FM-Index Search Algorithm	Hardware resources	Results	Conclusions
0000000000	0	0000000	00

Exact Alignment with FM-Index on the Intel Xeon Phi Knights Landing Processor

Jose M. Herruzo¹ Sonia González-Navarro¹ Pablo Ibáñez² Víctor Viñals² Jesús Alastruey-Benedé² Oscar Plata¹

¹Departamento de Arquitectura de Computadores Universidad de Málaga

²Grupo de Arguitectura de Computadores Universidad de Zaragoza

Accelerator Architecture in Computational Biology and Bioinformatics. 2018

FM-Index Sear	ch Algorithm
0000000000	

Hardware resources

Results 00000000 Conclusions 00

Motivation

Genomic Sequencing New Sequencing Technologies

• Sequence alignment

・ロト ・四ト ・ヨト ・ヨト

3

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	0000000	00
Motivation			

• Suffix Tree

• Hash Tables

• FM-Index

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FM-Index	Search	Algorithm

Motivation BWT & FM-Index

• Burrows Wheeler Transform (BWT)

Hardware resources

• FM-Index

- Bowtie
- BWA
- SOAP2

banana\$ banana\$ 0 anana\$b 1 nana\$ba 2 ana\$ban 3 na\$bana 4 5 a\$banan 6 \$banana

Results

00000000000		0000000	00
FM-Index Search Algorithm	Hardware resources	Results	Conclusions

Outline

Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results

- RANDOM Benchmark
- Throughput results

FM-Index Search Algorithm	Hardware resources O	Results 0000000	Conclusions

Outline

Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results
• RANDOM Benchmark
• Throughput results

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
••••••	O	00000000	00
EM-Index			

- Data structures

 C array
 Occ table

 Random memory accesses
 - Memory bound algorithm

Algorithm: Backward Search Based on FM-index Input: FM-index of T text (C & Occ), Q query, n:|T|, p:|Q| **Ouput:** (*sp*,*ep*): Interval pointers of Q in T begin 1: sp = C[Q[p]]2: ep = C[Q[p]+1]3: for *i* from *p*-1 to 1 step -1 4: sp = LF(Q[i], sp)2 LFop-chains ep = LF(Q[i],ep)5: 6: end for 7: return (sp+1,ep) end

 Backward Search algorithm

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
⊙●0000000000	O	00000000	00
EM_Index			

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

FM-Index	Search	Algorithm
0000000	00000	

Hardware resources

Results 00000000 Conclusions 00

FM-Index

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	0	0000000	00
FM-Index Search Algorithm	Hardware resources	Results	Conclusions

Outline

Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results
• RANDOM Benchmark
• Throughput results

FM-Index Search Algorithm

Hardware resources

Results 0000000 Conclusions 00

Sampled FM-Index

From Ferragina, P. and Manzini, G.: "Opportunistic Data Structures with Applications" (2000)

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	00000000	00

Outline

I FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results
• RANDOM Benchmark
• Throughput results

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	0000000	00
K-Step FM-Index			

Searching several symbols per iteration

- Increased memory footprint
- Reduced number of LF operations

From Chacon et al. (2015)

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
0000000000			

FM-Index Comparison

FM-Index Search Algorithm	Hardware resources O	Results 0000000	Conclusions
о. н.			

Outline

Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results
• RANDOM Benchmark
• Throughput results

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	00000000	00
Bit-Vector FM-Index			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

FM-Index Search Algorith	m
000000000000	

Hardware resources

Results 00000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusions

Bit-Vector FM-Index

Advantages

- Reduced data movement
- Reduced computing requirements

Disadvantages

Increased memory footprint

FM-Index Search Algorithm	Hardware re	esources Results	Conclusions
	O	00000000	00

FM-Index Comparison

FM-Index Search Algorithm	Hardware resources	Results 0000000	Conclusions 00
Outline			

1 FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

Results RANDOM Benchmark Throughput results

FM-Index Search Algorithm	Hardware resources	Results 0000000	Conclusions 00
Hardware Resources			

Xeon Phi 7210	Xeon E5-2630V4
(KNL)	(Broadwell)
64 cores @ 1.3 GHz	10 cores @ 2.2 GHz
4 threads per core	2 threads per core
400 GB/s (MCDRAM)	68 GB/s (DDR4)

Intel Xeon Phi

- AVX 512 Vectorial Processing Units
- High Bandwidth Memory (HBM)
 - Cache / Hybrid / Flat

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FM-Index Search Algorithm	Hardware resources	Results	Conclusions

Outline

FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results

RANDOM BenchmarkThroughput results

FM-Index Search Algorithm	Hardware resources O	Results ••••	Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

Results
 RANDOM Benchmark
 Throughput results

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○●000000	00
Results			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	00●00000	00
Results Xeon Phi KNL RANDOM Ben	chmark		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○○○●○○○○	00
A 11			

Outline

FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

- Results

 RANDOM Benchmark
 - Throughput results

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○○○○●○○○	00
Results			

- Human Genome (Around 3GBases).
- 20 million input queries generated by Mason.
- 200 symbols per Sequence.
- Measurements started after loading the sequences into main memory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• LFM/s as performance evaluation metric

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○○○○○●○○	00
Results			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○○○○○○●○	00
Results Roofline (Broadwell)			

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
	O	○○○○○○●	00
Results Roofline (Knights Landing)			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

FM-Index Search Algorithm	Hardware resources	Results	Conclusions

Outline

FM-Index Search Algorithm

- Sampled FM-Index
- K-Step FM-Index
- Bit-Vector FM-Index

2 Hardware resources

3 Results
• RANDOM Benchmark
• Throughput results

	0	0000000	00
00000000000	0	0000000	•0
FM-Index Search Algorithm	Hardware resources	Results	Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Reduced data movement
- Efficiently used memory bandwidth
- Great performance improvement
 - Up to 11.7 G LFM/s
 - 3x faster than previous GPU versions

FM-Index Search Algorithm	Hardware resources	Results	Conclusions
0000000000	0	0000000	00

Exact Alignment with FM-Index on the Intel Xeon Phi Knights Landing Processor

Jose M. Herruzo¹ Sonia González-Navarro¹ Pablo Ibáñez² Víctor Viñals² Jesús Alastruey-Benedé² Oscar Plata¹

¹Departamento de Arquitectura de Computadores Universidad de Málaga

²Grupo de Arguitectura de Computadores Universidad de Zaragoza

Accelerator Architecture in Computational Biology and Bioinformatics. 2018