
RESEARCH ARTICLE

Memory hierarchy characterization of SPEC

CPU2006 and SPEC CPU2017 on the Intel

Xeon Skylake-SP

Agustı́n Navarro-Torres, Jesús Alastruey-BenedéID*, Pablo Ibáñez-Marı́n, Vı́ctor Viñals-

Yúfera

Departamento de Informática e Ingenierı́a de Sistemas - Aragón Institute for Engineering Research (I3A),

Universidad de Zaragoza, Zaragoza, Spain

* jalastru@unizar.es

Abstract

SPEC CPU is one of the most common benchmark suites used in computer architecture

research. CPU2017 has recently been released to replace CPU2006. In this paper we pres-

ent a detailed evaluation of the memory hierarchy performance for both the CPU2006 and

single-threaded CPU2017 benchmarks. The experiments were executed on an Intel Xeon

Skylake-SP, which is the first Intel processor to implement a mostly non-inclusive last-level

cache (LLC). We present a classification of the benchmarks according to their memory pres-

sure and analyze the performance impact of different LLC sizes. We also test all the hard-

ware prefetchers showing they improve performance in most of the benchmarks. After

comprehensive experimentation, we can highlight the following conclusions: i) almost half

of SPEC CPU benchmarks have very low miss ratios in the second and third level caches,

even with small LLC sizes and without hardware prefetching, ii) overall, the SPEC CPU2017

benchmarks demand even less memory hierarchy resources than the SPEC CPU2006

ones, iii) hardware prefetching is very effective in reducing LLC misses for most bench-

marks, even with the smallest LLC size, and iv) from the memory hierarchy standpoint the

methodologies commonly used to select benchmarks or simulation points do not guarantee

representative workloads.

Introduction

Much of the experimental research in computer architecture is based on feeding a simulator or

a real machine with benchmarks that are representative of current or future software in a certain

application field. Hence, diverse corporations (e.g. SPEC [1]), research groups (e.g. CloudSuite

[2]), communities (e.g. TACLeBench [3]) and even certain companies (e.g. EEMBC [4]) propose

benchmark suites composed of a number of applications focused on specific fields such as gen-

eral purpose computing, cloud computing, real time or embedded processing, respectively.

According to SPEC Corporation, SPEC CPU2017 contains a collection of next-generation

and industry-standardized benchmarks aimed at stressing the processor, memory subsystem

and compiler [5].

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Navarro-Torres A, Alastruey-Benedé J,

Ibáñez-Marı́n P, Viñals-Yúfera V (2019) Memory

hierarchy characterization of SPEC CPU2006 and

SPEC CPU2017 on the Intel Xeon Skylake-SP.

PLoS ONE 14(8): e0220135. https://doi.org/

10.1371/journal.pone.0220135

Editor: Rashid Mehmood, King Abdulaziz

University, SAUDI ARABIA

Received: January 24, 2019

Accepted: July 9, 2019

Published: August 1, 2019

Copyright: © 2019 Navarro-Torres et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are available

at https://gitlab.unizar.es/agusnt/Xeon-SP_

Memory_Characterization_SPEC-CPU-2K6-2K17.

Funding: All authors acknowledge support in part

from grants (1) TIN2016-76635-C2-1-R from

Agencia Estatal de Investigación (AEI, http://www.

ciencia.gob.es/portal/site/MICINN/aei) and

European Regional Development Fund (ERDF,

https://ec.europa.eu/regional_policy/en/funding/

erdf/), and (2) gaZ: T58_17R research group from

Aragón Goverment (http://www.aragon.es/) and

http://orcid.org/0000-0003-4164-5078
https://doi.org/10.1371/journal.pone.0220135
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220135&domain=pdf&date_stamp=2019-08-01
https://doi.org/10.1371/journal.pone.0220135
https://doi.org/10.1371/journal.pone.0220135
http://creativecommons.org/licenses/by/4.0/
https://gitlab.unizar.es/agusnt/Xeon-SP_Memory_Characterization_SPEC-CPU-2K6-2K17
https://gitlab.unizar.es/agusnt/Xeon-SP_Memory_Characterization_SPEC-CPU-2K6-2K17
http://www.ciencia.gob.es/portal/site/MICINN/aei
http://www.ciencia.gob.es/portal/site/MICINN/aei
https://ec.europa.eu/regional_policy/en/funding/erdf/
https://ec.europa.eu/regional_policy/en/funding/erdf/
http://www.aragon.es/


Benchmark characterization is one of the first tasks carried out by the computer architec-

ture community. Among its goals, we can highlight the selection of samples for simulation, the

classification of benchmarks according to certain characteristics, or the detection of non-opti-

mal run-time behaviors.

Implementing a new hardware concept in a real system is unfeasible in most cases, due

to its high cost or the impossibility of its subsequent modification. An alternative is to use a

simulator which models at the desired level of detail (e‥g. cycle-level) the behavior of a com-

plex system such as a multicore processor with a multi-level memory hierarchy and an inter-

connection network. However, the complete execution of a benchmark in these simulators

may require months or even years. Thus, sampling techniques are used to identify small sec-

tions of a benchmark that approximate the behavior of the full application [6, 7].

Benchmarks with certain characteristics are selected to evaluate the performance of new

proposals. For example, research on shared cache replacement algorithms frequently selects a

mix of benchmarks with different degrees of pressure on the memory hierarchy: some of them

show high cache utilization while others do the opposite [8, 9].

In this paper, we characterize the interaction of the SPEC CPU2006 and CPU2017 suites

with the Intel Xeon SP’s memory hierarchy. The analysis of CPU2017 is of special interest

since it is a recent suite and there has been little research on it [10]. Regarding the processor, it

also brings relevance to this study because the Intel Xeon SP family has been released in July

2017 and incorporates significant changes in the memory hierarchy: the private L2 cache size

has quadrupled and the shared LLC, unlike all previous Intel processors, has been designed fol-

lowing a mostly non-inclusive policy. AMD chose similar policies since its inception, namely

strict exclusion between the private cache levels, and mostly-exclusion between private cache

levels and the LLC. So we think non-inclusive content policies seem to be a consolidating

trend worth focusing. Finally, we can point out here that a similar study on inclusive policies

could lead to an interesting performance comparison of both memory subsystems. However,

such a study is outside the scope of this paper.

The contributions of this paper are:

• A characterization of the benchmarks’ sensitivity to LLC capacity and hardware prefetching.

• An evaluation of the impact of the different hardware prefetchers present in the Intel Xeon

Skylake-SP [11] on the average count of cycles per instruction (CPI) and the main memory

bandwidth.

• A characterization of the temporal evolution of the benchmarks aimed at identifying relevant

sections for simulation.

In Fig 1 we outline the relevant hardware components and raw measures we use in our

methodology. For instance, we compute misses per kilo instruction in the first, second and

last-level caches (MPKI1/MPKI2/MPKI3) and CPI (average number of cycles per instruction).

Most previous work uses simulators to obtain hardware events (executed instructions,

memory references, cache misses . . .) and metrics (cache miss ratio, prefetch accuracy . . .) for

different LLC sizes, which imposes the use of sampling and precludes running the full bench-

marks until completion. Besides, processor details as commercial hardware prefetchers may

not be accurately modelled due to a lack of information about their behavior. Unlike that

methodology, we collect events with the hardware counters provided by Intel processors [12].

We use Intel Resource Director [13] to limit the number of LLC ways allocated to an applica-

tion. The behavior of the different hardware prefetchers is studied by turning them on selec-

tively by using the corresponding control register. In this way, we are able to combine full

execution with both LLC size variation and individual hardware prefetch analysis.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 2 / 24

European Social Fund (ESF, http://ec.europa.eu/

esf/). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0220135
http://ec.europa.eu/esf/
http://ec.europa.eu/esf/


Moreover, we also resort to the instrumentation tool PIN to analyze instruction operation

codes [14], and feed them into the simpoint package to obtain representative simulation inter-

vals according to that proposal [7].

This paper is organized as follows: section State of the art introduces the state of the art

about characterization methodology and selection of simulation intervals. Section Methodol-
ogy describes the execution environment, benchmarks and metrics used. Experimental results

are shown in section Evaluation. Finally, in section Conclusions we summarize the paper

contributions.

State of the art

The characterization of a new benchmark suite is a recurrent research activity in the computer

architecture community. In this section, we present the state of the art in two areas: benchmark

characterization and selection of simulation intervals.

Benchmark characterization methodologies

Benchmark characterization may be carried out through simulation or by using hardware

counters. On the one hand, simulation provides a flexible experimentation framework that

allows the evaluation of different memory hierarchy configurations, such as cache sizes or

replacement policies. Unfortunately, hardware components in recent processors, such as

prefetchers, can not be accurately modelled since their implementation details are not fully

Fig 1. Outline of the methodology.

https://doi.org/10.1371/journal.pone.0220135.g001

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 3 / 24

https://doi.org/10.1371/journal.pone.0220135.g001
https://doi.org/10.1371/journal.pone.0220135


disclosed. Moreover, a complete benchmark simulation may require weeks or months, so stud-

ies based on simulation typically characterize only a small section of the selected benchmarks.

On the other hand, real execution is able to capture the behavior of state-of-the-art hard-

ware components. Performance monitoring support included in commercial systems col-

lects execution events that can be used to obtain metrics that characterize benchmark

behavior during their real execution with a very low overhead. However, using real execution

makes it difficult to perform design space exploration, since hardware configuration capabil-

ities are limited.

There are many papers devoted to the SPEC CPU2006 characterization. For instance, Jaleel

et al. characterize the behavior of the suite with different cache sizes on a simulator [15], Korn

et al. study its performance according to page size [16], and Bird et al. analyze its performance

by running on an Intel Core2Duo [17].

Regarding SPEC CPU2017, we have only found two characterization studies: Limaye et al.

[18] and Panda et al. [10]. They analyze the behavior of benchmarks on an Intel processor

from the Haswell family. Hardware counters are used to collect the amount and type of exe-

cuted instructions, memory footprint, and cache misses at all levels of the memory hierarchy.

Both papers end up presenting a methodology to classify benchmarks. Regarding the charac-

terization of the use of the memory hierarchy, they show some limitations. Namely, characteri-

zation is performed on old systems, local miss ratios are used as performance metric instead of

MPKI, and the sensitivity to cache size or hardware prefetching is not studied.

With respect to the content management in shared LLCs, many processors use an inclusive

policy (LLC content is a superset of all private caches), however, using instead a mostly non-

inclusive policy (LLC acts as a victim cache which may, or may not, evict cache lines on hits)

seems to gain momentum through more elaborated coherence protocols. AMD calls the same

policy “mostly-exclusive”, and started using it in its first processor with shared LLC, the 2007

4-core Opteron Barcelona [19]. All the following AMD processors, such as the 6-core Istanbul

(2009), the 12-core Magny Cours (2010), the 16-core Bulldozer (2011) or, recently the 4-core

Zen Core Complex (2016) evolved in cache sizes, coherency protocols and core features, but

all have maintained the same mostly-exclusive contents policy. So we think characterizing

benchmarks through the Intel Skylake-SP fits well with this trend.

In this work, hardware counters have been used to obtain metrics about the execution of

the benchmarks on a Skylake-SP processor. Intel’s Model Specific Registers (MSR) allow us to

independently enable or disable the different hardware prefetchers. The Intel Cache Allocation
Technology (CAT) allows us to vary the LLC space occupied by an application modifying its

number of allocated ways. In this way, we characterize the behavior of the entire benchmark

with different hardware configurations of the memory hierarchy.

Selection of benchmarks and simulation intervals

SPEC CPU2006 and CPU2017 are composed of several applications, some of them with differ-

ent inputs, resulting in multiple application-input combinations. We define benchmark as an

application-input pair. For example, there are 29 applications and 55 benchmarks (applica-

tion-input pairs) in the CPU2006 suite. The execution time of a complete benchmark on a sim-

ulator may last weeks or even months, which makes the simulation of a suite unfeasible. To

reduce this time, a two-level sampling can be carried out. First, a subset of benchmarks is

selected. Second, one or more fragments of the complete execution representing the overall

behavior are chosen as simulation intervals. In the literature, several successful sampling tech-

niques have been proposed, such as Hierarchical Clustering [18] for benchmark selection, and

SimFlex [6] or SimPoint [7] for intervals selection.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 4 / 24

https://doi.org/10.1371/journal.pone.0220135


Hierarchical Clustering [18]. The Hierarchical Clustering methodology is applied in

three steps: i) execution of all benchmarks to obtain 20 metrics through hardware counters, ii)

analysis of the main components to reduce the number of metrics to 4, and iii) clustering of

similar benchmarks.

In the first step, the authors select microarchitecture-independent metrics which are related

to the type of instructions executed and their proportions. Therefore, this methodology does

not consider the behavior of the memory hierarchy as a parameter to guide sampling.

SimFlex [6]. The SimFlex methodology uses statistical sampling theory to select simula-

tion intervals. It identifies numerous small-sized intervals that are distributed throughout all

the application execution, ensuring that they are representative of the benchmark.

However, SimFlex has an important drawback when it is applied to cache memory hierar-

chy research: the simulation intervals do not have enough extension to provide accurate data

without a previous cache warm-up. Warming memory structures has an unacceptable over-

head when simulating large caches or a large number of intervals.

SimPoint [7]. SimPoint is one of the most used methodologies to select simulation inter-

vals. First, it splits up the execution of a benchmark into intervals of equal number of instruc-

tions. For each interval, Simpoint calculates a signature that contains the number of executions

of each basic block. Then, SimPoint executes the k-Means algorithm to group different inter-

vals into clusters called phases. The intervals of a given phase execute similar code and there-

fore are expected to exhibit a similar behavior in the system (misses in the memory hierarchy,

CPI . . .). Finally, the centroid is selected as the most representative interval of each phase.

Although SimPoint offers several simulation intervals for each benchmark, most research

related to memory hierarchy design uses only the most representative interval.

One of the contributions of this paper is to assess the representativeness of the intervals

selected by SimPoint regarding the interaction with the memory hierarchy. Towards that

end we analyze the temporal evolution of different metrics, namely CPI, MPKI2 and MPKI3,

across the whole application execution. By plotting such metrics as a function of time and

superposing the first three intervals selected by SimPoint, we will see how well they match the

memory hierarchy dynamics.

Methodology

Runtime environment

The SPEC CPU2006 and the single-threaded CPU2017 benchmarks have been executed on a

system with an Intel Xeon Gold 5120 processor, code-named Skylake-SP (Skylake Scalable Per-

formance, SKL-SP for short), and 96 GiB of DRAM running a CentOS 7 Linux with the 3.10

kernel. The system specifications are shown in Table 1. The processor integrates 14 cores. Each

core contains a split first level cache (32 KiB for instructions and 32 KiB for data), a 1 MiB

Table 1. System specifications.

Processor Intel Xeon Gold 5120 (Skylake-SP)

Main Memory 96 GiB DDR4

L1 I-Cache 32 KiB, 64 B line size, 8 ways

L1 D-Cache 32 KiB, 64 B line size, 8 ways

L2 1 MiB, 64 B line size, 16 ways

L3 19.25 MiB, 64 B line size, 11 ways

OS CentOS 7, kernel: 3.10

https://doi.org/10.1371/journal.pone.0220135.t001

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0220135.t001
https://doi.org/10.1371/journal.pone.0220135


unified second level cache with 16 ways, and four hardware prefetchers. All cores share a 19.25

MiB LLC with 11 ways.

In order to assure reproducibility, each benchmark has been executed alone and pinned to

a given core. All measures of hardware events have been taken from hardware counters driven

by Perf, a Linux profiler tool [20].

We use Intel Cache Allocation Technology (CAT) [21], a tool included in the Intel Resource
Director, to modify the amount of LLC storage allocated to an application during its execution.

Besides, we selectively enable or disable the hardware prefetchers through the 0x1A4 Model
Specific Register (MSR). This procedure allows us to characterize the behavior of an entire

benchmark on a real system for different hardware prefetching configurations and LLC sizes.

Intel SKL-SP memory hierarchy

The SKL-SP is the first Intel processor family that uses a mostly non-inclusive memory hierar-

chy. In all of its previous cache organizations, Intel used instead the inclusion policy, which

enforces that all the private caches (L1 and L2) content of all the cores are also stored in the

shared LLC. Inclusion leads to designs with relatively small private caches and a large shared

LLC. By contrast, in non-inclusive hierarchies, the LLC content is largely independent of the

private caches content. Changing the policy from inclusive to mostly non-inclusive may have

allowed Intel to redistribute cache chip area, by enlarging private caches (from 256 KiB to 1

MiB) and diminishing LLC (from 2.5 MiB to 1.375 MiB per core). However, since now LLC

stores less replicated content, reducing its size does not necessarily imply lowering its effective

capacity. According to D. Kanter, the new cache design reduces the processor’s L2 miss rate by
about 40% on average for the SPECint_rate2006 suite, whereas the L3 miss rate barely increases
[11].

Benchmarks

The CPU2006 and CPU2017 suites have been compiled following the official documentation

provided by SPEC. CPU2006 has been compiled with gcc 4.9.2 and the options -O3
-fno-strict-aliasing. CPU2017 has been compiled with gcc 6.3.1 and the base

flags. -DBIG_MEMORY has been used for deepsjeng and -m64 when required.

The CPU2017 speed versions of application xz and all the floating point (fp) applications

are multi-threaded. We do not consider them in our study because the characterization of

multi-threaded benchmarks requires a very different methodology. Therefore, all CPU2006

and single-threaded CPU2017 applications have been executed with all the so called “refer-

ence” inputs (one or more input data sets representative of real behavior, different from the

“train” or “test” input data sets not devised for measurement purposes). As said before, each

application-input pair constitutes a benchmark.

Table 2 shows the 106 benchmarks tested across the two suites, from a total of 43 applica-

tions, 17 integer and 26 floating point. Some applications appear only in one suite, as astar
(SPEC CPU2006 int) or blender (SPEC CPU2017 fp), while some others have evolved

and are in both suites, as gcc. Moreover, some CPU2017 applications have both speed and

rate versions. For instance, the integer application mcf has one CPU2006 version and two

CPU2017 versions, one to produce the SPECrate metric (_r), and the other one the SPECspeed

metric (_s). For each benchmark, the table specifies an input identifier (#), the input name

(Input) and the measured instruction count (Inst.).

As a general rule, we can see a significant increase of individual instruction counts in the

CPU2017 benchmarks with respect to the CPU2006 ones, even though if we take into account

the aggregate figures the difference flattens.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 6 / 24

https://doi.org/10.1371/journal.pone.0220135


Table 2. Benchmarks tested, divided between integer (int column) and floating point (fp column). Filled cells in columns “2006” and “2017” mean the benchmark

appears in the corresponding suite. The columns labeled “_r” and “_s” refer to the application versions producing SPECrate and SPECspeed metrics, respectively. Columns

“Inst.” and “#” show instruction count (x1012) and input identifier, respectively.

2006 int 2017 2006 fp 2017

Inst. Input # Name # Input Inst. Inst. Input # Name # Input Inst.
_r _s _r

0.36 BigLakes 1 astar blender 1 sh3 1.73

0.75 rivers 2 2.56 None 1 bwaves 1 bwaves_1 1.30

0.41 source 1 bzip2 2 bwaves_2 1.57

0.17 chicken.jpg 2 3 bwaves_3 1.40

0.29 liberty.jpg 3 4 bwaves_4 1.83

0.53 program 4 cactuBSSN 1 spec_ref 1.11

0.58 text.html 5 2.73 benchADM 1 cactusADM

0.33 combined 6 4.25 hypervis 1 calculix

deepsjeng 1 ref 1.87 2.18 cam4 1 None 2.69

exchange2 1 6 2.91 2.91 1.65 23 1 dealII

0.07 166 1 gcc 1 pp.c -O3 0.20 fotonik3d 1 None 1.95

0.14 200.00 2 2 pp.c -O2 0.23 0.11 cytosine 1 gamess

0.12 c-typeck 3 3 small.c -O3 0.23 0.09 h2ocu2+ 2

0.09 cp-decl 4 4 ref32.c -O5 0.19 0.37 triazolium 3

0.10 expr 5 5 ref32.c -O3 0.26 1.72 None 1 gemsFDTD

0.14 expr2 6 1 -fipa-pta 1.21 1.95 gromacs 1 gromacs

0.17 g23 7 2 -fin = 1000 0.52 imagick 1 refrate 4.59

0.15 s04 8 3 -fin = 24000 0.50 1.24 reference 1 lbm 1 reference 1.28

0.05 scilab 9 0.18 leslie3d 1 leslie3d

0.02 13x13 1 gobmk 0.10 su3imp 1 milc

0.06 nngs 2 nab 1 1am0 2.09

0.03 score2 3 2.28 namd 1 namd 1 apoa1 1.78

0.02 trevorc 4 parest 1 ref 3.39

0.03 trevord 5 0.94 SPEC-ref 1 povray 1 SPEC-ref 3.31

0.50 baseline 1 h264ref roms 1 ocean2 2.71

0.32 main 2 0.34 pds-50 1 soplex

2.89 sss_main 3 0.35 ref 2

0.86 nph3 1 hmmer 3.39 ctlfile 1 sphinx3

1.82 retro 2 3.44 None 1 tonto

leela 1 ref 2.11 2.11 2.93 None 1 wrf 1 None 4.20

1.65 1397 1 libquantum 1.92 None 1 zeusmp

0.32 inp 1 mcf 1 inp 0.92 1.65

0.54 omnetpp 1 omnetpp 1 General 1.09 1.06

1.05 checkspam 1 perlbench 1 checkspam 1.22 1.22

0.36 diffmail 2 2 diffmail 0.70 0.70

0.66 splitmail 3 3 splitmail 0.67 0.67

2.26 ref 1 sjeng

x264 1 -pass 1 0.52 0.52

2 -pass 2 1.96 1.96

3 -seek 500 1.99 1.99

0.99 t5 1 xalancbmk 1 t5 1.27 1.27

xz 1 cld 0.40

2 cpu2006 1.04

3 combined 0.57

(Continued)

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 7 / 24

https://doi.org/10.1371/journal.pone.0220135


Metrics

When measuring performance of an application running on a system, the ultimate metric is

execution time. Any other metric is intended to help understand why an execution time is

obtained or to show the influence of some subsystem on it. Therefore, a performance metric is

only useful if it gives insight into execution time variations. Since we are interested in charac-

terizing the memory hierarchy as a performance enabler or limiter, we measure miss ratios

and memory bandwidth consumption in addition to execution time. Specifically, we consider

number of cycles per instruction (CPI), number of misses per thousand instructions in the dif-

ferent cache levels (misses per kilo instruction, MPKI), and number of bytes read from main

memory per thousand instructions (bytes per kilo instruction, BPKI), as performance metrics.

Previous works often use the LLC local miss ratio (#LLC misses / #LLC accesses) instead

of MPKI [18]. However, the LLC local miss ratio does not consider how often the LLC is

accessed and thus, it does not correlate well with execution time. For instance, a large reduc-

tion in the local LLC miss ratio may not decrease the execution time if the average number of

LLC accesses per instruction is very low. Conversely, a slight LLC local miss ratio reduction

can significantly reduce the execution time if the number of LLC accesses per instruction is

high. On the other hand, MPKI is a metric that correlates much better with execution time.

MPKI is a global metric, since it is relative to the number of instructions executed. Few misses

per instruction imply little penalty in time and vice versa.

With respect to memory bandwidth consumption, we use BPKI instead of bytes per time

(i.e. bytes per kilo cycle, BPKC) because we want to quantify prefetching overhead. As we will

see in the results section, prefetching usually results in a significant decrease in the execution

time, which in turns causes a BPKC increment, even when the number of bytes read from

memory is not increased. BPKI, on the other hand, measures bandwidth consumption per

unit of work performed. The value of BPKI in the system without prefetching can be consid-

ered a minimum. Any increase in this metric when prefetching is enabled indicates a waste of

the memory bandwidth resource.

Evaluation

Identification of memory intensive benchmarks

All the SPEC CPU2006 benchmarks (55 from 29 applications) and the CPU2017 single-

threaded benchmarks (51 from 23 applications) have been executed first with limited memory

resources, disabling all hardware prefetchers and using the minimum LLC size available, 1.75

MiB, resulting from enabling only one of the eleven LLC ways.

For each benchmark, we have measured its miss ratios in the three data cache levels

(MPKI1, MPKI2, MPKI3). These metrics are shown in Figs 2 and 3 for SPEC CPU2006 and

CPU2017, respectively.

Table 2. (Continued)

2006 int 2017 2006 fp 2017

Inst. Input # Name # Input Inst. Inst. Input # Name # Input Inst.
_r _s _r

Total Total Total Total Total

18.84 20.34 20.46 32.51 36.91

AVG AVG AVG AVG AVG

0.54 1.02 1.36 1.63 2.31

https://doi.org/10.1371/journal.pone.0220135.t002

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 8 / 24

https://doi.org/10.1371/journal.pone.0220135.t002
https://doi.org/10.1371/journal.pone.0220135


If we select for each application the benchmark with the highest MPKI3, the average value

of MPKI1 is similar for CPU2006 and CPU2017 (21.9 and 21.8, respectively). However, the

average values of MPKI2 and MPKI3 are clearly higher in CPU2006 (12.4 and 10.2) than in

CPU2017 (8.1 and 6.6). Therefore, a first conclusion is that SPEC CPU2017 does not put more

pressure on the memory hierarchy, rather the opposite.

Fig 2. MPKI1, MPKI2 and MPKI3 for all SPEC CPU2006 benchmarks, sorted by benchmark number.

https://doi.org/10.1371/journal.pone.0220135.g002

Fig 3. MPKI1, MPKI2 and MPKI3 for all SPEC CPU2017 single-threaded benchmarks, sorted by benchmark number.

https://doi.org/10.1371/journal.pone.0220135.g003

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 9 / 24

https://doi.org/10.1371/journal.pone.0220135.g002
https://doi.org/10.1371/journal.pone.0220135.g003
https://doi.org/10.1371/journal.pone.0220135


In order to select a set of memory-intensive benchmarks we proceed as follows. Firstly, we

identify benchmarks with very low MPKI2 and MPKI3 ratios, namely (both below 1.0). Under

these circumstances the SKL-SP private caches are sufficient to meet the storage needs and

we assume that the LLC behavior has no interest. Thus, we propose to leave out from further

analysis the 43 benchmarks indicated by white-filled bars in the MPKI1 axes (22 out of 55 in

CPU2006, and 21 out of 51 in CPU2017). Secondly, for all the remaining benchmarks we

select a single representative for each application, the one with the highest MPKI2-3 miss ratios

(black-filled bars in the figure). Notice that in some cases, the specific application selection

extends to both CPU2006 and 2017, as is the case, for example, of mcf. Table 3 shows the result-

ing 33 benchmarks (18 from CPU2006 and 15 from CPU2017) that form our selected workload

of memory-intensive benchmarks which will be analyzed in depth in the next sections.

Sensitivity to LLC size and hardware prefetching

In this experiment, we study the sensitivity of the memory intensive benchmarks to LLC size

and hardware prefetching. The benchmarks selected in the previous section have been exe-

cuted with five LLC sizes. For each LLC size, two executions have been performed: all prefetch-

ers enabled and all disabled.

The evaluated LLC sizes are: 1.75 MiB, 3.5 MiB, 7 MiB, 14 MiB and 19.25 MiB, correspond-

ing to associativities of 1, 2, 4, 8 and 11, respectively.

Figs 4 and 5 show the MPKI3 of the selected benchmarks for the different LLC sizes, with

and without hardware prefetching.

Without hardware prefetching, increasing the LLC size results in an MPKI3 reduction for

almost all benchmarks of both suites, with the exception of 410.bwaves, 434.zeusmp,

and 459.GemsFDTD in CPU2006, and 503.bwaves in CPU2017.

With hardware prefetching, the MPKI3 improvement achieved by increasing the LLC size

is considerably reduced for 6 CPU2006 benchmarks (433.milc, 437.leslie3d, 447.

Table 3. Selected benchmarks and their performance metrics for minimum LLC size and no prefetching.

2006 2017

Benchmark MPKI1 MPKI2 MPKI3 CPI Benchmark MPKI1 MPKI2 MPKI3 CPI
401.bzip2.3 18.4 10.2 4.5 0.88 500.perlbench_r.3 5.8 1.9 1.5 0.71

403.gcc.7 38.1 20.6 13.0 1.99 502.gcc_r.5 47.2 29.3 19.1 2.16

410.bwaves.1 17.5 14.8 14.6 0.96 503.bwaves_r.3 12.5 9.9 9.7 0.75

429.mcf.1 116.3 75.9 59.0 5.08 505.mcf_r.1 65.8 34.2 25.7 1.97

433.milc.1 26.2 25.1 24.4 1.92 507.cactuBSSN_r.1 118.3 8.8 8.4 1.02

434.zeusmp.1 21.5 5.4 5.0 0.78 510.parest_r.1 31.5 18.7 12.5 1.34

436.cactusADM.1 8.0 5.1 4.5 0.91 519.lbm_r.1 50.9 30.7 29.0 1.59

437.leslie3d.1 29.0 18.3 17.0 1.16 520.omnetpp_r.1 32.3 14.1 11.3 1.84

447.dealII.1 18.7 6.6 3.8 0.72 521.wrf_r.1 10.9 5.6 4.7 1.26

450.soplex.2 31.9 29.1 27.6 2.35 523.xalancbmk_r.1 44.2 6.7 4.4 1.11

459.GemsFDTD.1 27.1 18.8 17.5 1.39 526.blender_r.1 7.5 1.9 1.5 0.68

462.libquantum.1 32.8 32.2 30.5 1.22 527.cam4_r.1 18.5 4.4 3.0 0.73

470.lbm.1 52.3 31.6 30.2 1.42 549.fotonik3d_r.1 32.3 27.8 27.0 2.06

471.omnetpp.1 34.6 22.9 18.4 1.52 554.roms_r.1 27.6 14.4 10.9 1.07

473.astar.1 24.8 12.4 9.8 1.08 557.xz_r.1 11.9 5.4 4.3 1.34

481.wrf.1 12.2 6.4 6.0 0.82

482.sphinx3.1 16.3 12.4 6.9 0.68

483.xalancbmk.1 26.3 9.1 6.1 0.64

https://doi.org/10.1371/journal.pone.0220135.t003

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 10 / 24

https://doi.org/10.1371/journal.pone.0220135.t003
https://doi.org/10.1371/journal.pone.0220135


Fig 4. MPKI3 vs. LLC size for the selected CPU2006 benchmarks, with and without prefetching.

https://doi.org/10.1371/journal.pone.0220135.g004

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 11 / 24

https://doi.org/10.1371/journal.pone.0220135.g004
https://doi.org/10.1371/journal.pone.0220135


Fig 5. MPKI3 vs. LLC size for the selected CPU2017 benchmarks, with and without prefetching.

https://doi.org/10.1371/journal.pone.0220135.g005

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 12 / 24

https://doi.org/10.1371/journal.pone.0220135.g005
https://doi.org/10.1371/journal.pone.0220135


dealII, 450.soplex.2, 462.libquantum and 481.wrf), and for 5 CPU2017

benchmarks (510.parest, 519.lbm, 521.wrf, 549.fotonik3d and 554.roms).

Both hardware prefetching and increasing LLC size have the same goal, improving perfor-

mance by decreasing cache misses. Therefore, when either one of these two techniques acts

effectively, it removes part of the problem and reduces the need for the other one. Hardware

prefetching is very effective for many applications. Even with the minimum LLC size (1.75

MiB in our system), MPKI3 is very low for many benchmarks running with prefetching acti-

vated. In all these cases, increasing the LLC size does not provide any benefit. For instance,

510.parest_r.1 clearly shows this behavior. Without prefetching, MPKI3 decreases from 12.5 to

0.6 by increasing the LLC size from 1.75 to 14 MiB. However, when enabling the prefetchers,

the MPKI3 with 1.75 MiB is already 1.0, so any further increase in the LLC size provides very

little benefit.

Hardware prefetching is very effective in reducing MPKI3 for all LLC sizes in 14 and 10

CPU2006 and CPU2017 benchmarks, respectively. This is because prefetching, regardless of

the size of the cache, detects the right patterns and goes ahead of the memory reference stream

correctly. Therefore, in those benchmarks where MPKI3 is high for all LLC sizes, hardware

prefetching is effective in reducing the MPKI also for all LLC sizes.

It also reduces MPKI3 for small LLC sizes in other 4 CPU2006 benchmarks (401.bzip2,

473.astar, 482.sphinx3 and 483.xalancbmk) and 2 CPU2017 ones (510.parest
and 523.xalancbmk). For one benchmark, omnetpp, which is included in both suites,

LLC misses are not reduced for any LLC size, and even are slightly increased with the largest

LLC size.

To summarize, Fig 6 shows the speedups of benchmarks when prefetching is enabled with

the minimum cache size (X axis), and when the LLC size is increased up to 19.25 MiB without

prefetching (Y axis) with respect to a baseline system with the minimum LLC size and without

prefetching. Fig 6 facilitates the classification of benchmarks according to their sensitivity to

both parameters. Integer and floating point benchmarks are plotted with gray circles and black

squares, respectively. For instance, we can see a group of CPU2006 benchmarks that are very

sensitive to hardware prefetching but show little sensitivity to LLC size increase (462.lib-
quantum, 481.wrf, 459.GemsFDTD, 410.bwaves, 470.lbm, 437.leslie3d and

450.soplex).

Fig 6 also allows us to analyze whether the clustering of applications made by other propos-

als is in agreement with the sensitivity of these applications with respect to the prefetch and

the increase in LLC size. As an example, Limaye et al. [18] classify 510.parest and 503.
bwaves of SPEC CPU2017 as very similar benchmarks. However, in our classification we

can see that 510.parest is the CPU2017 benchmark which is most sensitive to the LLC size

while 503.bwaves is the least sensitive one.

Correlation between MPKI3 and CPI. Figs 7 and 8 show the correlation between MPKI3

(X axis) and CPI (Y axis) for the different LLC sizes, with (square marks) and without (x

marks) prefetching. The slope of the CPI/MPKI linear interpolation gives thousand of cycles

per LLC miss: (cycles/instruction)/(LLC misses/Kinstruction). For instance, the slope of 401.

bzip2.3 in Fig 7 is 0.084 Kcycles/LLC_miss. For the sake of clarity, inside the figures we write

instead 84 cycles/LLC_miss. This number represents the average LLC miss penalty for the

benchmark.

As can be seen in Figs 7 and 8, the linear relationship between MPKI3 and CPI is strong,

although the MPKI increase has different impacts on the benchmarks’ CPI. The slope of the

interpolation line varies between 30 cycles per miss for several benchmarks in both suites

and 187 cycles per miss for 500.perlbench_r.3. The slope value provides another

criteria to classify benchmarks according to the amount of instruction-level and memory

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 13 / 24

https://doi.org/10.1371/journal.pone.0220135


Fig 6. Speed-ups enabled either by hardware prefetching, with the minimum cache size (X axis) or maximum LLC

size, without prefetching (Y axis) over a baseline configuration without prefetching and minimum LLC size for the

selected SPEC CPU2006 and CPU2017 benchmarks. Integer and floating point benchmarks are represented by gray

circles and black squares, respectively.

https://doi.org/10.1371/journal.pone.0220135.g006

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0220135.g006
https://doi.org/10.1371/journal.pone.0220135


Fig 7. CPI vs. MPKI3 for the selected CPU2006 benchmarks, varying LLC size and with prefetching (square marks) and

without prefetching (x marks). Slope units are cycles/miss. Slopes are comparable in all graphs because the ratio between X and Y

scales is constant (10:1).

https://doi.org/10.1371/journal.pone.0220135.g007

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 15 / 24

https://doi.org/10.1371/journal.pone.0220135.g007
https://doi.org/10.1371/journal.pone.0220135


Fig 8. CPI vs. MPKI3 for the selected CPU2017 benchmarks, varying LLC size and with prefetching (square marks) and without prefetching (x

marks). Slope units are cycles/miss. Slopes are comparable in all graphs because the ratio between X and Y scales is constant (10:1).

https://doi.org/10.1371/journal.pone.0220135.g008

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 16 / 24

https://doi.org/10.1371/journal.pone.0220135.g008
https://doi.org/10.1371/journal.pone.0220135


level-parallelisms [22]. For instance, a large slope value means a low instruction-level and

memory-level parallelism (low temporal overlapping among computation and LLC misses,

and low temporal overlapping of LLC misses with themselves), as seen in 482.sphinx3.1
and 500.perlbench_r.3.

Performance of the hardware prefetchers

In this section we analyze the impact of the different hardware prefetchers on the benchmarks’

performance and bandwidth consumption. Intel SKL-SP processors have four hardware pre-

fetchers associated with the first and second cache levels [12]: L1 Data cache unit prefetcher
(DCUI), L1 Data cache instruction pointer stride prefetcher (DCUP), L2 Data cache spatial pre-
fetcher (L2A) and L2 Data cache streamer (L2P).

All the benchmarks selected in Section Identification of memory intensive benchmarks have

been executed with different configurations: all prefetchers enabled, all prefetchers disabled

and each prefetcher individually enabled. The experiments have been performed with the max-

imum LLC size. Figs 9 and 10 show performance measured in cycles per instruction (CPI, left

axis, bars) and bandwidth consumption measured in bytes read from main memory per kilo

instruction (BPKI, right axis, line).

L2P is by far the best prefetcher. For the 14 CPU2006 benchmarks whose miss ratios are

reduced by turning on hardware prefetching with the maximum LLC size, L2P, by itself,

achieves more than 70% of the CPI reduction obtained with all prefetchers enabled. Further-

more, for 10 of these 14 benchmarks, L2P is responsible for more than 90% of the CPI reduc-

tion obtained with all the prefetchers enabled. Similar results are observed for the CPU2017

suite. For the 10 benchmarks that even with the biggest LLC size take advantage of hardware

prefetching, L2P alone achieves more than 82% of the CPI reduction obtained when all pre-

fetchers are active. This percentage is greater than 90% for 7 out of these 10 benchmarks.

The second-best prefetcher is DCUI, followed by DCUP. L2A obtains the worst results,

since it only reduces CPI in more than 5% for 8 and 6 of the CPU2006 and CPU2017 bench-

marks, respectively, with a maximum of 20% for 450.soplex.

Hardware prefetching is very accurate, since it only causes a significant increase of band-

width consumption in 3 benchmarks of the CPU2006 suite (403.gcc.7, 433.milc and

471.omnetpp) and in 3 CPU2017 benchmarks (520.omnetpp, 549.fotonik3d and

554.roms). Moreover, in most of these benchmarks prefetching causes a considerable CPI

reduction despite the increase in bandwidth consumption, with the exception of omnetpp
(both 471.omnetpp and 520.omnetpp).

Temporal evolution of the benchmarks

This section analyzes the temporal evolution of the benchmarks. Figs 11 and 12 show MPKI3

(Y axis) for every million of executed instructions (X axis). This allows us to know the different

phases of a benchmark and can help select simulation intervals. The execution was performed

with the minimum LLC size (1.75 MiB) and with all the hardware prefetchers enabled. We

did the same analysis using other LLC configurations and even using the metrics of the other

cache levels (MPKI2 and MPKI1), and a total similarity was observed in all experiments.

Thus, the temporal evolution of the applications seems to be very independent of the LLC

configuration.

The graphs in Figs 11 and 12 also plot three vertical lines of different patterns representing

the first three simulation intervals obtained by SimPoint with the parameters MaxK = 3 and

interval size = 300 million instructions. The solid, dotted, and dashed lines correspond to the

most, second most, and third most representative intervals, respectively. The thickness of each

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 17 / 24

https://doi.org/10.1371/journal.pone.0220135


CPI BPKI

Fig 9. Impact of the different hardware prefetchers on performance (CPI, bars) and bandwidth consumption (BPKI, line) for

the selected CPU2006 benchmarks.

https://doi.org/10.1371/journal.pone.0220135.g009

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 18 / 24

https://doi.org/10.1371/journal.pone.0220135.g009
https://doi.org/10.1371/journal.pone.0220135


Fig 10. Impact of the different hardware prefetchers on performance (CPI, bars) and bandwidth consumption (BPKI, line) for the selected CPU2017

benchmarks.

https://doi.org/10.1371/journal.pone.0220135.g010

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 19 / 24

https://doi.org/10.1371/journal.pone.0220135.g010
https://doi.org/10.1371/journal.pone.0220135


Fig 11. Temporal evolution of MPKI3 and SimPoint selection for the selected CPU2006 benchmarks, with minimum LLC size

and hardware prefetching.

https://doi.org/10.1371/journal.pone.0220135.g011

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 20 / 24

https://doi.org/10.1371/journal.pone.0220135.g011
https://doi.org/10.1371/journal.pone.0220135


Fig 12. Temporal evolution of MPKI3 and SimPoint selection for the selected CPU2017 benchmarks, with minimum LLC size and hardware

prefetching.

https://doi.org/10.1371/journal.pone.0220135.g012

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 21 / 24

https://doi.org/10.1371/journal.pone.0220135.g012
https://doi.org/10.1371/journal.pone.0220135


vertical line is not proportional to the number of instructions that it represents. It has been

increased in order to improve visibility.

The simulation intervals selected by SimPoint are not always representative of all the different

phases of a benchmark. As an example, we can observe that 401.bzip2 in Fig 11 clearly has three

phases with different MPKI3 values and similar duration, approximately 100 million instruc-

tions each one. The MPKI3 of each phase is very different with values around 2.0, 4.1 and 5.2,

respectively. However, SimPoint selects its first interval from the first phase, the next two inter-

vals from the second phase, and does not select any interval from the third phase. This is because

Simpoint, as the methodology used to select applications, focuses on memory unrelated parame-

ters, giving accurate outcomes, but only to evaluate design tradeoffs related to those parameters.

This analysis reveals the limitations of SimPoint to obtain representative intervals of a

benchmark execution from the memory hierarchy point of view. The problem gets worse

because most research papers based on this methodology only select the first interval.

Conclusions

In this paper we have analyzed the performance of the memory hierarchy of an Intel Xeon

Skylake-SP processor executing the SPEC CPU2006 benchmarks and CPU2017 single-

threaded benchmarks. Below, we summarize the main conclusions that we can draw from

this characterization.

A significant number of the benchmarks have very low miss ratios in the second and third

level caches, even with a small LLC size and without hardware prefetching. The CPU2017

demand for memory hierarchy resources is lower than the CPU2006 one.

We offer a classification of the benchmarks that demand resources in LLC according to

their sensitivity to LLC size and hardware prefetching. Hardware prefetching is very effective

in reducing LLC misses for most benchmarks, even with the smallest LLC size. Increasing the

LLC size is also effective in reducing LLC miss counts for many benchmarks.

The best prefetcher implemented in the SKL-SP processor is L2P. For most benchmarks, it

is responsible for 90% of the CPI reduction when using prefetching.

Hardware prefetching is very accurate. In general, the number of bytes read from main

memory hardly increases.

Our analysis shows that the methodologies used in other works to select benchmarks [18]

and simulation points [7] do not guarantee that representative workloads from the memory

hierarchy point of view are obtained.

Author Contributions

Conceptualization: Agustı́n Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-Marı́n,

Vı́ctor Viñals-Yúfera.

Data curation: Agustı́n Navarro-Torres.

Formal analysis: Pablo Ibáñez-Marı́n.

Funding acquisition: Pablo Ibáñez-Marı́n, Vı́ctor Viñals-Yúfera.

Investigation: Agustı́n Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-Marı́n, Vı́ctor

Viñals-Yúfera.

Methodology: Agustı́n Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-Marı́n, Vı́ctor

Viñals-Yúfera.

Project administration: Pablo Ibáñez-Marı́n.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 22 / 24

https://doi.org/10.1371/journal.pone.0220135


Resources: Jesús Alastruey-Benedé.

Software: Agustı́n Navarro-Torres.

Supervision: Jesús Alastruey-Benedé, Pablo Ibáñez-Marı́n, Vı́ctor Viñals-Yúfera.

Validation: Pablo Ibáñez-Marı́n.

Visualization: Agustı́n Navarro-Torres.

Writing – original draft: Agustı́n Navarro-Torres, Pablo Ibáñez-Marı́n, Vı́ctor Viñals-Yúfera.

Writing – review & editing: Agustı́n Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-

Marı́n, Vı́ctor Viñals-Yúfera.

References
1. The SPEC Organization. Available from: https://www.spec.org/spec/. [Accessed 18 Jan. 2019].

2. Ferdman M, Adileh A, Kocberber O, Volos S, Alisafaee M, Jevdjic D, et al. A Study of Emerging Scale-

out Workloads on Modern Hardware. SIGPLAN Not. 2012; 47(4):37–48. https://doi.org/10.1145/

2248487.2150982

3. Falk H, Altmeyer S, Hellinckx P, Lisper B, Puffitsch W, Rochange C, et al. TACLeBench: A Benchmark

Collection to Support Worst-Case Execution Time Research. 2016; 55:2:1–2:10.

4. EEMBC—Embedded Microprocessor Benchmarks. Available from: https://www.eembc.org/about/

index.php. [Accessed 18 Jan. 2019].

5. Corporation SPE. SPEC CPU Benchmark Suites. Available from: https://www.spec.org/cpu2017. 2018;

[Accessed 18 Jan. 2019].

6. Wenisch TF, Wunderlich RE, Ferdman M, Ailamaki A, Falsafi B, Hoe JC. SimFlex: Statistical Sampling

of Computer System Simulation. IEEE Micro. 2006; 26(4):18–31. https://doi.org/10.1109/MM.2006.79

7. Perelman E, Hamerly G, Van Biesbrouck M, Sherwood T, Calder B. Using SimPoint for Accurate and

Efficient Simulation. SIGMETRICS Perform Eval Rev. 2003; 31(1):318–319. https://doi.org/10.1145/

885651.781076

8. Jain A, Lin C. Back to the Future: Leveraging Belady’s Algorithm for Improved Cache Replacement. In:

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA); 2016. p. 78–

89.

9. The 2nd Cache Replacement Championship. Available from: http://crc2.ece.tamu.edu. [Accessed 03

Apr. 2019].

10. Panda R, Song S, Dean J, John LK. Wait of a Decade: Did SPEC CPU 2017 Broaden the Performance

Horizon? In: 2018 IEEE International Symposium on High Performance Computer Architecture

(HPCA); 2018. p. 271–282.

11. Kanter D. SKYLAKE–SP SCALES SERVER SYSTEMS. Microprocessor Report; July. 2017; p. 6.

12. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D,

3A, 3B, 3C, 3D and 4; p. 4844.

13. Intel® Resource Director Technology (Intel® RDT). Available from: https://www.intel.com/content/www/

us/en/architecture-and-technology/resource-director-technology.html [Accessed 18 Jan. 2019].

14. McCurdy C, Fischer C. Using Pin As a Memory Reference Generator for Multiprocessor Simulation.

SIGARCH Comput Archit News. 2005; 33(5):39–44. https://doi.org/10.1145/1127577.1127586

15. Jaleel A. Memory characterization of workloads using instrumentation-driven simulation. Web Copy:

http://www.glue.umd.edu/ajaleel/workload. 2010.

16. Korn W, Chang MS. SPEC CPU2006 Sensitivity to Memory Page Sizes. SIGARCH Comput Archit

News. 2007; 35(1):97–101. https://doi.org/10.1145/1241601.1241620

17. Kumar T, Peng L. Performance Characterization of SPEC CPU2006 Benchmarks on Intel Core 2 Duo

Processor. ISAST Trans Comput Softw. vol. 2; no 1; p. 36–41.

18. Limaye A, Adegbija T. A Workload Characterization of the SPEC CPU2017 Benchmark Suite. In: 2018

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS); 2018.

p. 149–158.

19. Cook J, Cook J, Alkohlani W. A Statistical Performance Model of the Opteron Processor. SIGMETRICS

Perform Eval Rev. 2011; 38(4):75–80. https://doi.org/10.1145/1964218.1964231

20. De Melo AC. The New Linux’perf’ Tools. In: Linux Kongress. vol. 18; 2010.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 23 / 24

https://www.spec.org/spec/
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://www.eembc.org/about/index.php
https://www.eembc.org/about/index.php
https://www.spec.org/cpu2017
https://doi.org/10.1109/MM.2006.79
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/885651.781076
http://crc2.ece.tamu.edu
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://doi.org/10.1145/1127577.1127586
http://www.glue.umd.edu/ajaleel/workload
https://doi.org/10.1145/1241601.1241620
https://doi.org/10.1145/1964218.1964231
https://doi.org/10.1371/journal.pone.0220135


21. Resource Allocation in Intel® Resource Director Technology. Available from: https://01.org/intel-rdt-

linux/blogs/fyu1/2017/resource-allocation-intel%C2%AE-resource-director-technology [Accessed 18

Jan. 2019].

22. Hennessy JL, Patterson DA. Computer Architecture, Sixth Edition: A Quantitative Approach. 6th ed.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2017.

Memory hierarchy characterization of SPEC CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP

PLOS ONE | https://doi.org/10.1371/journal.pone.0220135 August 1, 2019 24 / 24

https://01.org/intel-rdt-linux/blogs/fyu1/2017/resource-allocation-intel%C2%AE-resource-director-technology
https://01.org/intel-rdt-linux/blogs/fyu1/2017/resource-allocation-intel%C2%AE-resource-director-technology
https://doi.org/10.1371/journal.pone.0220135

