Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

A. Ferrerón¹, D. Suárez-Gracia², J. Alastruey-Benedé¹, T. Monreal³, V. Viñals¹

¹Universidad de Zaragoza, Spain

²Qualcomm Research Silicon Valley, USA

³Universidad Politécnica de Cataluña, Spain

SBAC-PAD Oct-2014

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

1/1

Image: A mathematical states and a mathem

Operation near the threshold voltage (V_{th})

V_{dd} and V_{th} scaling has stopped

Power density no longer stays constant among technology generations and dark silicon appears

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

2/1

イロト イヨト イヨト イヨト

Operation near the threshold voltage (V_{th})

V_{dd} and V_{th} scaling has stopped

Power density no longer stays constant among technology generations and dark silicon appears

Operation at ultra-low V_{dd}

- Reduce the power and energy consumption
- Switch on more cores to exploit parallelism

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

2/1

イロト イヨト イヨト イヨト

Operation near the threshold voltage (V_{th}) : Challenges

Delay increases: lower voltage \rightarrow lower frequency

 Compensate with parallelism: more active cores with the same power budget

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Operation near the threshold voltage (V_{th}) : Challenges

Delay increases: lower voltage \rightarrow lower frequency

 Compensate with parallelism: more active cores with the same power budget

Increasing sensitivity to process variation (deviation of device parameters from their nominal values)

- Memory structures especially sensitive to variation
 - Conventional 6T cells: read, write, access, and hold failures
 - ► Lower voltages → stability margins decrease → increasing cell failure rate

< ロ > < 回 > < 回 > < 回 > < 回 >

3/1

V_{ddmin} of memory blocks to guarantee reliable operation

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Objective

Lower V_{dd} to near-threshold voltages \rightarrow energy efficient operation

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Objective

Lower V_{dd} to near-threshold voltages \rightarrow energy efficient operation

Problem

High sensitivity of SRAM structures to variation at ultra-low V_{dd}

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

4/1

イロト イヨト イヨト イヨト

Objective

Lower V_{dd} to near-threshold voltages \rightarrow energy efficient operation

Problem

High sensitivity of SRAM structures to variation at ultra-low V_{dd}

Our proposal

Mitigate the impact of SRAM cell failures at ultra-low V_{dd} using low complexity techniques: Block Disabling with Operational Tags and Block Disabling with Operational Tags and Cache-to-cache Transfers

< ロ > < 回 > < 回 > < 回 > < 回 >

3

4/1

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Outline

5 990

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

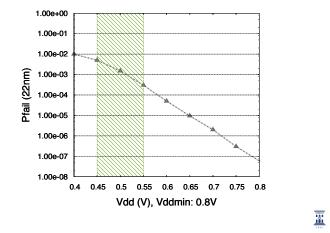
Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

5/1

< ロ > < 回 > < 回 > < 回 > < 回 >

Outline

5 990


A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

6/1

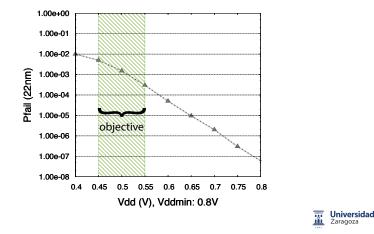
< ロ > < 回 > < 回 > < 回 > < 回 >

Example of Probability of Failure of SRAM Cells at 22nm

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

7/1

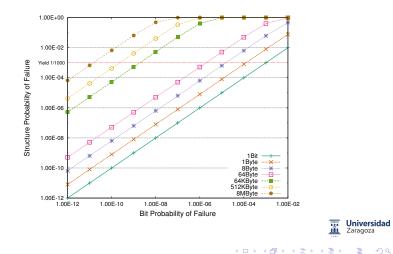

э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Universidad Zaragoza

2

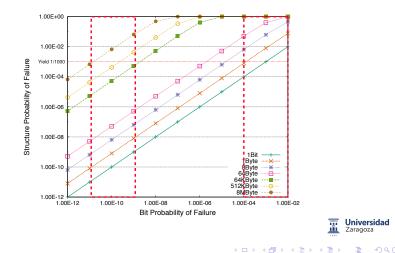
Example of Probability of Failure of SRAM Cells at 22nm


A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

7/1

< 同 ▶ < 三 ▶


Bit Probability of Failure Affects Yield

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

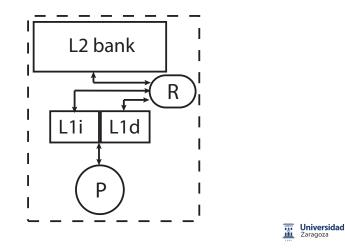
Bit Probability of Failure Affects Yield

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

Outline

5 990


A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

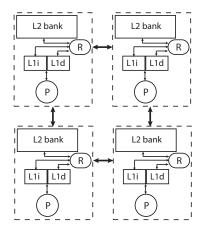
9/1

< ロ > < 回 > < 回 > < 回 > < 回 >

Traditional Cache Hierarchy

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages


10/1

э

2

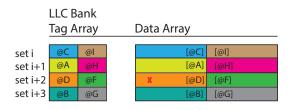
< ロ > < 回 > < 回 > < 回 > <</p>

Traditional Cache Hierarchy

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

10/1


イロト イヨト イヨト

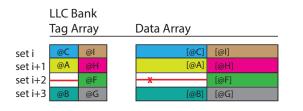
Universidad Zaragoza

æ

Block Disabling Fundamentals

SRAM cell failure detected: Block Disabling (BD) deactivates entry (tag and data) Simple implementation and low overhead: 1 bit per cache entry

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14


Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

11/1

• • • • • • • • • • • •

Block Disabling Fundamentals

SRAM cell failure detected: Block Disabling (BD) deactivates entry (tag and data) Simple implementation and low overhead: 1 bit per cache entry

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

11/1

< D > < A > < B > < B >

Block Disabling at Ultra-low Voltages

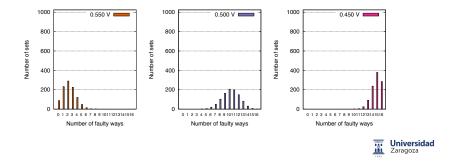
At lower voltages capacity and associativity degrade very fast

Available capacity for 16-way, 1MB cache bank with block disabling (block size is 64 bytes):

Vdd	Available capacity (KB)
0.55V	887 KB (86%)
0.50V	408 KB (40%)
0.45V	138 KB (13%)

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

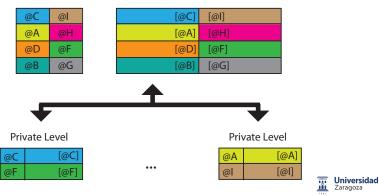

12/1

• • • • • • • • • • • •

Block Disabling at Ultra-low Voltages

At lower voltages capacity and associativity degrade very fast

Associativity degradation for 16-way, 1MB cache bank with block disabling (block size is 64 bytes):


A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

Inclusive Hierarchies

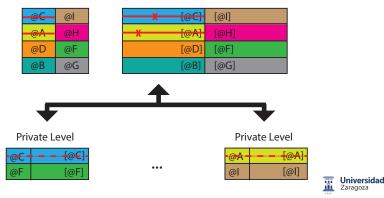
LLC Bank (Shared)

Tag ArrayData Array

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

14/1


æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Inclusive Hierarchies and Block Disabling Interaction

LLC Bank (Shared)

Tag ArrayData Array

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

15/1

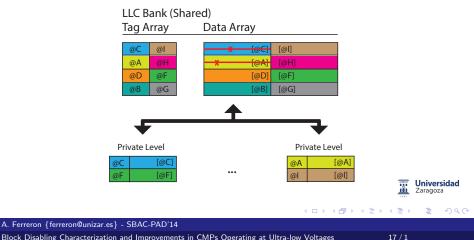
3 x 3

イロト イロト イヨト イ

Outline

5 990

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14


Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

16/1

< ロ > < 回 > < 回 > < 回 > < 回 >

BD with operational tags: BDOT

Allow blocks to be allocated as just tags: entries with faulty bits can still be used to allocate tag-only blocks in LLC

BD with operational tags: BDOT

Protect the tag array

- Bigger/robust cells: bigger transistors/more transistors per cell (assist circuitry)
- More complex error correction codes (ECC)

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

BD with operational tags: BDOT

Protect the tag array

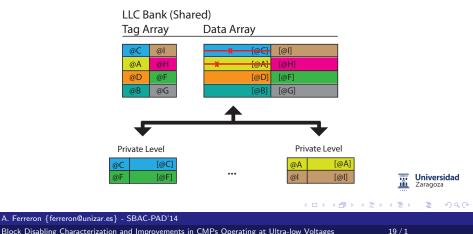
 Bigger/robust cells: bigger transistors/more transistors per cell (assist circuitry)

More complex error correction codes (ECC)

- Why not protect the whole cache structure?
 - Area and power increase when using bigger/robust cells
 - Complex ECC require extra storage and checking hardware: might increase access latency
 - Tag array roughly 10% of the cache area (LLC)

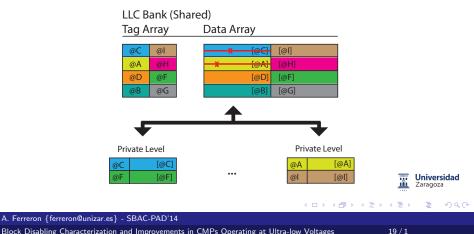
A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages


18/1

3

イロト イ団ト イヨト イヨト


BDOT with cache-to-cache trasnfers: BDOT-C2C

 \blacktriangleright Problem: requests to tag-only blocks \rightarrow off-chip transactions

BDOT with cache-to-cache trasnfers: BDOT-C2C

- \blacktriangleright Problem: requests to tag-only blocks \rightarrow off-chip transactions
- Observation: shared blocks already on-chip (private levels)

BDOT with cache-to-cache trasnfers: BDOT-C2C

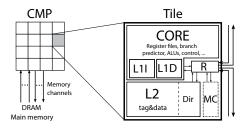
Provide cache-to-cache transfers of clean blocks: leverage coherence protocol

- The protocol already does cache-to-cache transfers of exclusively owned blocks
- Slight change in the coherence protocol behavior, but no hardware overhead
- Potential gain depends on the applications sharing degree

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14 Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages 20/1

Outline

5 990


A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

21/1

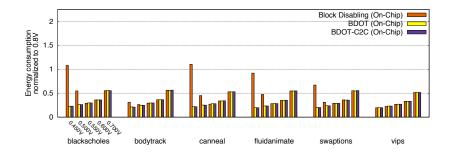
< ロ > < 回 > < 回 > < 回 > < 回 >

Methodology

 Experimental set-up: Simics + GEMS + GARNET + DRAMSim2 + McPAT

> Universidad Zaragoza

> > 3

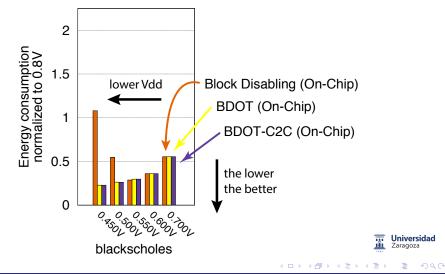

22 / 1

イロト イ団ト イヨト イヨト

- PARSEC benchmark suite
- Random faults + Monte Carlo simulations

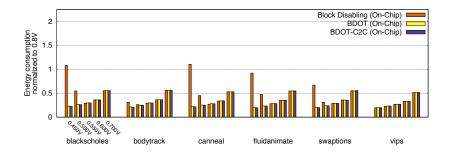
A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

On-chip Energy Consumption



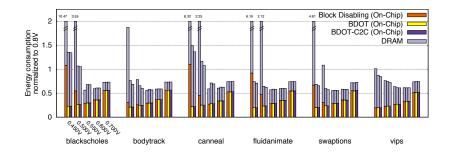
A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages


On-chip Energy Consumption

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

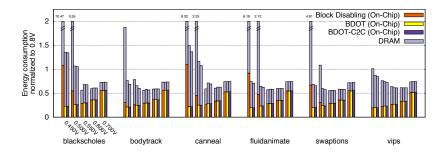
Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages


On-chip Energy Consumption

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

Total Energy Consumption



Universidad Zaragoza

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

Total Energy Consumption

Minimum system energy: off-chip memory energy consumption main source higher voltage values (0.55-0.6V)

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

24/1

Universidad Zaragoza

Outline

5 990

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

25 / 1

< ロ > < 回 > < 回 > < 回 > < 回 >

Conclusions

Operation near V_{th} for energy efficient operation

- Switch on inactive cores
- Reduce the overall energy consumption
- SRAM structures fail when lowering V_{dd}
 BD: simple, low overhead, but not effective at ultra-low V_{dd}
 Inclusive hierarchies: BD increases inclusion victims
 - ▶ BDOT: allow blocks allocated as tag-only \rightarrow protect inclusion
 - BDOT-C2C: provide cache-to-cache transfers of shared blocks

 → reduce off-chip transactions

イロト イ団ト イヨト イヨト

3

26/1

 BDOT & BDOT-C2C: substantial reduction on-chip power and energy consumption

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

A. Ferrerón¹, D. Suárez-Gracia², J. Alastruey-Benedé¹, T. Monreal³, V. Viñals¹

¹Universidad de Zaragoza, Spain

²Qualcomm Research Silicon Valley, USA

³Universidad Politécnica de Cataluña, Spain

SBAC-PAD Oct-2014

A. Ferreron {ferreron@unizar.es} - SBAC-PAD'14

Block Disabling Characterization and Improvements in CMPs Operating at Ultra-low Voltages

27 / 1

< D > < A > < B > < B >