is
τ = 10−4. Other MD packages, like Amber [36], are a bit more
demanding (τ = 10−5) [37]. Notwithstanding, tighter satisfaction
of the constraints is sometimes imposed, frequently in simulations
performed in the NVE (microcanonical) ensemble [38–42,37,43–47,
32], though also in simulations with a thermostat [32,48–53] (NVT,
NPT). For example, in references [32,38–42,37,43–53] the authors
set a tolerance τ (shake_tol) for the constraints between 10−7

and 10−10 (except Ref. [40], which uses τ = 10−12).
It is important to appreciate the consequences of solving the

constraint equations inaccurately. Let λ̂k denote the computed value
of the Lagrange multiplier λk; then the computed value of vk+1/2

cannot be more accurate than

v̂k+1/2 = vk−1/2 + hM−1
(

f (qk) − G(qk)
T λ̂k

)
, (26)

in which case the exact value vk+1/2 satisfies

vk+1/2 = v̂k+1/2 − hM−1G(qk)
T (λk − λ̂k) . (27)

We see that the term −G(qk)
T (λk − λ̂k) is mathematically equiv-

alent to an external force. There is no reason to expect that this
force is conservative. Therefore, if the objective is to simulate an
isolated system, then it is critical that we solve the constraint equa-
tions as accurately as possible. In fact, it is well-known that if the
constraint equations are not solved accurately then the total me-
chanical energy of the system will not be conserved. We are left
with two options. We either attempt to prove that any conclusions
drawn from the simulation are valid or we reduce the issue as
much as possible by solving the constraint equations as accurately
as the hardware will allow. Our ultimate goal is to reduce the com-
putational burden associated with the second choice to the point
where it becomes the default choice.

3. ILVES-PC: ILVES for peptide chains

3.1. Fundamentals

We have developed and implemented an algorithm called
ILVES [54], [55] that avoids coarse-grain approximations and cal-
culates the constraint forces accurately in an efficient manner.

3 Algorithms that impose flexible constraints and allow, say, the bond lengths to
vary over time, exist [34], but to date are less frequently used.
4

ILVES solves the same system of differential algebraic equations
as SHAKE, the difference with SHAKE is how it solves the nonlin-
ear constraint equations: ILVES uses Newton’s method to this end.
The involved linear (linearised) systems (17) are solved using a di-
rect solver (Gauss-Jordan elimination). In the context of biological
polymers, the time complexity of this procedure is O (n), where
n is the number of constraints. This linear scaling is due to lin-
ear topology of bio-polymers. The A matrix for bio-polymers can
be defined so that it is either banded or nearly banded, with a
few nonzero entries outside the band, which enables a special ef-
ficiency when solving the system [56]. ILVES-PC relies on a code
(compiled code [55]) which is specifically designed to be efficient
for known structures, such as the amino acid residues that make
up peptides and proteins.

3.2. Implementation

The implementation of the ILVES algorithm presented in this
document, called ILVES-PC, is specifically designed to compute the
constraint forces for proteins. Developing code for given types of
molecules is the extension to software of a concept which has
already proven to be very successful with hardware. The Anton
supercomputers were conceived to perform MD simulations of
proteins and other biological molecules [9]. Their specific design
greatly enhances the performance of these systems compared with
general-purpose computers. The algorithm we present in this ar-
ticle also utilises specific features of widely simulated systems in
order to increase the performance compared with general-purpose
algorithms.

Peptide chains (peptides and proteins) are polymers of variable
length formed by repeating blocks of atoms. They are a subset of
biological polymers (also including e.g. nucleic acids and polysac-
charides), which are just a subset of chemical polymers (which
could benefit from the approach presented in this article). Each
of the building blocks of a peptide chain (residues) has a given
connectivity pattern, which is found essentially unchanged in bi-
ological molecules (occasionally further atoms can be attached to
the protein, e.g. in glycoproteins, or the protein structure can get
modified, e.g. at the chromophore of the Green Fluorescent Pro-
tein; in addition, hydrogen atoms in carbon rings of side chains
can lie in alternative positions). However, 20 given –proteinogenic–
amino acid connectivities largely dominate the structure of pep-
tides and proteins.

We can make an abstraction of a peptide chain as a graph G =
(V , E). The vertices V = {1, 2, 3 . . . , n} represent the atoms and the
edges E ⊆ V × V represent the bonds. Specifically, we have (a, b) ∈
E if and only if atoms a and b are bonded. The graph is undirected
because (a, b) ∈ E if and only if (b, a) ∈ E . From G we can build
a new graph L(G) where each vertex represents a bond and two
bonds are connected if and only if they share an atom. The graph
L(G) is known as the line-graph of G .

The coefficient matrix of the linear system solved by ILVES-PC,
i.e., the matrix A of equation (17), has the same structure as the
adjacency matrix of the line graph L(G) of the graph G that rep-
resents the peptide chain. Since the peptide chain is composed of
less than 30 different building blocks, the main features of the ma-
trix A can be described using less than 30 different submatrices.
These matrices correspond to the proteinogenic amino acids, some
of them having slightly different configurations due to different
locations of hydrogen atoms. In truth, we need a few more subrou-
tines to account for, say, the beginning and the end of the chain.
We have written subroutines for solving the linear subsystems cor-
responding to each of these submatrices. To solve the entire linear
system, we iterate over the subsystems of the linear system, calling
the required subroutine. We ensure that submatrices correspond-
ing to identical amino acids have the same structure by always

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 1. Steps to apply Gauss-Jordan elimination to a banded matrix in parallel using three threads via the Schur complement method. The entries of the matrix are represented
with and x and the fill-ins with an f . The magenta, purple and yellow entries are private to threads, while blue entries are shared between threads. (For interpretation of
the colours in the figure(s), the reader is referred to the web version of this article.)
numbering the bonds of each amino acid in the same order. This
allows us to generate loop-free subroutines that store the relevant
data contiguously in memory and do direct memory access instead
of relying on the auxiliary data structures and the indirect memory
access patterns that are so typical of direct solvers for sparse linear
systems. These ideas are all further adaptations of the compiled
code approach utilised in [55]. By choosing the bond numbering
of each amino acid we can reduce the fill-in during the factoriza-
tion of the matrix. Fill-ins are entries that are exactly zero in the
original matrix, but become non-zero during the factorization pro-
cess. We can work with peptide chains with any bond numbering.
Before simulating a new protein for the very first time, we first ex-
plore the topology to identify the individual amino acid residues.
Then, we renumber the bonds to match the numbering required
by our specific implementation. The structural information can be
saved and recycled if further simulations are required.

ILVES-PC exploits modern processors’ computational resources
by assigning a subset of amino acids of a peptide chain to different
hardware threads. We ensure that each thread is assigned a similar
number of matrix elements. To concurrently apply Gauss-Jordan
elimination to the submatrices corresponding to different amino
acids, we rely on the Schur complement method [57].

Consider the example presented in Fig. 1. We want to make the
elimination at the banded coordinate matrix of (a) –which exem-
plifies A– using three threads (magenta, purple, and yellow). First
(b), each of the threads works with its own private submatrix, try-
ing to fill the lower left-hand (subdiagonal) corner with zeros and
the diagonal with ones. The threads also update the shared (blue)
rows using mutual exclusion (mutex) locks. They repeat this step
(c) in the upper-hand corner of their submatrix. These two steps
may produce fill-ins. Then, the master thread processes the subma-
trix comprised of the shared (blue) rows (d), while the other two
threads wait until this step is completed. Finally (e), all threads
work in parallel to clean the fill-ins produced in steps (b) and
(c). In the case of ILVES-PC, the thread private data corresponds to
constraints within a given amino acid, while the shared rows cor-
respond to the constraint that connects two amino acids (which
corresponds to a peptide bond).

While a general-purpose implementation of ILVES would almost
certainly rely mainly on coarse-grain synchronization mechanisms
such as thread barriers, the precise knowledge of the structure of
the linear system corresponding to proteins allows us to use very
fine-grain synchronization mechanisms. We use lightweight mutex
locks to protect the shared rows of the linear system from data
races, so that each mutex involves only a pair of threads. Simi-
larly, during the update phase at the end of each Newton step, the
positions and velocities of each atom are protected by individual
mutex locks.

4. Materials and methods

We have integrated ILVES-PC into the popular GROMACS molec-
ular simulation package [35]. Our solver can be used as an alter-
5

native to SHAKE and P-LINCS when solving the bond constraints of
proteins (only consisting of amino acid residues) without disulfide
bonds.4 In addition, we have extended the code of P-LINCS to ac-
cept a tolerance τ > 0 for the satisfaction constraints on all bonds
(all-bonds), as in SHAKE and ILVES-PC, so that the three solvers can
be compared on an equal footing. All the tested algorithms iterate
until

∀i ∈ {1,2, . . . ,n} : 1

2

∣∣∣∣∣‖qai
− qbi

‖2 − σ 2
i

σ 2
i

∣∣∣∣∣ < τ, (28)

where the ith bond is between atoms ai and bi . It is straightfor-
ward to verify that

1

2

(‖qai
− qbi

‖2 − σ 2
i

σ 2
i

)
≈ ‖qai

− qbi
‖ − σi

σi
(29)

is a good approximation when the ith constraint equation is almost
satisfied, i.e., when ‖qai

− qbi
‖ ≈ σi is a good approximation. It

follows that τ is a good approximation of an upper bound for the
largest relative error for the bond lengths.

As already mentioned, P-LINCS uses a truncated Neumann se-
ries to approximate the solution; then P-LINCS applies an itera-
tive correction phase. The accuracy of the expansion is determined
by its order (lincs_order), and the accuracy of the correction
phase is determined by the number of iterations (lincs_iter).
Both the order of the expansion and the number of iterations
of the correction phase are set at GROMACS’ startup and do not
change throughout a given simulation. With our modification, P-
LINCS keeps iterating in the correcting phase until all constraints
are solved with the specified tolerance (shake_tol). We found
that the additional calculations due to this modification (i.e. the
calculations to check the degree of constraint satisfaction) typically
increase P-LINCS’ execution time by 4% to 9%.

4.1. Experimental setup

For the experiments carried out in this work we have used
our modified version of GROMACS 2020.1 in double precision (-
DGMX_DOUBLE=on) compiled using GCC-10.1.0. All simulations
were performed on a computer with two Intel Xeon Platinum 8160
CPUs. Each processor has 24 physical cores. The main characteris-
tics of our computer are presented in Table 1. We have used a
GROMACS OpenMP version for multi-thread executions.

4.2. Simulations

Four proteins have been simulated in this study, namely, ubiq-
uitin, barnase, COVID-19 main protease, and human SSU proces-
some. A summary of their features can be found in Table 2. The

4 Copies of the code –under development– are available on request by writing to
the authors.

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Table 1
Main features of our computer.

Processor 2 × Intel Xeon Platinum 8160
Cores 2 × 24
AVX-512 FMA units 2 (per core)

L1 cache (I, D) 8-way 32 KiB (per core)
L2 cache 16-way 1024 KiB (per core)
LLC 11-way 33 MiB (shared)

Main Memory 96 GiB DDR4 (12 × 8 GB 2667 MHz DIMM), 6 channels

OS SUSE Linux Enterprise Server 12 SP2, kernel 4.4.120-92.70-default
Table 2
Proteins simulated in this article. The number of amino acid residues, atoms and
constraints (all-bonds), the PDB codes and articles of reference are included.

Name # resid. # atoms # constr. Code Reference

Ubiquitin 76 1231 1237 1UBQ [58]
Barnase 110 1700 1721 1A2P [59]
COVID-19 304 4645 4981 5R7Y [60]
main protease
Human SSU 2722 40802 41209 7MQA [61]
processome bundle 3

chain F

atomic coordinates of these proteins were taken from the RCSB
Protein Data Bank (www.rcsb.org, see the PDB codes in Table 2).
Ubiquitin and barnase were used to study the connection between
the physics of the simulation (energy and temperature) and the
tolerance of the constraint solver. Ubiquitin, COVID-19, and SSU
processome were used to evaluate and compare the performance
of SHAKE, P-LINCS, and ILVES-PC, covering a wide range of protein
sizes: 76 to 2722 amino acid residues —SSU processome is unusu-
ally large and was mainly chosen for testing parallel scalability.

Our modified version of GROMACS was used to run and anal-
yse the simulations, which were set up with the CHARMM36
force field including CGenFF version 4.1 (last update on March 28,
2019) [62]. The ionizable residues of selected proteins were pro-
tonated in all the cases as default (pH 7) in GROMACS, and after
adding explicitly TIP3P water molecules [63], chloride or sodium
counterions were added to neutralize the systems. A truncated do-
decahedral was chosen as the simulation box, and the minimum
distance between the protein and the box edge was set to 1 nm.
Periodic boundary conditions (PBC) were imposed. A minimization
phase of the solvated systems was performed (maximum of 20000
steps) with the steepest descent algorithm [64]. One (for the evalu-
ation of performance with ubiquitin, COVID-19 main protease and
human SSU processome) or three (for the evaluation of physics
with ubiquitin and barnase) simulation replicas were launched un-
der each setting, enabling the averaging of results in the latter
case. Systems were gradually heated through a heating ladder that
allowed to increase the temperature tier by tier in a number of
NVT steps (50 K every 50 ns; 1 fs time step) until reaching the
target temperature (either 298 or 400 K5). Three consecutive steps
for system equilibration followed. The first one (NVT) ran for 100
ps with restraints imposed on the heavy atoms (protein and wa-
ter) and the V-rescale thermostat [65] used to keep the targeted
temperature (coupling strength parameter τT = 0.1 ps). The sec-
ond equilibration step (NPT) ran for 100 ps (2 fs time step) without
any restraint, with the V-rescale thermostat (τT = 0.1 ps) [65] and
the Berendsen barostat used to set the pressure to 1 atm (coupling
strength parameter τp = 2.0 ps) [66]. The third equilibration step
(NPT) ran for 200 ps (2 fs time step) using the V-rescale thermo-

5 Simulations at high temperatures of biomolecules, e.g. proteins and DNA, are
not infrequent. For instance, studies by molecular dynamics of protein folding and
stability often increase the temperature over the protein mid-denaturation point to
speedup the conformational exploration of the energy landscape.
6

stat (τT = 0.1 ps) and the Parrinello-Rahman barostat [67] (1 atm;
τp = 2.0 ps). The configuration reached after these steps was the
starting point for different production runs carried out in either
the NPT or NVE thermodynamic ensembles.

For calculations of performance (NPT) and physics (NPT or
NVE), the thermostat, barostat and the rest of the parameters were
set up in the production phase as done in the third equilibration
step, except for the NVE simulations (used only for ubiquitin and
barnase), where neither thermostat nor barostat was used. Produc-
tion runs launched for calculation of performance consisted of 50k
steps (2 fs time step for ubiquitin and COVID-19 main protease)
or 10k steps (2 fs time step for human SSU-processome). On the
other hand, production runs for the calculation of physic consisted
of half a million (5 · 105) steps (2 fs time step, for a total simu-
lation time of 10 ns). A record of the conserved energy values (in
NPT simulations) or the total energy (in NVE simulations) and the
temperature was obtained every 1000 steps (0.2 ps). These num-
bers were used to calculate the energy drift and the temperature
evolution over time.

As general parameters of the simulations, the Verlet cutoff-
scheme algorithm [68,69] was used for van der Waals interactions
and the PME method [70] for electrostatic interactions, both with
a radius cutoff of 1.2 nm, as recommended by the authors of the
CHARMM36 force field [62]. A radius cutoff of 1.0 nm was set in
simulations used for performance calculations. Velocities’ correc-
tion due to the thermostat was done every 10 timesteps (default
values of GROMACS).

For the tests performed to assess simulation performance, tol-
erance values (τ) of 10−4, 10−6, 10−8, 10−10 and 10−12 have
been used to constraint all bonds. The constraint algorithms tested
include SHAKE, the modified version of P-LINCS and ILVES-PC.
In the case of P-LINCS, also the lincs_order parameter has
been tested and values of 4 and 8 are combined with the toler-
ance values listed above. In simulations carried out to analyse the
physics of the system, the SHAKE algorithm was tested with con-
straints both on all-bonds and on bonds connecting with hydrogen
atoms (H-bonds; results obtained with these constraints appear
in Fig. 1 of the supplementary material). Tolerance (τ) values of
3.1423 · 10−4, 10−4, 3.1423 · 10−5, 10−5, 10−6, 10−7, 10−8, and
10−10 have been tested.

The analysis of physics has been done by taking also into ac-
count the Verlet buffer size for the pair-list neighbouring search.
The pair-list neighbouring search is considered one of the two
most important sources of energy drift in MD simulations (the
other one being that related to the constraints algorithm). The
GROMACS parameter used to establish the Verlet buffer size
(Verlet-buffer-tolerance) was set here to 5 ·10−5 kJ/(mol ·
ps) to permit a lower level of drift than that allowed by GROMACS’
default value (5 · 10−3 kJ/(mol · ps)). This way, it is possible to dis-
play the drift effect due to constraints more clearly. Data presented
in Fig. 1 of the supplementary material also include results ob-
tained for a Verlet-buffer-tolerance of 5 · 10−3 kJ/(mol ·
ps).

https://www.rcsb.org/

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 2. Drifts of the conserved energy of the thermostat (NPT ensemble) and of the energy (NVE ensemble) per degree of freedom as a function of the tolerance in satisfying
the constraints. Top: barnase in the NPT ensemble at T=298 K (left) and T=400 K (right); Bottom: ubiquitin in the NPT ensemble at T=298 K (left) and barnase in the NVE
ensemble (right).
5. Results and discussion

In this section, the results of the test calculations are sum-
marised. In the first subsection, an analysis of the reliability of the
simulation as a function of the accuracy in satisfying constraints is
presented, whereas an analysis of the efficiency (performance) of
the calculations is displayed in the second subsection.

5.1. Physics

One of our goals is to understand the connection between the
energy drift in MD simulations of proteins and the tolerance τ of
the constraint algorithm (see equation (28) for the definition of τ).
For this purpose, we have simulated ubiquitin and barnase in the
NVE and NPT ensembles (with a V-rescale thermostat in the latter),
using SHAKE to impose constraints. We choose SHAKE because the
relatively slow and steady convergence of this algorithm ensures
that the largest relative error for the bond lengths is essentially
equal to the tolerance τ of the constraint algorithm.

Conversely, since ILVES-PC uses Newton’s method the conver-
gence is likely to be quadratic and there is no guarantee that the
iteration will terminate with a relative error that is just slightly
lower than the tolerance. In particular, if the current approxima-
tion has a relative error in the k-th iteration equal to e.g. qk =
1.1 · 10−6 then it will not satisfy the accuracy goal represented by,
say, tolerance τ = 10−6, but the next approximation is expected to
have a relative error is significantly smaller than τ simply because
qk+1 = O(q2

k) 10−12. Therefore, SHAKE is preferable when the
goal is to study the impact of the constraint tolerance on the con-
servation of energy.

In the calculations performed for our analysis of the effect of
the accuracy the time evolution of the energy followed regular
straight lines in large enough time scales. We thus calculated the
drift as the slope of the energy-vs-time relationship [16] divided
by the number of degrees of freedom of the system Ndf . We de-
fined the latter as: Nidf = 3m − n − 6, where m is the number of
atoms in the protein, n is the number of imposed constraints, and
the −6 term accounts for rotations and translations. In the NPT
7

simulations the temperature was set to 298 and to 400 K (this
latter only for barnase), whereas the pressure was set to 1 atmo-
sphere. To convert Joule per mol to units of kB T we have divided
by 2477.7 if T=298 K (it includes the NVE simulations, where no
T is imposed during the production stage, but 298 K was initially
set), and divided by 3325.8 if T=400 K. The time step used for all
the simulations was 2 fs.

The results of the drift calculations are presented in Fig. 2.6 It
is observed that the energy drift decays rapidly as the tolerance τ
is reduced. The results presented in Fig. 2 are consistent with the
literature, where τ = 10−7 is used to reduce the energy drift [48,
46,47] to acceptable levels. Fig. 2 suggests that one should choose
a constraint tolerance τ which is at least as small as τ = 10−6.

As further evidence of the importance of using small values of
τ , in Fig. 3 it is observed that higher tolerances in NVE simula-
tions led to significant drift of the initial temperature set for the
simulations. Conversely, if we use τ ≤ 10−6 the temperature is ap-
proximately preserved over the analysed time range. Other authors
have also found that the low accuracy in solving the constraints
gives rise to inaccurate temperatures, and that the default param-
eters of LINCS lead to non-converged results [17].

The non-negligible drifts presented in Fig. 2 suggest that the
mechanics of the whole molecule have distorted. Here, the dy-
namics has been examined on a finer level by measuring the
actual bond lengths, whose value is expected to be frozen since
constraints on all bonds are imposed, as a function of time. Our
primary goal is to answer the questions: Do the distortions of the
bond lengths have zero average? Are the distortions of the bond lengths
time-correlated?

To delve into these questions, an analysis of bond length error
(actual vs. expected value) has been performed for all the con-
strained bonds in our simulations. Plots (a) and (b) of Fig. 4 are
displayed as an example and correspond to 2000 time steps (1
time step = 2 fs) from an NPT production trajectory of ubiquitin

6 The data corresponding to this figure is presented in the supplementary mate-
rial.

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 3. Temperature evolution over time of barnase in the NVE ensemble using different tolerances in satisfying the constraints.
run with the SHAKE constraint solver with tolerances of τ = 10−4

and τ = 10−10, respectively. These plots include the average (d̄),
maximum (dMax) and minimum (dmin) bond length errors over time
obtained for all the constrained bonds. These parameters are de-
fined as:

d̄(t) := n−1
n∑

i=1

di(q(t)) ; dMax(t) := max di(q(t))

dmin(t) := min di(q(t))

(30)

where di is the relative error for the ith bond length, i.e.,

di(q) := ‖qai
− qbi

‖ − σi

σi
(31)

and n is the number of constraints.
The maximum and minimum values, dMax and dmin (yellow and

red lines, respectively), are approximately the established value of
SHAKE’s tolerance, which indicates that the solver usually does
not provide solutions much more accurate than that required by
the user.7 The average d̄(t) (blue line) is positive along the time,
which implies that the bond lengths are, on average, longer than
expected. Qualitatively, the patterns of the error plots persist if
the tolerance of the constraint solver is changed, e.g. to τ = 10−10

(plot (b) in Fig. 4). However, as expected, the size of the distortions
is six orders of magnitude lower than those obtained for τ = 10−4

(plot (a) in Fig. 4). This element confirms that a tighter tolerance
for satisfying the constraints largely reduces the bond length dis-
tortions in the simulated system.

The bond length distortions presented in the plots (a) and (b) of
Fig. 4 show a Pearson correlation with their immediately previous
value of 0.41 ± 0.12 (average ± SD, see Fig. 15 of the supplemen-
tary material).

Similar plots have been obtained for one of the simulations
of ubiquitin run with the P-LINCS solver (lincs_order=4,
lincs_iter=2, and the rest of parameters identical to those
used in the simulation presented in Fig. 4) and presented in Fig. 5
of the SI File. The normalised bond length error plot presenting
the largest values among all the constrained bonds is depicted in
the top panel of SI Fig. 5. The average distortion (bottom panel)
obtained over time for all the constrained bonds (blue line) with
P-LINCS mounts to 2.17 · 10−5, a lower value than that obtained
for ubiquitin simulated with SHAKE (2.67 · 10−5). An interesting
element one can point out from this analysis is that the bond

7 This can become clearer with an example. Suppose the tolerance is τ = 10−4

and the current error is 10−3. If we do one Newton step then we expect the new
error to be 10−6 because of the quadratic convergence. We terminate with an error
that is much smaller than the tolerance. Had we used a method with linear conver-
gence, then the increase in accuracy would have been much smaller, so when we
terminate we are not that far below the threshold.
8

length error profiles obtained with SHAKE present much sharper
and chaotic peaks than those obtained with P-LINCS. As a result of
this, a higher temporal correlation between the normalised errors
and their previous value is observed with P-LINCS.

Plot (c) of Fig. 4 shows a representative normalised bond length
error profile for a given constrained bond. The most important fea-
ture one can notice there is that the error is almost exclusively
positive. This is the most recurrent trend in all the bonds, see
Figs. 7 to 14 of the supplementary material.

5.2. Performance

We have evaluated the performance of the state-of-the-art con-
straint solvers (SHAKE and P-LINCS) and of the Newton method-
based solver presented in this article (ILVES-PC), imposing con-
straints on all bond lengths. The modified version of P-LINCS
(which stops iterating when the largest relative error for the bond
lengths is less than the specified tolerance τ) was used, and two
values of its matrix expansion parameter (lincs_order) were
assessed: 4 (the default) and 8 (a commonly used value). Results
obtained for these tests are labelled in the figures as P-LINCS-O4
and P-LINCS-O8, respectively. Other input parameters of the simu-
lations were kept at their default values in GROMACS. Simulations
were carried out for ubiquitin, COVID-19 main protease and hu-
man SSU processome in the NPT ensemble (298 K and 1 atm). The
results are presented in Figs. 5, 6, 7, and 8.

Fig. 5 presents the total (parallel, wall-clock) execution time.
Stacked bars show the fraction of the time which is spent solv-
ing the constraints imposed on the protein (not on the solvent) in
the production phase of the simulations and the rest of the exe-
cution time (gray background).8 The text labels (UBIQ, COVID and
SSU-PR) along the x- axis of Fig. 5 represent the three analysed
proteins (ubiquitin, COVID-19 main protease and the –atypically
large– human SSU processome, respectively). The numerical labels
along the x-axis represent the largest acceptable relative error for
a constraint in each simulation, i.e., τ = 10−4, 10−6, . . . , 10−12.

The value τ = 10−4 is the GROMACS default value; we omit
larger values of τ because, as presented in the previous sec-
tion, they produce results that do not converge.9 We found that
τ = 10−12 is near the lowest relative error that can be consistently
achieved during our simulations. This should not be perceived as a

8 The data corresponding to this figure is presented at the supplementary mate-
rial.

9 Here (as well as in some other statements throughout this article) the word
converged indicates that a tighter constraint tolerance leads to values of quantities
from the simulation which strongly –in a non-negligible manner– differ from the
corresponding values obtained using a loose tolerance. Hence non-converged does
not mean that the iterative algorithm (e.g. SHAKE) was unable to find a solution to
the equations.

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 4. Normalised error over time for the bond lengths in MD runs of ubiquitin with SHAKE. Panels (a) and (b) show the average, maximum and minimum values of the
normalised error for all the constrained bonds (all-bonds) using a tolerance of τ = 10−4 and τ = 10−10 respectively. Panel (c) shows a representative normalised error profile
obtained for a constrained bond using a tolerance of τ = 10−4.
general result as this value depends on the specific equations be-
ing solved and the floating point number system used.

The results presented in Fig. 5 indicate that the performance
of SHAKE, whose implementations are most commonly serial –in
contrast to P-LINCS and ILVES-PC–, is the worst among the anal-
ysed solvers. This implies that SHAKE requires higher ratios of the
total execution time, which is aggravated by increasing the number
of threads. This is a natural consequence of Amdahl’s Law [7], that
is, the performance improvement obtained by parallel execution is
limited by the sequential fraction of the application. This problem
is likely to be exacerbated by the continuous increase in the num-
ber of cores in the processors. ILVES-PC performs better than the
state-of-the-art in nearly all the analysed cases, and its relative ad-
vantage increases as higher accuracy is demanded. Moreover, since
the computation time is similar for high accuracy (e.g. τ = 10−12)
and low accuracy (e.g. τ = 10−4), accurate calculations become af-
fordable using ILVES-PC.

It is entirely possible to view Fig. 5 and conclude that it is a
waste of time to improve the quality of parallel constraint solvers.
After all, the majority of the execution time is spent outside the
constraint solver, so why should we bother improving the con-
straint solver? This line of reasoning ignores two key points:

1. It is easy to question the conclusions drawn from inaccurate
simulations that show a significant violation of the fundamen-
tal principle of conservation of energy. High accuracy is costly
unless the constraint solver is parallel.
9

2. The efficient use of large computers requires algorithms that
scale well. It is wasteful to assign 48 cores to a problem if the
speedup is only 4. This precludes the use of algorithms that
scale poorly.

Fig. 6 shows the single-threaded speedup of P-LINCS and ILVES-
PC compared with SHAKE.10 Both P-LINCS and ILVES-PC show a
speedup of approximately 1.30 over SHAKE using the GROMACS
default tolerance (τ = 10−4). While P-LINCS preserves a speedup
over SHAKE of between 1.25 and 1.5 for the whole range of tol-
erances, ILVES-PC’s speedup with respect to both SHAKE and P-
LINCS increases as the tolerance τ decreases, achieving an average
speedup over SHAKE of 4.2 at the smallest value of τ .

We have also executed P-LINCS and ILVES-PC using different
thread counts. Fig. 7 presents the multi-threaded speedup of P-
LINCS and ILVES-PC over SHAKE for three different tolerances. The
parallel speedups over SHAKE of both P-LINCS and ILVES are sim-
ilar for all thread counts using GROMACS’ default tolerance (τ =
10−4), achieving maximum speedups over SHAKE of 4×, 10×, and
34× for the three executed test cases. As we decrease the toler-
ance, ILVES-PC speedups over SHAKE dramatically increase while
P-LINCS shows similar speedups for the whole range of toler-
ances. At the minimum tolerance (τ = 10−12), ILVES-PC achieves

10 The data corresponding to this figure is presented in the supplementary mate-
rial.

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 5. Normalized execution times for different accuracy limits (tolerances) and three different proteins. The height of the thick grey bars represents the execution time of
GROMACS excluding the constraints computations. The height of the magenta, blue, purple, and yellow bars represents the time required by the different constraint solvers.
Panel (a): parallel execution with 24 threads; panel (b): ibid. with 48 threads. Note that the y-axis starts at y = 0.4 rather than y = 0. This has been done to emphasize the
differences between the constraint solvers.

Fig. 6. Single-thread speedup over the SHAKE algorithm of ILVES-PC and P-LINCS for different tolerances and test cases.

Fig. 7. Multi-threaded speedup of ILVES-PC and P-LINCS over the SHAKE algorithm for different tolerances and test cases. Note the different y-axis scale of each plot.
10

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742

Fig. 8. Speedup over serial execution of P-LINCS and ILVES-PC for different test cases and numbers of threads.
maximum speedups over SHAKE of 13×, 28×, and 76× for the
three analyzed proteins. This is not surprising. ILVES-PC is based
on Newton’s method which normally has quadratic convergence,
while there is no reason to expect more than linear convergence
from P-LINCS. Fig. 8 shows the speedup over serial execution of
P-LINCS and ILVES using different numbers of threads setting the
tolerance to τ = 10−12.11 Nearly identical results were obtained
for the whole range of tolerances. The scalability of both solvers
is similar for all three test cases. ILVES-PC performs slightly bet-
ter than P-LINCS for the two representative proteins. P-LINCS and
ILVES-PC require regular synchronization between threads, and the
size of their parallel tasks depends on the number of bonds of the
molecule. Hence the size of the test case is important for scalabil-
ity. If the molecule is sufficiently small and the number of cores
is sufficiently large, then the parallel overhead will dominate and
no solver can be efficient. Conversely, if the molecule is sufficiently
large compared with the number of cores, then good parallel per-
formance is not theoretically impossible.

6. Conclusions and future work

The constraint solver introduced in this article demonstrates
that it is possible to conduct efficient parallel simulations of poly-
mers by utilising the chemical structure. We have also presented
arguments supporting that constraint equations must be solved
accurately, including the fact that the default configuration of pop-
ular MD packages leads to situations where the constraint solver
does not lead to converged results.

The introduced algorithm is well-suited for accurate calcula-
tions. It is faster than state-of-the-art constraint algorithms for
most of the analysed cases and equally fast for all other cases. The
use of Newton’s method ensures that we can reach high accuracy
with a small increase in computational effort compared with low-
accuracy simulations.

Future stages of this project may include angular constraints
and flexible constraints [34] which could make it possible to in-
crease the time step even further. ILVES could also use inexact
Newton methods, such as a symmetric approximation of the Ja-
cobian, to achieve even higher computational efficiency. The ex-
tension of ILVES to nucleic acids (ILVES-NA), MPI parallelization,
SIMD vectorization as well as a general version of ILVES which can
calculate constraints in every molecule are all natural steps.

11 The data corresponding to this figure is presented at the supplementary mate-
rial.
11
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work has been partially supported by the Spanish Min-
istry of Science and Innovation MCIN/AEI/10.13039/501100011033
(contracts PID2019-107255GB-C21, PID2019-105660RB-C21, and
PID2019-107293GB-I00), by the Generalitat de Catalunya (contract
2017-SGR-1328), by the Gobierno de Aragón (E45_20R T58_20R
research groups), and by Lenovo-BSC Contract-Framework Con-
tract (2020). Santiago Marco was supported by the Agencia Es-
tatal de Investigación (Spain) under Juan de la Cierva fellowship
grant IJC2020-045916-I. Miquel Moretó was partially supported by
the Agencia Estatal de Investigación (Spain) under Ramón y Ca-
jal fellowship number RYC-2016-21104. Carl Christian Kjelgaard
Mikkelsen is supported by eSSENCE, a collaborative e-Science
programme funded by the Swedish Research Council within the
framework of the strategic research areas designated by the
Swedish Government. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of
the manuscript.

We want to thank Jesús Asín (Universidad de Zaragoza) and
Benjamin Dalton (Freie Universität Berlin) for our interesting dis-
cussion.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2023 .108742.

References

[1] G. Hlawacek, P. Puschnig, P. Frank, A. Winkler, C. Ambrosch-Draxl, C. Teichert,
Science 321 (2008) 108–111.

[2] C. Gossens, I. Tavernelli, U. Rothlisberger, CHIMIA Int. J. Chem. 59 (2005) 81–84.
[3] E. Andreano, G. Piccini, D. Licastro, L. Casalino, N.V. Johnson, I. Paciello, S. Dal

Monego, E. Pantano, N. Manganaro, A. Manenti, R. Manna, E. Casa, I. Hyseni,
L. Benincasa, E. Montomoli, R.E. Amaro, J.S. McLellan, R. Rappuoli, Proc. Natl.
Acad. Sci. USA 118 (2021).

[4] V.K. Bhardwaj, R. Singh, J. Sharma, V. Rajendran, R. Purohit, S. Kumar, J. Biomol.
Struct. Dyn. 39 (2021) 3449–3458.

[5] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, 1st ed., Cambridge
Monographs on Applied and Computational Mathematics, Cambridge Univer-
sity Press, 2004.

https://doi.org/10.1016/j.cpc.2023.108742
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibFCA31BFE6BB54CB1BAD3E1B8B39847DBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibFCA31BFE6BB54CB1BAD3E1B8B39847DBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibD4A55BCD85014C72F6B0A7D38853E329s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib29960CDB31341D6AF242C2333E8A1016s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib29960CDB31341D6AF242C2333E8A1016s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib29960CDB31341D6AF242C2333E8A1016s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib29960CDB31341D6AF242C2333E8A1016s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib97F4B1C7094D209F807689BF9995BF3Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib97F4B1C7094D209F807689BF9995BF3Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib12FBD2CCD49BA4E8C0A561FEFB2E28E0s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib12FBD2CCD49BA4E8C0A561FEFB2E28E0s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib12FBD2CCD49BA4E8C0A561FEFB2E28E0s1

L. López-Villellas, C.C. Kjelgaard Mikkelsen, J.J. Galano-Frutos et al. Computer Physics Communications 288 (2023) 108742
[6] M. Karplus, Abstr. Pap.—Am. Chem. Soc. 175 (1978) 70.
[7] P. García-Risueño, P.E. Ibáñez, Int. J. Mod. Phys. C 23 (2012) 1230001.
[8] E. Brini, C. Simmerling, K. Dill, Science 370 (2020) eaaz3041.
[9] D.E. Shaw, P.J. Adams, A. Azaria, J.A. Bank, B. Batson, A. Bell, M. Bergdorf, J.

Bhatt, J.A. Butts, T. Correia, et al., in: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–11.

[10] J. Jumper, R. Evans, A. Pritzel, T. Green, et al., Nature 596 (2021) 583–589.
[11] J.J. Galano-Frutos, H. García-Cebollada, J. Sancho, Brief. Bioinform. 22 (2019)

3–19.
[12] LAMMPS user manual, https://docs .lammps .org /fix _shake .html, 2022.
[13] NAMD user manual, https://www.ks .uiuc .edu /Research /namd /2 .14 /ug /node29 .

html, 2020.
[14] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18 (1997)

1463–1472.
[15] B. Hess, J. Chem. Theory Comput. 4 (2008) 116–122.
[16] P. Eastman, V.S. Pande, Energy conservation as a measure of simulation accu-

racy, bioRxiv, 2016.
[17] S. Thallmair, M. Javanainen, B. Fábián, H. Martinez-Seara, S.J. Marrink, J. Phys.

Chem. B 125 (2021) 9537–9546.
[18] E. Hairer, G. Wanner, C. Lubich, Geometric Numerical Integration, Springer,

2006.
[19] A. Mazur, J. Phys. Chem. B 102 (1998) 473.
[20] R. Edberg, D.J. Evans, G.P. Morris, J. Chem. Phys. 84 (1986) 6933–6939.
[21] H.C. Andersen, J. Comput. Phys. 52 (1983) 24–34.
[22] P. Gonnet, J.H. Walther, P. Koumoutsakos, Comput. Phys. Commun. 180 (2009)

360–364.
[23] A.G. Bailey, C.P. Lowe, A.P. Sutton, J. Comput. Phys. 227 (2008) 8949–8959.
[24] S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13 (1992) 952–962.
[25] T.R. Forester, W. Smith, J. Comput. Chem. 19 (1997) 102–111.
[26] V. Krautler, W.F. Van Gunsteren, P.H. Hunenberger, J. Comput. Chem. 22 (2001)

501–508.
[27] Y. Weinbach, R. Elber, J. Comput. Phys. 209 (2005) 193–206.
[28] P. Gonnet, J. Chem. Phys. 220 (2006) 740.
[29] A.G. Bailey, C.P. Lowe, J. Comput. Chem. 30 (2009) 2485–2493.
[30] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23 (1977) 327–341.
[31] J.J. Moré, SIAM J. Numer. Anal. 9 (1972) 357–378.
[32] R.J. Broadbent, J.S. Spencer, A.A. Mostofi, A.P. Sutton, Mol. Phys. 112 (2014)

2672–2680.
[33] R. Elber, A. Ruymgaart, B. Hess, Eur. Phys. J. Spec. Top. 200 (2011) 211–223.
[34] B.J. Leimkuhler, S. Reich, R.D. Skeel, in: J.P. Mesirov, K. Schulten (Eds.), Mathe-

matical Approaches to Biomolecular Structure and Dynamics, Springer, 1996.
[35] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen,

J. Comput. Chem. 26 (2005) 1701–1719.
[36] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Cheatham III, S. DeBolt,

D. Ferguson, G. Seibel, P. Kollman, Comput. Phys. Commun. 91 (1995) 1–41.
[37] Q.N. Vo, C.A. Hawkins, L.X. Dang, M. Nilsson, H.D. Nguyen, J. Phys. Chem. B 119

(2015) 1588–1597.
[38] S.-W. Chiu, M. Clark, S. Subramaniam, E. Jakobsson, J. Comput. Chem. 21 (2000)

121–131.
[39] S. Riniker, W.F. van Gunsteren, J. Chem. Phys. 134 (2011) 084110.

[40] A.P. Ruymgaart, A.E. Cardenas, R. Elber, J. Chem. Theory Comput. 7 (2011)
3072–3082.

[41] J.D. Chodera, W.C. Swope, J.W. Pitera, C. Seok, K.A. Dill, J. Chem. Theory Comput.
3 (2007) 26–41.

[42] J.D. Chodera, W.C. Swope, J.W. Pitera, K.A. Dill, Multiscale Model. Simul. 5
(2006) 1214–1226.

[43] M.T. Panteva, G.M. Giambasu, D.M. York, J. Comput. Chem. 15 (2015) 970–982.
[44] F. Chen, R. Kerr, M. Forsyth, J. Chem. Phys. 148 (2018) 193813.
[45] S. Das, V.S. Baghel, S. Roy, R. Kumar, Phys. Chem. Chem. Phys. 17 (2015)

9509–9518.
[46] D. Roest, P. Ballone, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. C 121 (2017)

17827–17847.
[47] A. Ottochian, C. Ricca, F. Labat, C. Adamo, J. Mol. Model. 22 (2016) 1–8.
[48] H. Hu, F. Wanga, J. Chem. Phys. 142 (2015) 214507.
[49] M. Turner, S.T. Mutter, R.J. Deeth, J.A. Platts, PLoS ONE 13 (2018) e0193668.
[50] T.E. C. III, P. Cieplak, P.A. Kollman, J. Biomol. Struct. Dyn. 16 (1999) 845–862.
[51] J.M. Martinez, S.K.C. Elmroth, L. Kloo, J. Am. Chem. Soc. 123 (2001)

12279–12289.
[52] R. Galindo-Murillo, J.C. Robertson, M. Zgarbová, J. Šponer, M. Otyepka, P.

Jurečka, T.E. Cheatham, J. Chem. Theory Comput. 12 (2016) 4114–4127, PMID:
27300587.

[53] S.P. Hancock, T. Ghane, D. Cascio, R. Rohs, R. Di Felice, R.C. Johnson, Nucleic
Acids Res. 41 (2013) 6750–6760.

[54] P. García-Risueño, P. Echenique, J.L. Alonso, J. Comput. Chem. 32 (2011)
3039–3046.

[55] C.C.K. Mikkelsen, J. Alastruey-Benedé, P. Ibáñez Marín, P. García-Risueño, in:
Proceedings of the 11th International Conference on Parallel Processing and
Applied Mathematics (PPAM) I, 2016, pp. 160–171.

[56] P. García-Risueño, P. Echenique, J. Phys. A, Math. Theor. 45 (2012) 065204.
[57] G.H. Golub, C.F. Van Loan (Eds.), Matrix Computations, 2nd ed., The Johns Hop-

kins University Press, Baltimore and London, 1993.
[58] S. Vijay-Kumar, C.E. Bugg, W.J. Cook, J. Mol. Biol. 194 (1987) 531–544.
[59] C. Martin, V. Richard, M. Salem, R. Hartley, Y. Mauguen, Acta Crystallogr., D

Biol. Crystallogr. 55 (1999) 386–398.
[60] A. Douangamath, D. Fearon, P. Gehrtz, T. Krojer, P. Lukacik, C.D. Owen, E.

Resnick, C. Strain-Damerell, A. Aimon, et al., Nat. Commun. 11 (2020) 1–11.
[61] S. Singh, A. Vanden Broeck, L. Miller, M. Chaker-Margot, S. Klinge, Science 373

(2021) eabj5338.
[62] J. Huang, A.D. MacKerell Jr, J. Comput. Chem. 34 (2013) 2135–2145.
[63] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem.

Phys. 79 (1983) 926–935.
[64] E. Haug, J. Arora, K. Matsui, J. Optim. Theory Appl. 19 (1976) 401–424.
[65] G. Bussi, T. Zykova-Timan, M. Parrinello, J. Chem. Phys. 130 (2009) 074101.
[66] H.J. Berendsen, J. van Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem.

Phys. 81 (1984) 3684–3690.
[67] M. Parrinello, A. Rahman, J. Appl. Phys. 52 (1981) 7182–7190.
[68] L. Verlet, Phys. Rev. 159 (1967) 98–103.
[69] S. Páll, B. Hess, Comput. Phys. Commun. 184 (2013) 2641–2650.
[70] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem.

Phys. 103 (1995) 8577–8593.
12

http://refhub.elsevier.com/S0010-4655(23)00087-5/bib4A3C0D40C9E7C4DBBE7666629D333545s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibB145485536F5AC07E0CDDDB702C53817s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib38853B9BBB9758B9D51EC48C28F7A407s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib9A32D5A51DA42B228B68ACCA8D1FB6FEs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib9A32D5A51DA42B228B68ACCA8D1FB6FEs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib9A32D5A51DA42B228B68ACCA8D1FB6FEs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib9A32D5A51DA42B228B68ACCA8D1FB6FEs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib49ECE0AB8BA59EA4BCB8B13A13D6A14Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib92032E8CCA241E46F464A54C2CB0C3E3s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib92032E8CCA241E46F464A54C2CB0C3E3s1
https://docs.lammps.org/fix_shake.html
https://www.ks.uiuc.edu/Research/namd/2.14/ug/node29.html
https://www.ks.uiuc.edu/Research/namd/2.14/ug/node29.html
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib49458EEA2802B850E67015E96E060310s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib49458EEA2802B850E67015E96E060310s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibA28DF3AD48D2424FB0833BB02BDE7493s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib549A24C5D415D5D5FF9CFE8A92BC5A9Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib549A24C5D415D5D5FF9CFE8A92BC5A9Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibEAAA225FE2D37ED4670E7C60E1C75767s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibEAAA225FE2D37ED4670E7C60E1C75767s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibB2D6E394C0E2EFFA8C49C46D13913EC2s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0C2EF9EA853D25CAF78BE40D1B175BCFs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibE1A0473355D8030975B0E07CBF14B624s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib782DFF5CD6544F78AFF8A9CA5E5268CFs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib782DFF5CD6544F78AFF8A9CA5E5268CFs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib3A1D91EF006FE6C9A33ED690F0141F88s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib6218D07FB1E3CA4D20AFA2349F3115B5s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib374A38BDB244BBDADE696C2EAD52C996s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib5ED80B67DF2213B105C12DD5724DE8DAs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib5ED80B67DF2213B105C12DD5724DE8DAs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib94676D626B9DAF23E928F192A564DF27s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib72C41869637667AF778F0CBFD01BD2B3s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib3F56188342DB74CF8726496F0B9E205Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib6F4AF16C8BBD68F5BF923E7A683B1650s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib574A9BE1942BEBFCB780DC09C5B12F3As1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibE310ABB2CAA582875115CFB4A4EE7D2Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibE310ABB2CAA582875115CFB4A4EE7D2Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0782BEB2154FAA9EC7132AAF7174CBADs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0ADFC1F014926CDEAD4625FAC37E3A8Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0ADFC1F014926CDEAD4625FAC37E3A8Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibCED853F83A4EBFD406236CECA4BAE103s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibCED853F83A4EBFD406236CECA4BAE103s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibC16F094A0D526D4F4E681036EB1E17DBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibC16F094A0D526D4F4E681036EB1E17DBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib5EE3098123481C8A8C46A3F99261B7D1s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib5EE3098123481C8A8C46A3F99261B7D1s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib7D12BA2A8C4A9031D0E1998FC2C948F4s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib7D12BA2A8C4A9031D0E1998FC2C948F4s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib3CB8D3CCEC01ADE9F772B9CFD9B79EF3s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibD16C71035013C7D964C99FD25733BA3Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibD16C71035013C7D964C99FD25733BA3Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib572493A84A8F474426DE6AEA353E870Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib572493A84A8F474426DE6AEA353E870Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib241885905B394964AE2DFD281881FDADs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib241885905B394964AE2DFD281881FDADs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibE2185E94BCF6BF27B45A0B62C7106743s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib642BA9231FC14F3305E84B3E0E1E01C2s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib77F6E230BC5E4DF43D11AC775E17018As1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib77F6E230BC5E4DF43D11AC775E17018As1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib27D4B63B4F763F6106E1DB334AD4F072s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib27D4B63B4F763F6106E1DB334AD4F072s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib4671F45052D9DF357DB6C26809C1B591s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibBF8ABE001F3957B6620837528575016Es1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib8A70F93AD12BBC41B8FAD43547EB1F89s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib1B41217EC917F3DC886BB600A4ABE85Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibDB4093632AD346FAA076679F863DFD29s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibDB4093632AD346FAA076679F863DFD29s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0E8AB3E3B169E5EEF26601EFD526A708s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0E8AB3E3B169E5EEF26601EFD526A708s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib0E8AB3E3B169E5EEF26601EFD526A708s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib18EA2E48A95CC6C7D32B731591582E1Es1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib18EA2E48A95CC6C7D32B731591582E1Es1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibD3F2EE8A7FC7AA104D65A76A12493CDFs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibD3F2EE8A7FC7AA104D65A76A12493CDFs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib8E4DD499F793B8C88D98F1E3651BA7FCs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib8E4DD499F793B8C88D98F1E3651BA7FCs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib8E4DD499F793B8C88D98F1E3651BA7FCs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib05FED1A4D08B5A555023DD618BEBD6C4s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib6B9AC44FCC8668BBD4F57BF9C369E66Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib6B9AC44FCC8668BBD4F57BF9C369E66Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib76BC7019DB9B557AD243AD7039BD17B4s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibAC441A679346A7E455750CB3F066B778s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibAC441A679346A7E455750CB3F066B778s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib770F1941D5A1ACA0912E966BEBAEC4BBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib770F1941D5A1ACA0912E966BEBAEC4BBs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibA66FFE220472647FDAE2AD4BB471F43Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibA66FFE220472647FDAE2AD4BB471F43Ds1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib6F6799727D305172EEC366636F91882Bs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib2496B12D0FA744C09BEC3C071A80A351s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib2496B12D0FA744C09BEC3C071A80A351s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib9C5ED2BA42E8AEC18B5BBAF8D100759Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibBB8A77F96ECCF14624BFCA156C9A722Fs1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib7030E22CC141FC49AC5335066C2A5A76s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib7030E22CC141FC49AC5335066C2A5A76s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bib4917DE436A52B2A5D1CB70DC5AC464B2s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibEF04A337F86737CD0C38BF6C8A359692s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibABBE55E6254A55071943ACC15289B847s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibA3E76C80F2A97D297699572ECF08D9C6s1
http://refhub.elsevier.com/S0010-4655(23)00087-5/bibA3E76C80F2A97D297699572ECF08D9C6s1

	Accurate and efficient constrained molecular dynamics of polymers using Newton’s method and special purpose code
	1 Introduction and motivation
	2 Background
	2.1 Notation
	2.2 Fundamentals of constrained molecular dynamics
	2.3 Constrained MD solvers
	2.4 Bond constraints
	2.5 The importance of solving constraints accurately

	3 ILVES-PC: ILVES for peptide chains
	3.1 Fundamentals
	3.2 Implementation

	4 Materials and methods
	4.1 Experimental setup
	4.2 Simulations

	5 Results and discussion
	5.1 Physics
	5.2 Performance

	6 Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

