
Berti: An Accurate
Local-Delta Data Prefetcher

Agustín Navarro-Torres1, Biswabandan Panda2,
Jesús Alastruey-Benedé1, Pablo Ibáñez1, Víctor Viñals-Yúfera1,

Alberto Ros3

1Universidad de Zaragoza
{agusnt, jalastru, imarin, victor}@unizar.es

2Indian Institute of Technology Bombay
biswa@cse.iitb.ac.in

3University of Murcia
aros@ditec.um.es

MICRO’55, Session Microarchitecture II, October 4th, 2022

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 1 / 12



Berti: Introduction

▶ Accurate and timely local delta L1D prefetcher
▶ Outperforms state-of-the-art prefetchers
▶ Only 2.55 KB of storage

▶ Orchestrates prefetch requests

across L1D/L2/LLC

▶ Context information (IP) and

unfiltered memory references

▶ Virtual adresses: cross-page PF

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 2 / 12



Berti: Introduction

▶ Accurate and timely local delta L1D prefetcher
▶ Outperforms state-of-the-art prefetchers
▶ Only 2.55 KB of storage

▶ ChampSim

▶ Mimics Intel Sunny Cove

▶ L1D Prefetcher: IP-Stride

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 2 / 12



Berti: Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Storage requirement for prefetching (KB)

1.02

1.04

1.06

1.08

1.10

Sp
ee

du
p 

(G
eo

m
et

ric
 M

ea
n)

▶ ChampSim (Intel Sunny Cove)

▶ Normalized to IP-stride (L1D)

▶ SPEC & GAP

DPC-3 = 3rd Data Prefetching Championship
Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 3 / 12



Berti: Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Storage requirement for prefetching (KB)

1.02

1.04

1.06

1.08

1.10

Sp
ee

du
p 

(G
eo

m
et

ric
 M

ea
n)

IPCP (ISCA'20 - 1st place DPC-3)

MLOP (3rd place DPC-3)

Bingo (HPCA'19 - 2nd place DPC-3)

SPP-PPF (ISCA'19)

▶ ChampSim (Intel Sunny Cove)

▶ Normalized to IP-stride (L1D)

▶ SPEC & GAP

DPC-3 = 3rd Data Prefetching Championship
Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 3 / 12



Berti: Evaluation

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Storage requirement for prefetching (KB)

1.02

1.04

1.06

1.08

1.10

Sp
ee

du
p 

(G
eo

m
et

ric
 M

ea
n)

IPCP (ISCA'20 - 1st place DPC-3)

MLOP (3rd place DPC-3)

Bingo (HPCA'19 - 2nd place DPC-3)

SPP-PPF (ISCA'19)

Berti

▶ ChampSim (Intel Sunny Cove)

▶ Normalized to IP-stride (L1D)

▶ SPEC & GAP

Berti outperforms state-of-the-art prefetchers with less storage

DPC-3 = 3rd Data Prefetching Championship
Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 3 / 12



Berti: Accurate and timely local delta L1D prefetcher

▶ Orchestrates prefetch requests across L1D/L2
▶ Instruction Pointer (IP) and unfiltered memory references
▶ Virtual addresses: cross-page prefetching

L2

L1D

CPU

Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 4 / 12



Berti: Accurate and timely local delta L1D prefetcher

Definition of delta

timeline
@7 @10 @12 @15

stride: +3

timeline
@7 @10 @12 @15

deltas: +8, +5, +3

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 5 / 12



Berti: Accurate and timely local delta L1D prefetcher

Definition of delta

timeline
@7 @10 @12 @15

stride: +3

timeline
@7 @10 @12 @15

deltas: +8, +5, +3

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 5 / 12



Berti: Accurate and timely local delta L1D prefetcher

Stride: +1, +3, +5

@0 @1 @4 @9 @10 @13 @18 @19 @22 @27 @28 @31

9 9

9 9

With which delta should I prefetch?

delta = 1 + 3 + 5 = 9 → always hit

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 6 / 12



Berti: Accurate and timely local delta L1D prefetcher

Addresses reordered by out-of-order processor

@0 @1 @2 @4 @3 @5 @6 @9 @8 @7 @10

5

5

Stride prefetch requires specific order

We can prefetch with delta = 5, for example

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 7 / 12



Berti: Accurate and timely local delta L1D prefetcher

mcf-1554B

IP
-8
0
8

16
24
32
40
48
56
64

Be
st

 D
el

ta

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

▶ Red line: best delta by BOP1, coverage: 2%
▶ Black lines: per-IP local deltas, coverage: 10%Every IP can have its own deltas!

1Winner of 2nd Data Prefetching Championship (DPC2)
Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 8 / 12



Berti: Accurate and timely local delta L1D prefetcher

mcf-1554B

IP
-8
0
8

16
24
32
40
48
56
64

Be
st

 D
el

ta

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

▶ Red line: best delta by BOP1, coverage: 2%
▶ Black lines: per-IP local deltas

Every IP can have its own deltas!

1Winner of 2nd Data Prefetching Championship (DPC2)
Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 8 / 12



Berti: Accurate and timely local delta L1D prefetcher

Stride +2

@0 @2 @4 @6 @8 @10 @12

Delta 10

Delta 4

Time to fetch @12

How far in advance should I prefetch address 12?

Depends on its latency

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 9 / 12



Berti: Accurate and timely local delta L1D prefetcher

Stride +2

@0 @2 @4 @6 @8 @10 @12

Delta 10

Delta 4

Latency @12

How far in advance should I prefetch address 12?

Depends on its latency

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 9 / 12



Berti: Accurate and timely local delta L1D prefetcher

Training
1. Measure fetch latency
2. Learn timely and accurate deltas
3. Compute coverage of deltas

Table of deltas

IP Delta Coverage Destination

A +13 1/1 (100%)

+10, +13

History table

IP @ Time

A 2 0
A 5 30
B 10 50

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

Training
1. Measure fetch latency
2. Learn timely and accurate deltas
3. Compute coverage of deltas

Table of deltas

IP Delta Coverage Destination

A +13 1/1 (100%)

History table

IP @ Time

A 2 0
A 5 30
B 10 50
A 12 70

+10+10, +13

Coverage

> 65% →L1D
> 35% →L2

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

Training
1. Measure fetch latency
2. Learn timely and accurate deltas
3. Compute coverage of deltas

Table of deltas

IP Delta Coverage Destination

A +10 1/1 (100%)

History table

IP @ Time

A 2 0
A 5 30
B 10 50
A 12 70

+10, +13

Coverage

> 65% →L1D
> 35% →L2

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

Training
1. Measure fetch latency
2. Learn timely and accurate deltas
3. Compute coverage of deltas

Table of deltas

IP Delta Coverage Destination

A +10 2/2 (100%)
A +13 1/2 (50%)

History table

IP @ Time

A 2 0
A 5 30
B 10 50
A 12 70
A 15 140

+10, +13

Coverage

> 65% →L1D
> 35% →L2

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

Issuing prefetch requests
1. Select deltas
2. Orchestration

Table of deltas

IP Delta Coverage Destination

A +10 2/2 (100%)
A +13 1/2 (50%)

History table

IP @ Time

A 2 0
A 5 30
B 10 50
A 12 70
A 15 140

+10, +13

Coverage

> 65% →L1D
> 35% →L2

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

Issuing prefetch requests
1. Select deltas
2. Orchestration

Table of deltas

IP Delta Coverage Destination

A +10 2/2 (100%) L1D
A +13 1/2 (50%) L2

History table

IP @ Time

A 2 0
A 5 30
B 10 50
A 12 70
A 15 140

+10, +13

Coverage

> 65% →L1D
> 35% →L2

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 10 / 12



Berti: Accurate and timely local delta L1D prefetcher

MLOP
IPCP

Bingo
SPP-P

PF
Berti

SPEC17-MemInt

0

25

50

75

100

Pr
ef

et
ch

 A
cc

ur
ac

y

MLOP
IPCP

Bingo
SPP-P

PF
Berti

GAP

0

25

50

75

100
35%

81%

There is room

for improvement

in accuracy

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 11 / 12



Berti: Accurate and timely local delta L1D prefetcher

MLOP
IPCP

Bingo
SPP-P

PF
Berti

SPEC17-MemInt

0

25

50

75

100

Pr
ef

et
ch

 A
cc

ur
ac

y

MLOP
IPCP

Bingo
SPP-P

PF
Berti

GAP

0

25

50

75

100
35%

81%

Improved accuracy reduces

BW overhead and L1D pollution

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 11 / 12



Berti: Accurate and timely local delta L1D prefetcher

MLOP
IPCP

Bingo
SPP-P

PF
Berti

SPEC17-MemInt

0

25

50

75

100

Pr
ef

et
ch

 A
cc

ur
ac

y

MLOP
IPCP

Bingo
SPP-P

PF
Berti

GAP

0

25

50

75

100
35%

12%

81%

9%

Improved accuracy reduces

BW overhead and L1D pollution

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 11 / 12



Berti: Conclusions
▶ Accurate and timely local delta L1D prefetcher
▶ Outperforms state-of-the-art prefetchers
▶ Learns the best deltas to prefetch
▶ Artifact available (Webpage QR)

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 12 / 12

https://zenodo.org/record/6921331


Berti: An Accurate Local-Delta Data Prefetcher

Thanks!
Questions?
agusnt@unizar.es

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 12 / 12



Watermark Sensitivity

0 10 20 30 40 50 60 70 80 90 100
L2 confidence

10
0

90
80

70
60

50
40

30
20

10
0

L1
D 

co
nf

id
en

ce

1.00 1.07 1.08 1.07 1.06 1.04 1.03 0.99 0.97 0.91 0.84
1.01 1.07 1.08 1.08 1.07 1.05 1.04 1.01 0.99 0.95
1.01 1.07 1.09 1.08 1.07 1.06 1.05 1.02 1.00
1.01 1.07 1.09 1.08 1.08 1.06 1.05 1.02
1.01 1.08 1.09 1.09 1.08 1.07 1.06
1.01 1.08 1.09 1.09 1.08 1.07
1.02 1.08 1.09 1.09 1.08
1.02 1.08 1.09 1.09
1.02 1.08 1.09
1.01 1.08
1.02

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Hardware Implementation

access pattern continues, the delta +10 will reach close to
100% coverage. It is important to note that this local (per
IP) coverage translates into accuracy. If a delta covers 100%
of cache lines, since each access-delta pair results in only
one prefetch request, that delta will bring 100% accuracy.

B. Prediction: issuing prefetch requests

Once we know the deltas and their associated coverage,
we can orchestrate the prefetch requests across the cache
hierarchy. Based on both the coverage of each delta and the
L1D MSHR occupancy, we decide which deltas to use and
till which cache level to prefetch. We use four watermarks to
decide where to issue the prefetch requests. If the coverage
of a delta is above a high-coverage watermark and the
L1D MSHR occupancy is below the occupancy watermark,
then prefetch requests using that delta get filled at all the
cache levels till L1D. Otherwise, if the coverage is above a
medium-coverage watermark, irrespective of the L1D MSHR
occupancy, prefetch requests get filled till L2. Finally, if the
coverage is above a low-coverage watermark, requests get
filled only in the LLC.

To generate a prefetch request, we add the selected delta
to the address of the current access and the resulting address
is inserted in the PQ. Requests in the PQ are processed in a
first-in-first-out (FIFO) order. Since our prefetcher is trained
with virtual addresses, the generated prefetch requests are
also in the virtual address space. A prefetch request obtains
the physical address from the L2 translation look-ahead
buffer (STLB). If the translation misses in the STLB, the
prefetch request is dropped. If the translation is obtained, the
prefetch request checks if the target block is already present
in the cache it wants to fill. In case of a miss, the block is
prefetched, and the request is inserted into the MSHR.

C. Hardware implementation

As outlined in Figure 5, Berti can be implemented with
a small hardware budget and using simple structures and
logic. Next, we describe the structures required to train the
prefetcher and decide on the prefetch requests to issue to
each cache level.

Measuring fetch latency. In order to be able to measure
the fetch latency, the MSHR is extended with a 16-bit field
(represented in Figure 5 in gray) that stores a timestamp on
a demand L1D miss. Similarly, the PQ is also extended with
an analogous field that stores the timestamp when a new
prefetch request is added. The timestamp can be obtained
from the clock of the local processor [47] or any other metric
to approximate time (e.g., number of cache accesses). In our
implementation, we use the former. When a prefetch request
misses L1D, the timestamp is transferred from the PQ to the
newly allocated MSHR entry. On an L1D fill, the latency of
the request can be computed with a simple subtraction. The
latency is stored using 12 bits. If an overflow is detected
when computing the latency, it is set to zero, and therefore not

L1D access

VA

L1D cache

way 0

...

way 1

... ...

way 11

...

IP, VAVA

L1 dTLB
PA

M
iss Fi

ll

STLB
PA

MSHR
...

M
iss Fi

ll

Next cache level (L2)

History table

...

Write Search

Hitp

L
at

en
cy

IP
,V

A
,l

at
en

cy

Tim
ely

deltas

Table of deltas

...

PQ

...

Pref.requests

Figure 5. Berti design overview. Hardware extensions are shown in gray.

History table

IP tag

7

line address

24

timestamp

16

Table of deltas

IP tag

10

counter

4

delta

13

covera
ge

4

sta
tus

2 ...
delta

13

covera
ge

4

sta
tus

2

Figure 6. History table and Table of deltas entry format.

considered for learning timely deltas. Based on our empirical
results, on average across GAP and SPEC CPU2017 traces,
we see 1.08 overflows per kilo L1D fills.

Learning timely deltas. To be able to learn timely deltas,
the most recent accesses need to be tracked. The History
table (see Figure 5) records that information and is organized
as an 8-set, 16-way cache with a FIFO replacement policy
and indexed and searched with the IP. The format of each
entry in the history table is depicted in Figure 6. Each entry
keeps a tag corresponding to the seven least significant bits of
the IP (after removing the bits used for indexing the cache),
the 24 least significant bits of the target cache line address,
and a 16-bit timestamp. A new entry is inserted in the history
table (Write port in Figure 5) either on-demand misses (Miss
arrow from the L1D in Figure 5) or on hits for prefetched
cache lines (Hitp in Figure 5). The virtual address (VA) and
the IP (IP, VA arrow in Figure 5) are stored in the new entry
along with the current timestamp (not shown in the figure).

The search for timely deltas (Search port in Figure 5) is
performed either on a fill due to a demand access (Fill arrow
from the MSHR in Figure 5) or on a hit due to a prefetched
cache line (Hitp in Figure 5). In the first case, the search is
done using the information from the MSHR (IP, VA, latency
arrow in Figure 5). In order to enable the search on L1D
hits, we keep the latency of the prefetch request (12 bits)
along with each entry in the L1D (see Figure 5 L1D shadow
part). Alternatively, an L1D shadow tag could be employed.
A latency field set to zero indicates either an overflow when

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



History Table

access pattern continues, the delta +10 will reach close to
100% coverage. It is important to note that this local (per
IP) coverage translates into accuracy. If a delta covers 100%
of cache lines, since each access-delta pair results in only
one prefetch request, that delta will bring 100% accuracy.

B. Prediction: issuing prefetch requests

Once we know the deltas and their associated coverage,
we can orchestrate the prefetch requests across the cache
hierarchy. Based on both the coverage of each delta and the
L1D MSHR occupancy, we decide which deltas to use and
till which cache level to prefetch. We use four watermarks to
decide where to issue the prefetch requests. If the coverage
of a delta is above a high-coverage watermark and the
L1D MSHR occupancy is below the occupancy watermark,
then prefetch requests using that delta get filled at all the
cache levels till L1D. Otherwise, if the coverage is above a
medium-coverage watermark, irrespective of the L1D MSHR
occupancy, prefetch requests get filled till L2. Finally, if the
coverage is above a low-coverage watermark, requests get
filled only in the LLC.

To generate a prefetch request, we add the selected delta
to the address of the current access and the resulting address
is inserted in the PQ. Requests in the PQ are processed in a
first-in-first-out (FIFO) order. Since our prefetcher is trained
with virtual addresses, the generated prefetch requests are
also in the virtual address space. A prefetch request obtains
the physical address from the L2 translation look-ahead
buffer (STLB). If the translation misses in the STLB, the
prefetch request is dropped. If the translation is obtained, the
prefetch request checks if the target block is already present
in the cache it wants to fill. In case of a miss, the block is
prefetched, and the request is inserted into the MSHR.

C. Hardware implementation

As outlined in Figure 5, Berti can be implemented with
a small hardware budget and using simple structures and
logic. Next, we describe the structures required to train the
prefetcher and decide on the prefetch requests to issue to
each cache level.

Measuring fetch latency. In order to be able to measure
the fetch latency, the MSHR is extended with a 16-bit field
(represented in Figure 5 in gray) that stores a timestamp on
a demand L1D miss. Similarly, the PQ is also extended with
an analogous field that stores the timestamp when a new
prefetch request is added. The timestamp can be obtained
from the clock of the local processor [47] or any other metric
to approximate time (e.g., number of cache accesses). In our
implementation, we use the former. When a prefetch request
misses L1D, the timestamp is transferred from the PQ to the
newly allocated MSHR entry. On an L1D fill, the latency of
the request can be computed with a simple subtraction. The
latency is stored using 12 bits. If an overflow is detected
when computing the latency, it is set to zero, and therefore not

L1D access

VA

L1D cache

way 0

...

way 1

... ...

way 11

...

IP, VAVA

L1 dTLB
PA

M
iss Fi

ll

STLB
PA

MSHR
...

M
iss Fi

ll

Next cache level (L2)

History table

...

Write Search

Hitp

L
at

en
cy

IP
,V

A
,l

at
en

cy

Tim
ely

deltas

Table of deltas

...

PQ

...

Pref.requests

Figure 5. Berti design overview. Hardware extensions are shown in gray.

History table

IP tag

7

line address

24

timestamp

16

Table of deltas

IP tag

10

counter

4

delta

13

covera
ge

4

sta
tus

2 ...
delta

13

covera
ge

4

sta
tus

2

Figure 6. History table and Table of deltas entry format.

considered for learning timely deltas. Based on our empirical
results, on average across GAP and SPEC CPU2017 traces,
we see 1.08 overflows per kilo L1D fills.

Learning timely deltas. To be able to learn timely deltas,
the most recent accesses need to be tracked. The History
table (see Figure 5) records that information and is organized
as an 8-set, 16-way cache with a FIFO replacement policy
and indexed and searched with the IP. The format of each
entry in the history table is depicted in Figure 6. Each entry
keeps a tag corresponding to the seven least significant bits of
the IP (after removing the bits used for indexing the cache),
the 24 least significant bits of the target cache line address,
and a 16-bit timestamp. A new entry is inserted in the history
table (Write port in Figure 5) either on-demand misses (Miss
arrow from the L1D in Figure 5) or on hits for prefetched
cache lines (Hitp in Figure 5). The virtual address (VA) and
the IP (IP, VA arrow in Figure 5) are stored in the new entry
along with the current timestamp (not shown in the figure).

The search for timely deltas (Search port in Figure 5) is
performed either on a fill due to a demand access (Fill arrow
from the MSHR in Figure 5) or on a hit due to a prefetched
cache line (Hitp in Figure 5). In the first case, the search is
done using the information from the MSHR (IP, VA, latency
arrow in Figure 5). In order to enable the search on L1D
hits, we keep the latency of the prefetch request (12 bits)
along with each entry in the L1D (see Figure 5 L1D shadow
part). Alternatively, an L1D shadow tag could be employed.
A latency field set to zero indicates either an overflow when

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Delta Table

access pattern continues, the delta +10 will reach close to
100% coverage. It is important to note that this local (per
IP) coverage translates into accuracy. If a delta covers 100%
of cache lines, since each access-delta pair results in only
one prefetch request, that delta will bring 100% accuracy.

B. Prediction: issuing prefetch requests

Once we know the deltas and their associated coverage,
we can orchestrate the prefetch requests across the cache
hierarchy. Based on both the coverage of each delta and the
L1D MSHR occupancy, we decide which deltas to use and
till which cache level to prefetch. We use four watermarks to
decide where to issue the prefetch requests. If the coverage
of a delta is above a high-coverage watermark and the
L1D MSHR occupancy is below the occupancy watermark,
then prefetch requests using that delta get filled at all the
cache levels till L1D. Otherwise, if the coverage is above a
medium-coverage watermark, irrespective of the L1D MSHR
occupancy, prefetch requests get filled till L2. Finally, if the
coverage is above a low-coverage watermark, requests get
filled only in the LLC.

To generate a prefetch request, we add the selected delta
to the address of the current access and the resulting address
is inserted in the PQ. Requests in the PQ are processed in a
first-in-first-out (FIFO) order. Since our prefetcher is trained
with virtual addresses, the generated prefetch requests are
also in the virtual address space. A prefetch request obtains
the physical address from the L2 translation look-ahead
buffer (STLB). If the translation misses in the STLB, the
prefetch request is dropped. If the translation is obtained, the
prefetch request checks if the target block is already present
in the cache it wants to fill. In case of a miss, the block is
prefetched, and the request is inserted into the MSHR.

C. Hardware implementation

As outlined in Figure 5, Berti can be implemented with
a small hardware budget and using simple structures and
logic. Next, we describe the structures required to train the
prefetcher and decide on the prefetch requests to issue to
each cache level.

Measuring fetch latency. In order to be able to measure
the fetch latency, the MSHR is extended with a 16-bit field
(represented in Figure 5 in gray) that stores a timestamp on
a demand L1D miss. Similarly, the PQ is also extended with
an analogous field that stores the timestamp when a new
prefetch request is added. The timestamp can be obtained
from the clock of the local processor [47] or any other metric
to approximate time (e.g., number of cache accesses). In our
implementation, we use the former. When a prefetch request
misses L1D, the timestamp is transferred from the PQ to the
newly allocated MSHR entry. On an L1D fill, the latency of
the request can be computed with a simple subtraction. The
latency is stored using 12 bits. If an overflow is detected
when computing the latency, it is set to zero, and therefore not

L1D access

VA

L1D cache

way 0

...

way 1

... ...

way 11

...

IP, VAVA

L1 dTLB
PA

M
iss Fi

ll

STLB
PA

MSHR
...

M
iss Fi

ll

Next cache level (L2)

History table

...

Write Search

Hitp

L
at

en
cy

IP
,V

A
,l

at
en

cy

Tim
ely

deltas

Table of deltas

...

PQ

...

Pref.requests

Figure 5. Berti design overview. Hardware extensions are shown in gray.

History table

IP tag

7

line address

24

timestamp

16

Table of deltas

IP tag

10

counter

4

delta

13

covera
ge

4

sta
tus

2 ...
delta

13

covera
ge

4

sta
tus

2

Figure 6. History table and Table of deltas entry format.

considered for learning timely deltas. Based on our empirical
results, on average across GAP and SPEC CPU2017 traces,
we see 1.08 overflows per kilo L1D fills.

Learning timely deltas. To be able to learn timely deltas,
the most recent accesses need to be tracked. The History
table (see Figure 5) records that information and is organized
as an 8-set, 16-way cache with a FIFO replacement policy
and indexed and searched with the IP. The format of each
entry in the history table is depicted in Figure 6. Each entry
keeps a tag corresponding to the seven least significant bits of
the IP (after removing the bits used for indexing the cache),
the 24 least significant bits of the target cache line address,
and a 16-bit timestamp. A new entry is inserted in the history
table (Write port in Figure 5) either on-demand misses (Miss
arrow from the L1D in Figure 5) or on hits for prefetched
cache lines (Hitp in Figure 5). The virtual address (VA) and
the IP (IP, VA arrow in Figure 5) are stored in the new entry
along with the current timestamp (not shown in the figure).

The search for timely deltas (Search port in Figure 5) is
performed either on a fill due to a demand access (Fill arrow
from the MSHR in Figure 5) or on a hit due to a prefetched
cache line (Hitp in Figure 5). In the first case, the search is
done using the information from the MSHR (IP, VA, latency
arrow in Figure 5). In order to enable the search on L1D
hits, we keep the latency of the prefetch request (12 bits)
along with each entry in the L1D (see Figure 5 L1D shadow
part). Alternatively, an L1D shadow tag could be employed.
A latency field set to zero indicates either an overflow when

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetchers Performance

SPEC17-MemInt GAP
0.90
0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

MLOP IPCP Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Multi-level Prefetchers Performance

SPEC17-MemInt GAP
0.90
0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

MLOP+Bingo
MLOP+SPP-PPF

IPCP+IPCP
Berti+Bingo

Berti+SPP-PPF
Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetchers SPEC Performance

gcc
_s-

18
50

gcc
_s-

22
26

gcc
_s-

73
4

bw
av

es_
s-1

74
0

bw
av

es_
s-2

60
9

bw
av

es_
s-2

93
1

bw
av

es_
s-8

91

mcf_
s-1

15
2

mcf_
s-1

53
6

mcf_
s-1

55
4

mcf_
s-1

64
4

mcf_
s-4

72

mcf_
s-4

84

mcf_
s-6

65

mcf_
s-7

82

mcf_
s-9

94

cac
tuB

SS
N_s-

24
21

cac
tuB

SS
N_s-

34
77

cac
tuB

SS
N_s-

40
04

lbm
_s-

26
76

lbm
_s-

26
77

lbm
_s-

37
66

lbm
_s-

42
68

om
ne

tpp
_s-

14
1

om
ne

tpp
_s-

87
4

wrf_
s-6

67
3

wrf_
s-8

06
5

xa
lan

cbm
k_s

-10

xa
lan

cbm
k_s

-16
5

xa
lan

cbm
k_s

-20
2

xa
lan

cbm
k_s

-32
5

xa
lan

cbm
k_s

-59
2

xa
lan

cbm
k_s

-70
0

cam
4_s

-49
0

po
p2

_s-
17

fot
on

ik3
d_s

-10
88

1

fot
on

ik3
d_s

-11
76

fot
on

ik3
d_s

-70
84

fot
on

ik3
d_s

-82
25

rom
s_s

-10
70

rom
s_s

-13
90

rom
s_s

-29
3

rom
s_s

-29
4

rom
s_s

-52
3

GEO
MEA

N-M
em

Int

GEO
MEA

N-All
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sp
ee

du
p

1.5 1.6 1.7 1.4
1.4 1.6 1.4 1.7 1.4

1.4 1.6 1.9 1.5 1.5 1.7 1.4MLOP IPCP Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetchers GAP Performance

bc-
0

bc-
12 bc-

3
bc-

5
bfs

-10
bfs

-14 bfs
-3

bfs
-8

cc-
13

cc-
14 cc-

5
cc-

6
pr-

10
pr-

14 pr-
3

pr-
5

sss
p-1

0

sss
p-1

4
sss

p-3
sss

p-5

GEO
MEA

N
0.8

0.9

1.0

1.1

Sp
ee

du
p

MLOP IPCP Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



CloudSuite Performance

Cassandra
Classification Cloud9 Nutch

Streaming
0.95

1.00

1.05

1.10

Sp
ee

du
p

MLOP
MLOP+Bingo
MLOP+SPP-PPF

IPCP
IPCP+IPCP
Berti

Berti+Bingo
Berti+SPP-PPF

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



ISB Performance

SPEC17-MemInt GAP Cloud
0.8
0.9
1.0
1.1
1.2

Sp
ee

du
p

MLOP
MLOP+SPP-PPF
MLOP+MISB

IPCP
IPCP+IPCP
IPCP+MISB

Berti
Berti+SPP-PPF
Berti+MISB

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetchers Accuracy

IP-strid
e

MLOP IPCP Berti

(a) SPEC17-MemInt

0
10
20
30
40
50
60
70
80
90

100

L1
D 

Pr
ef

et
ch

 A
cc

ur
ac

y

IP-strid
e

MLOP IPCP Berti

(b) GAP

0
10
20
30
40
50
60
70
80
90

100
Timely Late

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetchers Demand MPKI

L1D L2 LLC
(a) SPEC17-MemInt

0

10

20

30

40

50

De
m

an
d 

M
PK

I

L1D L2 LLC
(b) GAP

0
10
20
30
40
50
60
70
80
90

No-pref IP-stride MLOP IPCP Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Multi-Level Prefetcher Demand MPKI

L2 LLC
(a) SPEC17-MemInt

5

10

15

De
m

an
d 

M
PK

I

L2 LLC
(b) GAP

15
20
25
30
35
40
45
50

MLOP
MLOP+Bingo
MLOP+SPP-PPF

IPCP
IPCP+IPCP
Berti

Berti+Bingo
Berti+SPP-PPF

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Energy

SPEC17-MemInt GAP
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
 D

yn
am

ic 
En

er
gy

IP-stride
MLOP
MLOP+Bingo

MLOP+SPP-PPF
IPCP
IPCP+IPCP

Berti
Berti+Bingo

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



SPEC Normalized Traffic

IP-Stride MLOP MLOP
+

Bingo

MLOP
+

SPP-PPF

IPCP IPCP
+

IPCP

Berti Berti
+

Bingo

Berti
+

SPP-PPF

1.00
1.25
1.50
1.75
2.00

No
rm

al
ize

d 
tra

ffi
c

L1D to L2 L2 to LLC LLC to DRAM

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



GAP Normalized Traffic

IP-stride MLOP MLOP
+

Bingo

MLOP
+

SPP-PPF

IPCP IPCP
+

IPCP

Berti Berti
+

Bingo

Berti
+

SPP-PPF

1.00
1.25
1.50
1.75
2.00

No
rm

al
ize

d 
tra

ffi
c

L1D to L2 L2 to LLC LLC to DRAM

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



L1D Prefetcher Low Bandwidth

6400 3200 1600
MTPS

(a) SPEC17-MemInt

1.00

1.05

1.10

1.15

Sp
ee

du
p

6400 3200 1600
MTPS

(b) GAP

0.90

0.95

1.00

1.05
MLOP IPCP Berti

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Multi-level Prefetcher Low Bandwidth

6400 3200 1600
MTPS

(a) SPEC17-MemInt

1.00

1.05

1.10

1.15

Sp
ee

du
p

6400 3200 1600
MTPS

(b) GAP

0.90

0.95

1.00

1.05

MLOP+Bingo
MLOP+SPP-PPF

IPCP+IPCP
Berti+Bingo

Berti+SPP-PPF

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0



Performance vs. Size

0.25X 0.50X 1X 2X 4X
0.95

1.00

1.05

1.10

Sp
ee

du
p

History Table Table of deltas Num. Deltas

Agustín Navarro-Torres Berti: An Accurate Local-Delta Data Prefetcher 0 / 0


	Appendix

