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Abstract—The complexity of efficient synchronization design
increases with the continuous growth in the number of physical
and logical cores on today’s machines. Opinion is divided on
which synchronization strategy is more powerful, opposing
typical mechanisms, such as locks and atomic primitives, to
emergent technologies, like transactional memory. We perform
an extensive scalability study on many-core systems, evaluating
most widely-used synchronization mechanisms in terms of ap-
plication throughput and operation latency. We show that, from
a performance perspective, current best-effort implementations
of hardware transactional memory (HTM) are comparable
to well-established locking or lock-free mechanisms. We also
find that they scale better with the number of threads. We
then showcase the ease-of-use of HTM in real-life applications.
Finally, we analyze the impact of simultaneous multithreading
(SMT) technologies on HTM performance. We propose a
new cache replacement strategy that takes into account the
transactional state of each cache line and aims to mitigate
SMT-induced transactional overflow aborts.

Keywords-Many-core systems, Scalability, Transactional
memory, Intel Transactional Synchronization Extensions

I. INTRODUCTION

Nowadays, multicore systems are the norm for virtually
all kinds of commodity computing devices, ranging from
mobile to large-scale server machines. The number of native
threads can reach hundreds [1], [2], further growing with the
increasing number of cores per socket. This paves the way
for a higher degree of parallelism and, thus, for better per-
formance across concurrent applications. However, efficient
concurrency comes at a price, oftentimes paid in increased
complexity for the synchronization mechanism. Complex
synchronization, such as typical fine-grained locking, requires
in-depth understanding of the concurrent program’s structure
and internal interactions, while it may still lead to unsound
implementations, faulty executions, deadlocks, etc.

In the last decade, the transactional memory (TM)
paradigm captured the research community’s interest by
proposing a simpler way of reasoning about concurrent
programs and seamlessly performing all needed synchro-
nization in the background. The concept of transactional
memory was introduced almost 30 years ago by Herlihy
and Moss [3]. However, since no hardware infrastructure
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was readily available to provide TM, software transactional
memory (STM) was the first heavily studied category. Its
usefulness in real-life scenarios was fiercely disputed [4], [5].
Once present in commodity processors, hardware transac-
tional memory (HTM) quickly became a hot topic and was
progressively adopted by all major hardware vendors.

There are various studies on the performance of syn-
chronization mechanisms: e.g., comparisons between TM
systems [6], between locking techniques [7] or even HTM
versus classical locks and atomic primitives [8]. However, to
the best of our knowledge, there is no study that evaluates
the scalability of all synchronization mechanisms together on
many-core systems and that takes into account the impact of
simultaneous multithreading (SMT). Furthermore, while SMT
is recognized as a limiting factor for HTM performance [9],
its impact is not clearly quantified and no solution has been
proposed to mitigate it.

We aim to bridge this gap with an extensive study on
the scalability of various synchronization strategies, with
a particular focus on the impact of SMT. We rely on
concurrent data structures for a sound evaluation of scalability.
We consider a hash-table and a binary search tree (BST),
executing multiple workloads with varying ratios of lookup
and update operations. These data structures are synchronized
with: fine-grained locking, atomic primitives, HTM, and STM.
We perform a detailed evaluation of throughput and operation
latency. For HTM, we further analyze the breakdown of
transactional commit and abort events and correlate it with
the performance results. In addition, we briefly make the case
of HTM’s ease-of-use; we illustrate it with the PARSEC 3.0
benchmark suite, as a speed-up comparison between HTM
and fine-grained locking. Finally, we propose a solution for
reducing the negative impact of SMT on HTM performance.

This work makes the following contributions:
• Extensive scalability analysis for all classes of syn-

chronization mechanisms. Our results show that HTM
is a scalable alternative to atomic primitives, improving
throughput with up to 60% and 37% on 88 threads,
for the hash-table and BST, respectively. Overall, HTM
maintains a comparable throughput with lock-free and
fine-grained locking implementations. Moreover, our
operation latency analysis shows that, regardless of
aborts and rollbacks, HTM operations have tail-latency



generally lower than or comparable to both fine-grained
locking and lock-free versions. For the hash-table,
HTM’s tail-latency is up to 10x lower than that of
classical synchronization mechanisms, depending on
contention. STM stands out as having considerably
higher overall operation latency: e.g., in the hash-
table case, 99% of STM operations take one order of
magnitude longer than the operations in the three other
versions for the same interval. The results are similar
for the binary search tree.

• Observations regarding HTM adoption on many-
core systems. We showcase HTM’s ease-of-use on
the PARSEC 3.0 benchmarks, concluding that a basic,
best-effort HTM implementation offers comparable
scalability to highly optimized fine-grain locks, while
coming for free with the glibc library.

• In-depth evaluation of SMT impact on synchroniza-
tion performance, in particular for HTM. Our exper-
iments with PARSEC 3.0 show that exploiting SMT
always results in an increased number of transactional
capacity overflow aborts. When executing on two
hardware threads, we observe an up to 69x increase
in the number of aborts in this category with respect to
a single thread per core.

• Hardware solution for improving HTM perfor-
mance with SMT. We present and evaluate Transaction-
Aware LRU (TA-LRU), a cache replacement policy
that achieves a 16x reduction of overflow aborts on
a synthetic micro-benchmark executed in the gem5
simulator.

The rest of this paper is organized as follows: Section II
presents the context of this work. In Section III, we describe
in detail the scalability study on concurrent data structures.
Section IV extends the evaluation with a comparison of HTM
and fine-grained locking synchronization on a widely-used
benchmark suite. Finally, we quantify the negative impact
of the SMT feature on HTM capacity aborts and introduce
our solution in Section V. Section VI concludes and presents
future research directions.

II. BACKGROUND

We evaluate the behavior and performance of four different
synchronization mechanisms: locks, atomic instructions,
STM, and HTM.

A. Synchronization Strategies

Classical strategies. Most parallel applications are imple-
mented using locks or atomic instructions. A lock controls
the access to data regions shared by multiple threads.
Programmers usually use multiple locks (fine-grain) to
increase the parallelism and performance of the applications.
However, fine-grain locks require in-depth knowledge of the
application and errors such as deadlocks or race conditions
are not uncommon. Lock-free algorithms rely on atomic
instructions, such as compare-and-swap (CAS), to manage

concurrency among threads. They do not suffer from lack of
scalability, but require extensive knowledge on the underlying
processor architecture and the program’s structure.

Transactional memory. According to the literature [10],
transactional memory seems to be a promising mechanism
for synchronizing processes. TM enables the programmer to
mark a section of code, specifying that it has to be executed
as a transaction. The TM system guarantees that transactions
are executed atomically. TM presents two main benefits over
classical synchronization strategies: (1) ease-of-use, while
also avoiding well-known concurrency issues, such as race
conditions; (2) optimistic execution, allowing for a higher
degree of parallelism.

Transactional memory comes in three flavors: software
(STM), hardware (HTM), and hybrid (a combination of both
software and hardware). In general, STM libraries [11],
[12], [13], [14], [15] instrument applications’ code to
detect and solve memory conflicts. The high flexibility
given by its software implementation is tarnished by its
instrumentation performance overhead. HTM [16], [17], [18],
[19], on the other hand, aims to address this performance
concern, but its hardware constraints limit the flexibility
of the solution. In 2009, Sun Microsystems was the first
company to announce a multicore processor with HTM
support, codenamed Rock [20]. Later, HTM support was
implemented in commercial processors by other hardware
vendors, such as Intel (starting with the Haswell family) and
IBM (POWER [21], Blue Gene/Q [22], the zSeries [23]).

Intel’s HTM implementation goes by the name of Transac-
tional Synchronization Extensions (TSX). It has two different
interfaces: Intel Hardware Lock Elision (HLE) and Intel
Restricted Transactional Memory (RTM). Intel TSX uses
the cache hierarchy to track write and read-sets [24], and
the coherence protocol to detect conflicts at a cache-line
granularity. It is a best-effort TM system. More precisely,
it does not guarantee that a hardware transaction will ever
commit, thus introducing the need for a software fallback to
provide progress using another synchronization mechanism.
Most often, a global lock is used inside the fallback path,
but more complex fine-grained locking schemes can be
exploited for added efficiency [25], [26]. There are several
considerations when providing a transactional fallback-path.
On the one hand, the abort reason needs to be taken into
account when deciding whether the transaction should be
restarted, depending on the chances of commit on a retry.
On the other hand, the number of retries needs to be well-
balanced: if there are too few retries, the transaction may be
serialized prematurely; if there are too many, the eventual
commit may not amortize the cost of the rollbacks. Finally,
a back-off time may be inserted between retries, in order to
reduce conflicts.

B. Related Work

There is extensive literature on synchronization mech-
anisms scalability. Guiroux et al. [27] compare the per-



formance of 27 lock algorithms on 35 real-world large-
scale applications on many-core systems. On the same
note, Rico et al. [28] present an extensive scalability study
on 4 STM libraries. Similarly, Brown et al. [29] analyze
HTM performance on a many-core NUMA system (up
to 72 threads), formulating guidelines on efficient use of
HTM in a many-socket setup. All these works focus on a
single synchronization strategy and make a deep-dive into
its scalability performance and issues. By contrast, our work
compares all major classes of synchronization mechanisms
in order to provide a broader picture on their performance
in a many-core context (up to 88 threads).

Only a few studies perform a direct comparison between
synchronization methods. Park et al. [8] and Schindewolf et
al. [30] experiment with HTM, locks and atomic primitives
on a 64-thread setup, both using a synthetic microbenchmark
suite that emulates HPC applications. Our work also brings
STM into the equation and evaluates scalability on widely-
used concurrent data structures. Yoo et al. [31] address the
same synchronization mechanisms as us, but on a very low
thread count. In addition, we analyze the evolution of HTM
events with the increasing number of threads and provide a
detailed breakdown on commits and various abort types.

Nakaike et al. [32] and Dice et al. [20] provide an in-depth
characterization of HTM for different HTM implementations.
While their analyses go into great architectural detail, they
do not study the SMT impact on the working-set size limit
of transactions. Hasenplaugh et al. [24] and Wang et al. [9]
briefly look at capacity aborts in SMT systems, but do not
go as far as proposing a solution to mitigate SMT effects
on HTM performance. The recent work of Cai et al. [33]
aims to shed some light on the way in which transactional
structures are tracked in hardware and on the impact of the
replacement policy on capacity aborts. They find that flushing
or warming the cache maximizes the read-set capacity of a
transaction. They do not investigate the impact of SMT in
this context.

III. SCALABILITY ANALYSIS OF SYNCHRONIZATION
MECHANISMS

We focus on two widely-used concurrent data struc-
tures, a hash-table and a binary search tree, representing
typical building blocks in the development of large-scale
systems. We implement them with four different synchro-
nization mechanisms: atomic primitives [34], [35], fine-grain
locks [36], STM (TinySTM engine), and HTM (Intel RTM).
All implementations are optimized, avoiding typical parallel
applications issues such as false-sharing, and are lock-free
for lookup operations1.

A. Experimental Setup and Methodology

Table I shows our experimental setup. The threads are
distributed so that they occupy as many cores as possible.

1The code is available at: https://github.com/agusnt/
Synchronization-Strategies-on-Many-Core-SMT-Systems

Table I: Main characteristics of the workstation used in the
evaluation.

Processor 2×Intel Xeon Gold 6238T
Threads 2× 44 (88)
Family Cascade Lake
Speed 1.9GHz
Cores 2× 22 (44)

TurboBoost No

L1D 32KiB 8-way
L2 1MiB 16-way

LLC 22×1.375MiB 11-way
Mem 192GiB 6 channels

OS Ubuntu 20.04
Kernel 5.4.0

NUMA policy Default
Governor Performance
Compiler GCC 9.3.0

In experiments on up to 44 threads, we pin each thread to
the first logical core on each NUMA node in turn. Above
this thread count, we move to the second logical core and
continue pinning the threads in the same order as before on
each NUMA node.

We implement the HTM version using C/C++ intrinsics, a
global spin-lock without back-off as fallback, and a maximum
of 10 retries before jumping to the fallback path. This is the
simplest and most common fallback path implementation.
This strategy gives us a lower-bound on HTM performance.
In addition to this, we follow the recommendations laid
out by Intel [37] and Bonnichsen et al. [38] to increase the
chances of commit: small transactions, no system calls inside
a transaction, and small memory footprint.

The lock-based version uses standard Pthread mutex locks
to synchronize its critical sections. According to the extensive
study on lock algorithms done by Guiroux et al. [27], Pthread
locks are amongst the best performing locking structures for
a variety of applications. We thus decide to rely on this
implementation, rather than incurring extra overhead from a
lock interposition library such as LiTL [39] or introducing
unneeded complexity from a home-brewed locking algorithm.

We evaluate the concurrent data structures with three
different workloads: (1) 100% lookup operations; (2) 80%
lookups and 20% updates (10% insertions and 10% deletions);
and (3) 50% lookups and 50% updates (25% insertions
and 25% deletions). For brevity, we call these workloads
AllLookup, Update20, and Update50, respectively. The work-
loads consist of 226 predefined operations. To minimize
execution variability, the sequence of operations is the same
in all experiments, regardless of synchronization mechanism.
The data structures are populated before each experiment with
previously-generated random elements: 218 for the hash-table
and 217 for the binary search tree.

For the analysis we rely on three metrics: throughput,
measured in operations per second; latency, defined as
the time it takes for an operation to be executed; and
HTM events as the percentage of transactions committed



and aborted, the abort rate being further split according
to the abort reason. For the evaluation of throughput and
HTM events, we execute each experiment <synchronization
method, workload> 11 times and take the median of all
executions. The latency analysis is based on all latency data
points per workload execution, on 88 threads. For simplicity
and readability, we present the data from a single run per
implementation, but note that the results are consistent over
multiple runs.

B. Concurrent Hash-Table

We implement a fixed-size hash-table with 217 buckets. In
order to solve potential key conflicts, each bucket contains a
sorted linked-list of keys.

Throughput. We first compare the four different hash-
table implementations in terms of throughput. Figure 1a
shows the throughput in Million Operations Per Second
(MOPS) on the Y axis and the number of threads on the
X axis. The vertical lines mark the following transitions
of interest: (1) from 22 to 23 threads, i.e., from using one
processor to two processors; (2) from 44 to 45 threads, i.e.,
from no SMT to using SMT on the first processor; and
(3) from 66 to 67 threads, i.e., from no SMT on the second
processor to using SMT on both processors. The relative
standard deviation is 5.4% on average across all workloads,
contention levels and implementations, with a maximum of
18%. Only 6 datasets out of 108 present outliers (one dataset
being composed of all 11 results of an experiment). More
precisely, in all cases there is at most one outlier, which
we believe is due to an anomaly on the machine where
experiments were running. The outliers were computed with
the zscore function.

From a performance perspective, there is no clear winner
across all implementations, workloads and number of threads.
For the AllLookup workload, all versions behave similarly,
since they are all equally lock-free. The slight quantitative
dissimilarity between the lines in the graph is explained
by the inherent differences in the implementation of the
concurrent algorithms.

The Update20 workload shows comparable throughput for
the lock-free, fine-grained locking, and HTM implementa-
tions. All three synchronization mechanisms scale with the
number of threads. Starting with 45 threads, HTM performs
better than the classical methods. On 88 threads, HTM
achieves 18% and 27% higher throughput than the fine-
grained locking version and the lock-free implementation,
respectively. STM is the only synchronization mechanism not
able to scale further than 22 threads. On 88 threads, the use
of STM leads to a performance degradation of more than 5x
on average compared to the other versions, mainly because
of the overhead of instrumenting all memory accesses. We
observe a performance drop (9% on average) across all
implementations when we start using the second processor
(in both transition points, 22 – 23 threads and 66 – 67 threads,
respectively). The communication between the two processors
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Figure 1: Synchronization mechanisms evaluation on a
concurrent hash-table.

and its impact on the cache can explain this behavior. Using
the second set of logical cores (i.e., 45 threads and more),
on the other hand, has a visible impact only on the lock-free
and locking implementations.

In contrast, the more contended workload, Update50, has
a bigger impact on performance. Up to the point where the



second logical core starts being used, all synchronization
mechanisms except STM follow the same trend with similar
throughput. While HTM continues to scale on more than 45
threads, the lock-free and fine-grained locking versions stop
scaling at 44 threads and their throughput starts decreasing
when running on more than 66 threads. When the second log-
ical core on the second NUMA node is used (transition point
(3)), the performance of the HTM-based implementation has
a drop of ∼ 11% and the throughput starts decreasing. As
with the Update20 workload, the STM version does not scale
after 22 threads. In addition, this experiment reveals the same
performance drops at the transition points of interest, with the
HTM version having also a negative spike at transition point
(2). We attribute this to the increased contention between
transactions that have to share the same core.

In conclusion, the implementation using HTM as synchro-
nization benefits of more parallelism, in contended scenarios
in particular. While the scaling slows down after 66 threads
in our configuration, it still shows 30% to 60% higher
throughput than the fine-grained locking and, respectively,
the lock-free versions.

Latency. We measure the latency of each operation with
the rdtsc instruction and remove outliers with the zscore
function. We represent the latency of update operations on
88 threads with a CDF in Figure 1b. The Y axis shows the
fraction of operations that execute in less than xµs (X axis,
logarithmic scale). The vertical lines indicate the maximum
measured value for a given implementation.

Lock-free, fine-grained locking, and HTM implementations
present a long tail, more prominent for the update-intensive
workload (Update50). HTM always has lower tail-latency
than the classical synchronization mechanisms. The lock-free
implementation consistently shows a considerably larger tail-
latency than HTM and lock-based versions. Many threads
spinning on the same atomic primitive (e.g., CAS) in order
to perform update operations can explain this result. Thus, on
the Update20 workload, the tail-latency of the HTM version
is 2x lower than that of fine-grained locking, and 10x lower
than that of the lock-free implementation. The tail-latency for
these three synchronization mechanisms becomes comparable
on an update-intensive workload, such as Update50.

In contrast, the STM implementation has a short tail, but
99% of operations take one order of magnitude longer than
the other three synchronization mechanisms for the same
interval. We believe this is due to our STM configuration:
transactions abort immediately on conflict, and the write-
set implementation facilitates low-overhead aborts and high-
overhead commits. Thus, in both workloads, less than 30%
of the STM operations are executed in under 3 µs, as opposed
to 97% for the other synchronization methods.

HTM events. Figure 1c shows the fraction of committed
and aborted transactions on the Y axis and the number of
threads on the X axis. The abort rate is further split into
multiple abort causes: capacity aborts (physical limitation
to the size of the transaction), conflict aborts (concurrent

accesses to the same memory address), and other (explicit
aborts when encountering an already-acquired lock or system-
level interrupts, debug instructions, I/O operations). We only
show these fractions for the mixed workloads (Update20
and Update50) because the lookup operations alone do not
perform any transactions.

Almost all transactional aborts are due to memory conflicts.
Most of them are generated by the interaction with the
global lock employed in the fallback path. More precisely,
all transactions monitor the state of the global lock; if one
transaction repeatedly aborts for any reason and takes the
fallback path, it acquires the lock, changing its state; this
state change conflicts with the monitored value in all other
running transactions, causing them to abort. The ratio of
conflict aborts increases with the number of threads in both
workloads (e.g., from 12% on 23 threads to 35% on 88
threads for Update20). However, we observe a lower abort
rate for the update-intensive workload than for Update20. We
believe this is due to the fact that part of the delete operations
will not hit an existing element in the hash-table, while the
insert operations will keep adding elements. Iterating over a
larger data structure favors more and longer transaction-free
lookups and, thus, fewer opportunities for conflict.

There are two main factors that lead to infrequent aborts
in the other categories for this application: first, we avoid
overflows by carefully planning the contents of the transac-
tional regions and taking into account HTM size limitations;
second, our hash-table implementation follows closely the
aforementioned Intel guidelines, thus avoiding aborts due to
unfriendly instructions. We further discuss an optimization
for the fallback algorithm.

HTM fallback discussion. To avoid restarting all running
transactions every time a thread takes the fallback path,
a more fine-grained approach can be implemented. This
may represent a convenient trade-off between simplicity
and performance, depending on the application. In the
case of a concurrent hash-table, this optimization is easily
achievable by replacing the global lock in the fallback path
with a per-bucket lock. This reduces the set of conflicting
transactions to only the potential few that are accessing the
same bucket. An even finer-grained approach (e.g., per-object
lock) would significantly increase the complexity of the code
with negligible performance improvement.

We briefly evaluate the fallback path optimization. Figure 2
compares the throughput of the two approaches, using a
global and a per-bucket lock, on the Update50 workload. We
observe up to 2x throughput improvement (on 22 threads)
and 62% higher throughput on 88 threads. Moreover, while
the performance of the two implementations follows the
same trend, we note the lack of negative spike at transition
point (2) for the per-bucket approach. Statistics on HTM
events show a drastic reduction of conflict aborts, which are
consistently under 1%.
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Figure 2: Global fallback lock vs. per-bucket fallback lock.

C. Concurrent Binary Search Tree

We evaluated the BST following the same methodology
applied to the hash-table. The BST results confirm the
findings from Section III-B and are illustrated in Figure 3.

Throughput. Overall, the measurements performed on
the BST show more variability than those of the hash-table.
The relative standard deviation is 8.5% in average across
all workloads, contention levels and implementations of the
tree data structure, with a maximum of 32%. We found
and excluded a total of 3 outliers over all datasets with the
zscore function.

As before, the STM implementation consistently shows
the worst performance. For the Update20 workload, the
fine-grained locking implementation provides the highest
throughput across the entire thread range. At transition point
(3), the locking implementation’s scaling starts to slow down,
while the HTM and lock-free versions continue to scale
constantly. On 88 threads, all versions have comparable
performance. By contrast, the update-intensive workload
shows similar throughput for these three implementations
throughout the experiment. The locking version stops scaling
at transition point (2), when the second logical core is enabled.
Similarly, the lock-free implementation does not scale over
65 threads. The HTM version scales constantly until 88
threads, where it provides 53% better throughput than the
lock-based version and 37% better than the lock-free one.

The state at transition points generally follows the same
pattern as in the hash-table experiment. It is less prominent
for the HTM-based implementation. The classical synchro-
nization versions do not have a visible performance drop at
transition point (3) for less contended scenarios.

Latency. Consistent with the results in the hash-table
experiment, HTM exhibits tail-latency comparable to fine-
grained locking, regardless of workload. The tail-latency
for the lock-free implementation varies significantly with
contention: it is 8x larger than that of the HTM version
on the update-intensive workload, and 2x lower on the less
contended one. We believe this variation comes from the
nature of the lock-free algorithm. Since an updating thread is
not blocking the portion of the tree it is working on, it may
need to repeatedly return and restart its subtree traversal if
other threads manage to change the values and the placement
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(b) Operation latency (88 threads).
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(c) HTM events.

Figure 3: Synchronization mechanisms evaluation on a
concurrent BST.

of the nodes before it applies its update. The update-intensive
workload increases the chances that multiple back and forth
iterations will take place for any update operation, thus
resulting in the observed long tail.

Another interesting behavior is presented by STM. Gen-
erally, when implementing concurrent data structures with
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Figure 4: HTM and fine-grained locking evaluation on PARSEC 3.0 benchmarks.

STM, each operation is entirely encapsulated in a software
transaction. Thus, operations have higher latency for a more
complex tree structure, e.g., if a tree traversal is needed, than
for a hash-table. As such, in this scenario, STM presents
between 4x and 10x higher tail-latency than HTM, depending
on the workload. Moreover, 90% of STM operations still
take at least 3 times longer than those of other versions for
the same interval.

HTM events. Figure 3c shows the ratios of transactional
commits and aborts for different degrees of contention. The
breakdown on abort types reveals a majority of conflict
aborts. We explain this in the same way as for the hash-table.
Similarly, we observe a lower abort rate for the update-
intensive workload than for the Update20 workload. This is
consistent with our observations on the concurrent hash-table.

IV. CASE STUDY: HTM EASE-OF-USE

PARSEC 3.0 [40] is one of the most widely-used bench-
mark suites for evaluating multicore systems. It consists of
13 scientific real-world parallel applications. In this section,
we compare the performance of fine-grain locks and HTM
on realistic workloads.

The benchmarks being originally synchronized with a lock-
ing mechanism, the strategy we adopt for HTM synchroniza-
tion is lock-elision, to allow for backward compatibility and
minimal code modifications. The glibc library of GNU/Linux
has a readily integrated version of HTM lock-elision, which
can be enabled by setting the GLIBC_TUNABLES envi-
ronment variable to glibc.elision.enable=1. The
glibc implementation uses Intel RTM for performance and
flexibility reasons [41]. This mechanism allows us to evaluate
HTM in the context of a highly-optimized benchmark suite.
We also modify the glibc library to retrieve the abort reason
of failed transactions. We use the same experimental setup
as in Section III.

We select seven benchmarks from the PARSEC 3.0 suite
to drive our experiments: bodytrack, dedup, facesim,
ferret, fluidanimate, streamcluster, and vips.
We choose this subset because the benchmarks use numerous
lock-based synchronization points (> 100) [42]. These locks

are then being elided in the HTM version, providing us
with sufficient information to analyze the HTM behavior. We
exclude the x264 benchmark due to runtime errors on our
setup. All benchmarks are compiled with the recommended
flags. We execute each benchmark three times using the
native input files and take the median value.

Figure 4 shows the speed-ups achieved by our subset of
benchmarks for different numbers of threads. We set the
maximum value on the Y axis at 60 for all plots in order
to facilitate a direct comparison between the graphs in the
figure. All benchmarks are executed on up to 88 threads,
except for facesim and fluidanimate which only allow
powers of two as input for the number of threads. Overall,
HTM performance is on par with highly-optimized fine-
grained locking. Only three of the PARSEC 3.0 benchmarks
in our subset show a non-negligible difference between the
standard version (fine-grain locks) and the HTM version
(lock-elision). More precisely, in fluidanimate fine-grain
locks perform slightly better (around 2% better on 64 threads)
than the HTM version. In contrast, the vips benchmark
exhibits better speed-up (1% on 66 threads) when using
HTM. Streamcluster shows a more acute difference in
HTM’s favor (7% better speed-up on 44 threads, going up
to 71% on 88 threads).

V. SMT IMPACT ON HTM CAPACITY ABORTS

Most HTM implementations use the cache hierarchy to
track their read and write sets. With SMT enabled, threads
running on the same core share the private cache resources.
When transactions are involved, this translates to a significant
reduction in the working-set size limit of the transactions [9].
This is typically reflected by an increase in capacity aborts.
Moreover, the impact is more prominent with the increasing
number of hardware threads per core.

In this work, we aim to quantify the SMT impact on real-
world applications. To this end, we measure the capacity
aborts of PARSEC 3.0 benchmarks using lock-elision. As
opposed to the applications in Section III, manually optimized
with respect to the contents of the transactions, this analysis
addresses transactional behavior in realistic scenarios, where
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Figure 5: SMT impact on HTM capacity aborts in the PARSEC 3.0 suite.

transactional contents cannot be controlled or planned. While
the number of capacity and random aborts was negligible
in the concurrent data structures execution, we expect an
increase in the rate of these categories when running real
applications. We start with the subset presented in Section IV.
We use two SMT threads per core in our experiments. The
applications are executed without and with SMT (we pin
one and two threads per core, respectively). We analyze the
distribution of aborts with the no-SMT and SMT versions.

A. Evaluation

Figure 5a shows the number of HTM aborts in the
PARSEC 3.0 benchmarks. The abort reasons are split in three
categories: capacity, conflict, and other. The latter contains
explicit aborts and random aborts due to unfriendly instruc-
tions or OS interference. Most benchmarks are dominated by
conflict aborts. Two applications show a significant amount of
capacity aborts: dedup, with up to 21% and vips, with up
to 11%, of all transactional aborts. These benchmarks have
one particular property in common: they access large memory
areas in the critical sections, i.e., inside transactions. More
precisely, they process chunks of data for (de)compression
and image transformation. In contrast, the other benchmarks
in the suite employ HTM mainly for synchronizing access to
shared flags and variables. As such, we will further focus on
the subset of two applications that need large cache capacity
to store their transactional working set.

Figure 5b shows the number of capacity aborts per giga-
instruction for different numbers of threads, with and without
SMT. We illustrate the ratio between the two versions (SMT

and no-SMT) with numbers above the bars. When using SMT,
both benchmarks show a considerable increase in capacity
aborts regardless of thread count. For dedup the maximum
impact is recorded on 16 threads, with 16x more capacity
aborts when using SMT. Vips shows a dramatic 69x increase
in capacity aborts on two threads for the SMT version. This
ratio decreases with the increasing number of threads down
to 3x. We believe this is due to increased thread contention
that favors transactional conflict aborts before the tracking
structures overflow.

In conclusion, we have observed that SMT can cause a
significant increase in the number of aborted transactions
due to lack of resources. This holds true even for carefully
designed applications such as those of the PARSEC 3.0 suite.
This issue can be much more critical in other areas. Wang
et al. [9] have shown that for in-memory databases capacity
aborts are a limiting factor.

B. Transaction-Aware Replacement Algorithm

We present Transaction-Aware (TA) replacement algorithm,
a novel mechanism that mitigates the negative effects of SMT
on capacity abort rate. We build our solution on top of the
Least Recently Used (LRU) replacement algorithm and call
it TA-LRU. As shown in Section V-A, SMT increases the
number of capacity aborts. The main idea of TA-LRU is
to protect the cache lines involved in transactions, and thus
mitigate the SMT effect.

The classical LRU algorithm evicts the least recently used
cache line when no more space is available in the cache. It
does not take into account whether the selected cache line



is used in a transaction. By contrast, our TA-LRU algorithm
avoids evicting cache lines involved in a transaction unless it
is strictly necessary. TA-LRU works as follows: let us assume
that the cache contains lines L1 to Ln, with L1 being the
most recently used and Ln, the least recently used. Ln is also
used in a transaction. When a new line has to be brought into
the cache, classical LRU would evict Ln, therefore causing
a capacity abort for the running transaction. TA-LRU, on the
other hand, will evict the least recently used line that is not
used in a transaction, keeping Ln stored in the cache.

Our solution does not need any extra hardware. Typically,
in HTM implementations, the cache lines are annotated with
two bits to track read/write accesses. TA-LRU simply ORs
the two bits. If the result of this operation is 0, i.e., none
of the bits is set, it means that the current cache line is not
involved in a transaction and can be evicted without any side
effects on performance. If any of the bits is set, the algorithm
moves to the next candidate in LRU order. Our solution can
be integrated with any cache replacement algorithm.

While the TA-LRU selection process for an eviction
candidate does not have any overhead compared to standard
LRU, the algorithm may not be as effective at choosing
the best victim. Some of the least-recently used entries will
potentially be marked as transactional and avoided, leading to
the eviction of more recent entries. In other words, some of
the cache entries that may have been reused in the future with
standard LRU, may be evicted with TA-LRU. In the worst
case scenario, all lines can be involved in transactions, leading
to the eviction of the least recently used transactional line and
the subsequent abort of the corresponding transaction. We
perform a preliminary overhead assessment in Section V-C
and leave the complete evaluation on real-world applications
as future work.

C. TA-LRU Prototype

We evaluate our proposal in gem5 [43] using the only
HTM implementation currently available in the simulator,
the Transactional Memory Extension (TME) for the ARM
architecture. The incipient state of the TME implementation
in gem5 significantly limits the performance of any executed
transactional workload and hinders the evaluation. Presented
with these limitations, we propose an initial TA-LRU proto-
type, with the goal of assessing its potential.

We implement and test our prototype in a one-core out-
of-order superscalar ARM processor that can execute two
threads simultaneously. We use the DerivO3CPU type. The
threads share 32KiB L1 data and instruction caches (8-way),
a 1MiB L2 cache (16-way), and a 2MiB LLC (16-way).
All cache levels are inclusive.

We evaluate our proposal on a synthetic microbenchmark
designed to stress transactional capacity and generate over-
flows. The microbenchmark executes two concurrent threads
that access two arrays: one smaller and, respectively, one
larger in size than the L1 data cache. One thread starts
a transaction, iterates over the smaller array, reading and

updating the elements, and commits the transaction. The other
thread simply iterates over the larger array, thus polluting
the cache and affecting the working-set size limit of the
transactional workload.

With TA-LRU we observe a 16x reduction in capacity
aborts compared to classical LRU. More precisely, only 3%
of the started transactions abort due to capacity overflow
when using TA-LRU, as opposed to 53% for LRU. We
further measure the performance in cycles per instruction
(CPI). The thread that executes the transactional workload
shows 2% performance improvement with TA-LRU. We also
look at the potential overhead of our solution, by measuring
the slow-down of the non-transactional thread. We find that
the performance loss is under 1%. Finally, we analyze the
number of cache misses in L1, as indicator for the impact
of TA-LRU on caching. We measure an overhead of 6.25%
for TA-LRU.

VI. CONCLUSIONS AND FUTURE WORK

This work presents an extensive study on the scalability of
various synchronization mechanisms. It departs from the state-
of-the-art by: including all major forms of synchronization,
from typical locking schemes to emerging technologies like
HTM; evaluating them in the context of many-core systems;
and quantifying the impact of SMT on HTM performance.

For the scalability evaluation, we experiment with two
concurrent data-structures, a hash-table and a binary search
tree, and workloads with various degrees of contention. We
find that, in terms of throughput and latency, STM is lagging
behind because of its considerable instrumentation overhead.
In contrast, HTM matches lock-free and fine-grained locking
performance and scales better as the number of threads
increases. Since our HTM-based implementation uses the
simplest and most common version of a fallback path, relying
on a global lock, these results represent a lower bound for
HTM scalability. We note that careful planning of the fallback
contents can substantially reduce transactional conflicts and
boost the performance.

Going further, we compare the performance of fine-grain
locks and HTM on a widely-used benchmark suite consisting
of real-world scientific applications, namely PARSEC 3.0.
At the same time, we make the case of HTM adoption,
showing on the PARSEC benchmarks how easy it is to
obtain comparable performance to that of a highly-optimized
locking scheme by simply flipping the value of a flag in the
glibc library.

Finally, we analyze the impact of SMT on HTM perfor-
mance. We find that enabling SMT for applications that
access large blocks of memory inside their critical sections,
considerably affects HTM commit-rate. SMT reduces the
available resources per transaction, resulting in repeated
capacity overflow aborts. We propose Transaction-Aware
LRU (TA-LRU), a novel cache replacement algorithm that
aims to mitigate the negative effects of SMT on transactional
capacity abort rate. Our prototype reduces aborts in this
category by a factor of 16.



As future work, we plan to evaluate TA-LRU on real-
world benchmarks and to enhance this work with results
on even higher core-count setups, employing various types
of hardware, compilers and data-structure implementations.
Another potential future direction is an extensive comparison
of main synchronization mechanisms on many-core systems
from an energy perspective.
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