Procesadores Vectoriales Segmentados

PROCESADORES VECTORIALES
SEGMENTADOS

Victor Vinals Yufera y Jesus Alastruey Benede

Multiprocesadores

Curso 2024-25
3° Grado en Ingenieria Informatica

Especialidad Ingenieria de Computadores

0 Basado en los apuntes de la asignatura “Procesadors Vectorials” de la
profesora Montserrat Peiron Guardia, Facultat d’Informatica de Bar-
celona (FIB), UPC.

0 Algunas transparencias tomadas de cursos de los profesores José
Maria Llaberia y Mateo Valero Cortes, FIB, UPC.

0 Basada en la asignatura “Fundamentos de Arquitecturas Paralelas”, de
Ingenieria informatica, impartida desde el curso 1995-96 hasta el
2012-13.

Multiprocesadores, 3° Ing. Inf. UNIZAR - Victor Vinals y Jests Alastruey ldel @

1. INTRO. MARCO: EL PARALELISMO

OBIJETIVOS

(1) 4 tiempo de ejecucion de una aplicacion =] Consecuencias
- Hardware
- Compilacion
(3) T productividad aplicaciones multihilo _| - Software

(2) 7T productividad maltiples usuarios

- servidores web, bases de datos, ...
(4) Tolerancia a fallos: p.ej. sistemas navegacion de un avion

(5) Simplificar componentes y especializar funcion.
Por ejemplo: sistemas empotrados en-chip (teléfono movil)

Ultra HD Capture and

Playback DTS-HD and
Dolby Digital Plus audio

Expanded Gestures

sensor accuracy and

Krait 400 CPU efficiency

Low-power Snapdragon
Sensor Core increases

features 2BHPm process
technology superior
2GHz+ performance

21MP with dual ISP

Support for up to
2550x2048 display
Miracast 1080p HD
support

Adreno 330 for
advanced graphics

Hexagon QDSPé&

for ultra low power
applications and custom
programmability

IZat GNSS with
support for three
GPS constellations

Integrated Gobi 4G LTE World

Mode ', 802.11ac’, USB 3.0 and
BT 4.0 offers broad array of
high speed connectivity

http://www.qualcomm.com/snapdragon/processors/800
Snapdragon 800 series

2 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1. INTRO. MARCO: EL PARALELISMO

CONSECUENCIAS

HARDWARE para (1, 2, 3)

0 Combinacion de:
ejecutar varias instrucciones por ciclo — ILP
la misma instruccidon opera sobre varios datos — SIMD

un procesador ejecuta varios hilos (threads) — MT

D N N

muchos procesadores interconectados — MIMD

0 Mucha memoria accesible desde los procesadores
con gran ancho de banda

3 Mucho disco accesible desde la memoria
con gran ancho de banda (entrada/salida)

AMD EPYC Rome
DIMMs 11 gxcpU + | | 8xcPU + 8xCPU + | | 8xCPU + || DIMMs
32MB L3 | | 32MB L3 32MB L3 | | 32MB L3
(e ——
Fabric Fabric Fabric Fabric
Fabric || Fabric | | Fabric || Fabric

—_I*M Fabric | 128x18G | PCle m:-.l" L
] | 12008 Misc* | Serdest | SATA | [2xDDR4 t_-L

Fabric H Fabric } ‘ Fabric H Fabric

Yy

A J y

Fabric Fabric Fabric Fabric

8xCPU + | | 8xCPU + 8xCPU + | | 8xCPU +
== 32MB L3 | | 32MB L3 32MB L3 | | 32MB L3 ==

I
|

Figura: Linley Gwennap. AMD Rome Ruins Intel Hegemony. Microprocessor Report. Agosto 2019.

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1. INTRO.

MARCO: EL PARALELISMO

CONSECUENCIAS

COMPILACION

O Extraccion automatica de paralelismo
a partir de codigos secuenciales

v

v

vectorizacion — SIMD

paralelizacion - MIMD

Por ejemplo: <https://godbolt.org/z/B67Rxu>

SOFTWARE: modelos de programacion paralela

A Paralelismo vectorial: FORTRAN 90

O Paralelismo de datos: p.ej. High Performance FORTRAN

O Single-program, multiple-data (SPMD): Co-Array FORTRAN

0 Memoria compartida:

v

AN N N

OpenMP <http://www.openmp.org>
Pthreads (ANSI/IEEE POSIX std. 1003.1)

Java

Intel Threading Building Blocks (TBB) en C++
Cl1, C++11, ...

O Paso de mensajes:

v

v

MPI

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

https://godbolt.org/z/B67Rxu
http://www.openmp.org

1. INTRO.

1.1 PROBLEMAS CIENTIFICOS NUMERICOS

OBJETIVO (1): ! Tex de una aplicacion

Supercomputacion

O Aplicaciones numéricas

v prediccion meteoroldgica, dinamica de fluidos,
dinamica molecular, alineamiento genético

v simulacion aerodinamica
ala, estacionario: 10'® operaciones doble precision
ala, turbulencia: 102 DP FLOPs
avion, turbulencia: 10%> DP FLOPs

v ;Y muchas mas!, ver p.e;j.

<http://www.bsc.es/index.php>
computer, earth and life sciences

O Estructuras de datos: grandes matrices densas o dispersas

O Tipos de datos: generalmente nimeros reales (coma flotante),
32/64 bits, IEEE 754

A “Pocos” bucles con muchas iteraciones

0 Tiempo de ejecucion limitado
por el calculo compute-bound
o por el acceso a memoria memory-bound

3 Paralelismo de datos

= Supercomputadores numéricos

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

http://www.bsc.es/index.php

1. INTRO.

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
PROCESADORES ESCALARES

CODIGO

Real*8 C(max),A(max),B(max)

DO I 1, max
c(D) = A(I) + B(I)
ENDDO
SEGMENTACION
@ dst. salto

A . .
instrucciones enteros (alu, mem)

F D/L | ALU | MEM | ERi

T,=0.5ns 2> F=2GHz instrucciones coma flotante

Saltos no Ul 18) ERf

retardados

Todos los cortos F: fetch

necesarios D/L: decod. y lect. operandos en Rx
Riesgos en D/L ALU: operaciones enteras

MEM: acceso a memoria
ERx: escritura en registros

Ul, U2: operaciones coma flotante

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
1. INTRO. PROCESADORES ESCALARES

PROCESADOR SEGMENTADO

Rcont = max; Ra,Rb,Rc = &A, &B, &C

1 2 3 4 5 11
bu: LD FI1,M[Ra] I:|F |D M 1 F|D|A|M|E
2: LD F2,M[Rb] 2 |F|D|a[ME o,
3:ADDF F3,F1+F2 3 [F|p] Yul|ujE - °
4: ST M][Rc], F3 4|F| |D AfM :
5: ADD Ra, #8 s r[p[alM[E] |
6: ADD Rb, #8 6:|F | D|A|[M|E
7: ADD Rc, #8 7.|F|D|A|M|E
8: DEC Rcont 8:|F|D|A|M|E
9: BNE bu DCC 99 F|D{A|M|E

CODIGO Y DATOS cargados en caches
0 Ciclos / iteracion =
0 CPF(ciclos/flop) =
O TPF(ns/flop) =

7 R(MFLOPS) =

7 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
1. INTRO. PROCESADORES ESCALARES

REORDENANDO CODIGO

O bu: LD FI, M[Ra]
O 2: ADD Ra, #8
L ————+— bu: 1:——+—+—+—
O 3: LD F2, M[Rb] 2: bt 2:
3+

O 4: ADD Rb, #8 A4 ———+—+

5——+—+—+
= 5:ADDF F3,Fl,F2 6: ——+—+—+—

EE
O 6: ST MJRc], F3 8: ——+——+—
9:———+—+—

O 7: ADD Rc, #8 bu:
O 8: DEC Rcont
O 9: BNE bu

[--]

0 Un flop/iteracion (instr.)
TPF =5 ns, R =200 MFLOPS

rendimiento maximo: 2 GFLOPS

0 Sobrecarga (overhead) del bucle:
lectura y escritura de operandos (instr. O)

control de bucle y punteros (instr. 0)

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
1. INTRO. PROCESADORES ESCALARES

DESENROLLANDO D =4

bu: LD F10, M[Ra]
2: LD Fl1, M[Ra+8]
3: LD FI2, M[Ra+16]
4: LD FI13, M[Ra+24]
" 0 5 LD F20,M[Rb]
O 6: LD F21, M[Rb+8]

O 7: LD F22, M[Rb+16]

O 8 LD F23, M[Rb+24]

> 10:ADDF F31, F11, F21

> 11:ADDF F32, F12, F22

> 12:ADDF F33, F13, F23

O 13: ST M[Rc], F30

O 14: ST MJ[Rc+8], F31

O 15: ST MJ[Re+16], F32

O 16: ST MJ[Rc+24], F33

]

0O 17:ADD Ra, #32 A Ciclos / iteracion =

O O O O

O

O 18: ADD Rb, #32 _

O CPF(ciclos/flop) =
O 19:ADD R, #32
O 20: SUB Rcont, #4 O TPF(ns/flop) =
O 21: BNE bu 0 R(MFLOPS) =

[--]

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN

1. INTRO. PROCESADORES ESCALARES

DESENROLLANDO D = o0

O
O

= ADDF F3n, Fln, F2n

O

LD Fln, M[Ra+n*8]
LD F2n, M[Rb+n*§]

[~

[~
ST M[Rc+n*§], F3n

i IRREALIZABLE ! & 3 X max registros

0 CPF(ciclos/flop) =
0 TPF(ns/flop) =

7 R(MFLOPS) =

10

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN

[--]

1. INTRO. PROCESADORES ESCALARES
PROCESADOR SUPERSEGMENTADO
enteros: (@ dst salto
F1 2 DI D2 ALU Ml M2 ER
Tc=0.25ns > 4 GHz
coma flotante:
Fl F2 DI D2 Ul U2 U3 U4 ER
bu:|F1 |F2 |D1|D2 | A |MI|M2| E A CPF =
2: [F1|F2 |D1|D2 | A |M1|M2} E
O TPF=
3: |F1|F2 |D1|D2 | A | - E
O R=
4 (Fl|r2|DID2|A}-|-|E
bu: LD Fl1, M[Ra]
5:|F1|F2|DI1|D2 |UI|U2|U3| U4, E
2: LD F2, M[Rb]
6: |F1|F2|DI|D2|A| -§-)E
3: ADD Ra, #8
7. |F1|F2 [DI|D2|Af-]-|E

4: ADD Rb, #8
5. ADDF F3,Fl,F2 8 |Fl |F2 |D1|D2| A |MI1|M2
6: ADD R, #8 9+ |F1 |F2 | DI
7: DEC Rcont L F1 |F2 |D1|D2
8: ST MJRe], F3 ; inicializamos
9: BNE bu : Rc con 8 menos!

11

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

1. INTRO.

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
PROCESADORES ESCALARES

PROCESADOR SUPERESCALAR

A Cambiamos el control

Mantenemos rutas de datos (= coste)

T,=0.5ns 3 2 GHz

O Suponemos grado 2:
se buscan dos instrucciones por ciclo

O Pero solo se ejecutan en paralelo
si utilizan las dos rutas de datos: entera y coma flotante

O Hay que planificar para formar parejas de instrucciones
sin dependencias entera-coma flotante

O El efecto es “esconder” los ciclos de ejecucion de ADDF

O Ciclos/FLOP

Ciclos/
FLOP

12

Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN
PROCESADORES ESCALARES

1. INTRO.

RESUMEN

A TPF obtenidos en los diferentes casos en ns
(entre paréntesis, la velocidad R en MFLOPS)

d=1 d=4 d=oo | '€
ns
Segmentado 5 2.75 2 0.5
R ax = 2 GFLOPS (200) (363.6) (500) '
Supersegmentado 2.75 1.4375 1 025
R ax =4 GFLOPS (363.6) (695) (1000) '
Superescalar 4.5 2.25 1.5 0.5
R ax =2 GFLOPS (222) (444) (666) '

13

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

1. INTRO.

1.3 VERSION VECTORIAL DE LA SUMA DE VECTORES

bu: LD F11, M[Ra]

LD F12, M[Ra+8]
LD FIN, M[Ra+(N-1)*8]

]

LD F21, M[Rb]

LD F22, M[Rb+8]
LD F2N, M[Rb+(N-1)*8]

ADDF
ADDF

F31, F11, F21
F32, F12, F22

ADDF

F3N, FIN, F2N

ST M][Rc], F31

M[Rc + (N-1)*8], F3N

LV V1, M[Ra]

LV V2, M[Rb]

ADDV V3, V1, V2

SV V3, M[Rc]

ADD Ra, #N*8
ADD Rb, #N*8
ADD Rc, #N*8

ADD
ADD
ADD

Ra, #N*8
Rb, #N*8
Rc, #N*8

SUB Rcont, #N
BNE bu

O 1 instruccion vectorial corresponde a

max /N iteraciones

\

cuerpo-N
desenrollado

N 1instrucciones del bucle N-desenrollado

v Instrucciones por iteracion =

v Ancho de banda con memoria =

v Tiempo de ejecucion =

14 Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

2. EXTENSION 2. EXTENSION VECTORIAL
VECTORIAL DE UNA ARQUITECTURA LD/ST

2.1 ARQUITECTURA Y ORGANIZACION

O Primeros supercomputadores tipo CISC (M-M)
v Instruccion compleja: ADDV @md, @mfl, @mf2

lee dos flujos desde memoria
calcula
escribe el flujo resultado hacia memoria

v Organizacion segmentada

U

- Latencia de obtencion de operandos muy grande,
sobre todo para paso no secuencial.
Es dificil encadenar

- CDC Star 100 (“72), TI ASC (‘72)

O Despugs, y en la actualidad, filosofia RISC (R-R), o sea,

desacoplar instrucciones de calculo y de acceso a memoria:

v Instr. vectoriales de acceso a memoria para
carga/descarga de registros vectoriales: LV, SV

v Instr. vectoriales de calculo sobre
los registros vectoriales: ADDV

v VLR: Vector Length Register
n’de elementos a procesar
p.€j. para vectores de 64 elementos necesito 6 + 1 bits

v VMR: Vector Mask Register
impide que algunas operaciones se realicen

15 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

0 Ventajas de un repertorio vectorial:

Compacto
v Una instruccion pequeiia codifica N operaciones

Expresivo:
La instruccion indica al hardware

v que las operaciones son independientes
v el niimero de operaciones

v el “patrén” de acceso a memoria:
en secuencia (stride = 1 elemento)
0
a saltos (stride > 1 elemento)

Escalable

v el mismo binario puede ejecutarse
en una o varias “pistas” segmentadas
(parallel pipelines or lanes)

Bajo consumo de energia

v Ahorramos energia en el acceso a la memoria de
instrucciones y en la decodificacion (1/N)

v Cuando se ejecutan las operaciones
de una instruccion vectorial
no hay que gastar energia en comprobar dependencias

16 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2. EXTENSION
VECTORIAL 2.2 REPERTORIO BASICO DE INSTRUCCIONES

0 Ejemplo: DLXV! Diagrama de flujo de la ALMa?

rO0,rl, ... f0,£f1, ...
/ r1
BRi o BRip
e“o‘\
. VLR | (7b)
Memoria i

|

b /}@

64 datosx 8B VO |° BRv

Simple precision: addv.F doble precision: addv.p

1. [HePal2]: Appendix G
2. ALMa: Arquitectura de Lenguaje Maquina (en inglés IS4, Instruction Set Architecture)

17 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2. EXTENSION

VECTORIAL 2.2 REPERTORIO BASICO DE INSTRUCCIONES

EJEMPLOS

mOV-iZS VLR, r2 ;VLR:I'26:O € {0:64}

¥\

Tv VO, [r3] : V0.0 = mem [r3 + [*§]

SV [r5],v4 ; mem [r5 + i*8] = V4.i

addv vl,v2,v3 ;V1.i=V2.i+V3.i

addsv +

subsv v1,f0,v3 * V1.i= f0-V3.i

subvs Vv1,v3,f5 * V1.i=V3.i-15

VLR accion?
0 NOP
| 1=0:0
2 i=0:1 | j=0:VLR-1
64 1=0:63
65
. 1=0:63
127

a. n° elementos a procesar = max (VLR mod 64, 64 x VLR div 64)

18

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

PROBLEMA: CODIFICAR EN ENSAMBLADOR

integer 1, max

parameter (max = multiplo de 64)
real*8 C(max), A(max), B(max)

do 1= 1,max

c(i) = A1) + B(1)

enddo

Suponemos registros enteros inicializados:

R, = &A(0), Rg = &B(0), R = &C(0), R, = max, Rey = 64

19

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2. EXTENSION
VECTORIAL 2.3. ORGANIZACION Y SEGMENTACION

SIMD: Single Instruction Multiple Data

1962 1972 1982 1992 2002 2012 2022

Array processors
[I

Pipelined | |
Multimedia extensio/
(general purpose)

: Q)
Vector extensions $(L
(floating point) PS

O Extensiones multimedia: Intel MMX (1982), luego Intel SSE
v Vectores cortos

v No hay registro VLR: la longitud vectorial va en el CO

l{ | | || |1 ll | | ALU de enteros
Rb| [T 1 | [T 717 T 1 | convencional de 64b:

l
l
basta impedir la
n propagacion del
acarreo en las fronteras
de 8 bits ...
Rl | | | [|] © o D1

Figure 1. Packed add instruction on 8-bit subwords.

v Freescale/Apple/IBM Altivec, SPARC VIS, ARM Neon

O Extensiones vectoriales: Intel AVX, AVX-512, ARM SVE, RVV
v Soporte hw: ALUs replicadas y BR vectorial (BRV)
v, BRV de AVX-512 — 32 registros de 512 bits: ZMMO0-31

20 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

O Procesadores Matriciales (Array Processors)

Historicamente fueron los primeros:

v Solomon computers
(Westinghouse Electric Corporation, 1960-62)
— ILLIAC IV (8x8) en 1968-74

v Soporte hw: Nodos (mem+regs+ALU) +
Red Interconexi6n Directa entre nodos

v STARAN (74), BSP (82)
Connection Machines:
_ CM1 - CM2 - CMS5 (1985 - 87 - 93)

v Actualidad: procesado de imagen y de senal

)

Red de Interconexién Directa Mi

datos | M

L
A

L1

—

M M

datos

$66 @ (O

Red de Interconexién Directa

21 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

O Procesadores Vectoriales Segmentados (pipelined)

Memoria-memoria

v ADDV @md, @mfl, @mf2
v CDC Star 100 (72), TI ASC (72)

Memoria-registros (Seymour Cray, 1975)
v Vectores de tamano grande, hasta 4K elementos

v Soporte hw: Banco Registros Vectorial +
Memoria Multibanco +
ALUs + segmentacion

v Cray 1 (76), Cray2, Cray X-MP y Cray Y-MP
CDC Etay Cyber
IBM 3090 VF
Fujitsu VP200
Hitachi S-810
Convex
Alliant
NEC SX/2 - ... - SX/9 - SX/ACE (85-07 -13)

22 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

< >
Controlador BRV
» de memoria.
Calculo de @s
A
q| | P
Redes O\,
de interconexion /-
A
Memoria Control
principal (¢ I UFs
. vectoriales
multi-
banco <
Vo Procesador
\ Cache P escalar
14D o

otro punto de vista:

p buses E (escritura) Red Vuelta

wrcose (SEmg] [Foer L]
g |G| LMo
ot [

Red Ida

q buses L (lectura)

23 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3. ORGANI-
ZACION

2.3.1 BANCO DE REGISTROS VECTORIAL

O3 BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1L@OI1E)

X8 Vi

El

L1

1

L2

1 flujo por registro
(lecoesc)

addv vl, v2, v3?
addv vl1, v2, v2 ?
addv vl, v2, v1?

El
. V3
n
1 6b r P V3.0
‘Tavs 7 °l; >
: o
. w3 °
ol w3 N V3.63
Tr
Q)
|
64 b
// o% L1
X .

24

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3. ORGANI-
ZACION

2.3.1 BANCO DE REGISTROS VECTORIAL

O3 BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1L@OI1E)

— El
x§ Vi mas
% detalle
L1
! L2
E1l
U
Iil optativo
d
a
d
C
0
n
t
r (]
Y °
1 optativo
6/;1 b X L1
*ﬂ L2

25

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI-
ZACION

2.3.1 BANCO DE REGISTROS VECTORIAL

O3 BRV con p buses L, g buses E y Reg Vec de 1 puerto

El
(-] Eq
X8 i
° %‘ L1
: $ -

3 1 flyjo por registro
v O bien lectura desde un bus L (L1..Lp)
v O bien escritura desde un bus E (E1..Eq)

O Globalmente max. 8 flujos

0 Ejemplo: 5 buses L y 3 buses E permiten a la vez

v Dos operaciones de dos operandos, y

v Una operacion de un operando

26

Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2.2 ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

O Mejora: 2 puertos por Vi: lectura y escritura (1L+1E)

i El
X8 Vi
\
= L1
= L2
BRV cON 2 BUSES L, 1 BUS E Y REG VEC (1L+1E)

O Yaesposible addv vi, v5,vi

0 Solapar dependencias?
SI, se llama

—_— encadenamiento

subv V4,V5,V1 general

y necesita un
control elaborado
(lo veremos)

<addv vV1i,v2,V3

O Solapar antidependencias?

——p Tambi€n, y usa

addv V1,V2,V3
< subv V3,V4,V5 un control similar

O3 Podemos
v afiadir puertos de lectura en cada Vi

v tener un BRV con p buses L y g buses E

27 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2.3 ORGANI-
ZACION

2.3.1 BANCO DE REGISTROS VECTORIAL

REG VEC CON 2 PUERTOS SEPARADOS:
LECTURA Y ESCRITURA

®00
<
~J
oyl

(] .
o PErmisos
(]

de carga

optativo

L1

28

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI-
ZACION 2.3.2 UNIDADES FUNCIONALES

O Descripcion temporal:
v Latencia (ciclos): tiempo desde que entran los operandos

hasta que sale el resultado.

v Lat. iniciacion (LI) = lat. finalizacion (ciclos/operacién)lz
n° min. ciclos entre entradas consecutivas de operandos
O Sumadores, Multiplicadores

L =n° de etapas, LI = 1 ciclo/op
UF segmentada

A3 A2 Al — 5
L ...C3C2C1
.B3B2B1

1 L

O Division, Raices, Exponenciacion, Trigonomeétricas
L > n° etapas, por reutilizacion
LI>1

UF parcialmente segmentada

WA A2 Al

. ..C3__C2_ 1
..B3 B2 Bl ___,

L ciclos

t t

O Modelo de ejecucion:

L ciclos ciclos
1
]

1. Lainversa se llama tasa iniciacion = tasa finalizacion (operaciones/ciclo)

29 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI-
ZACION

2.3.3 MEMORIA MULTIBANCO

0 Ejemplo de memoria:

- 4 GiB con 1 puerto compartido de lec/escr

- 4 bancos! de 4 ciclos de latencia

.

]
loadVv 4
BRV 4 ciclos
Mem
out
in| storeV

L A 4

O Queremos este comportamiento en lectura:
4 ciclos lc

< > € > € > € > € > ooo

0o (CoOMO?

- Multibanco: n° bancos = latencia memoria

- Entrelazado “por palabras”:
“palabras consecutivas en bancos consecutivos”,
asumimos numeros de 8 bytes alineados

- L =4 ciclos > M =4 bancos de 1GiB

- Acceso sincrono o acceso desfasado

1. También podemos decir “modulos™

30

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI-

ZACION 2.3.3 MEMORIA: ACCESO SINCRONO
Dir. Inicio Vector - @3pits
29+ 13K 13-
mar_h mux 7+ — w
» X
mar in 2
_ A 4
MAR H
+ 1 le mar_h mar/_l MAR—L UC
27 2 >
CeZZSgclz'nco banco de
: inicio (eje x)

! BO) B1 | B2 | B3 marh

1
@0 @1 @2 @3 ggﬁ:h_mux
d
_ e0 el e2 e3 out_mux
bM 4 e4 e5 cb e’
ancos - g e9 el0 ell
RAMs
. R A J .
v / 3 7 37 3/
D | D | D | D I
1)6\\\\\\13£:i:? &ﬁi;EEL/////I)3
64b

out_mux/ out (hacia BRV)

O @32pits = N° banco = (@sypis/8) mod 4 — {0, 1, 2, 3}

O Parte del control:
- Cargar MAR_H cada cuatro ciclos (ojo primer acceso!)
- Cargar todos los Di cada cuatro ciclos
- Multiplexar Di en out cada ciclo

31 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2.3 ORGANI-)
ZACION 2.3.3 MEMORIA: ACCESO SINCRONO. EJEMPLOS

Ejl. @ =32 — fila 1, columna 0 (e4, €5, ¢6, ...)

mar_in 1
MAR

MAR _H
B0 DO
B1 D1
B2 D2
B3 D3

1123456 |78]9 10|11 |ciclos

OouT

Ej2. @ =48 — fila 1, columna 2 (€6, €7, €8, ...)

mar_in 1
MAR

MAR H
B0 DO
B1 D1
B2 D2
B3 D3

1 2|34 |56 /|7 |8]9 /]10|11|]ciclos

OouT

32 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI-)
ZACION 2.3.3 MEMORIA: ACCESO SINCRONO. RESUELTOS

Ejl. @ =32 — fila 1, columna 0 (e4, €5, ¢6, ...)

mar_in 1227223333 4 4
MAR
MAR H 1 2 3
B0 DO e4 e8
B1 D1 eS e9
B2 D2 e6 el
B3 D3 e7 ell
12,3456 |7 /|8 |9 | 10 |11 |ciclos
OouT L=4 e4 [e5 |e6 | e7 | e8 e9

Ej2. @ =48 — fila 1, columna 2 (€6, €7, €8, ...)

mar_in 1 (222,23 3|33 4 4
MAR
MAR H 1 2 3
B0 DO e4 e8
B1 D1 eS e9
B2 D2 e6 el
B3 D3 e7 ell
1234|567 |89 |10 11 | ciclos
OouT L=4 - | - |e6 |e7 |e8 e9

33 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.3 ORGANI- ,
ZACION 2.3.3 MEMORIA: SINCRONO VS. DESFASADO

A Problemas con acceso Sincrono:
v lectura: latencia variable o irregular
v’ escritura

- un registro MDRin para cada banco

-eslenta: (11114)(11114)...
O Una solucion: acceso desfasado
los bancos son mas independientes
v un registro MAR para cada banco
v control mas complejo

v resultado:

LECTURA
4 ciclos 1c
€ > € > € > € > € > (XX
ESCRITURA
1c 4 ciclos
<€ > € > € > € > oo0o < >

Veamos como se implementa -->

34 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2.2 ORGANI-

ZACION 2.3.3 MEMORIA: ACCESO DESFASADO
Dir. Inicio Vector .. 3- .
29+ : XXX
mar_h mux 7t v 7.
» X
mar i v
MAR H 00
MAR L
800l Lt il wds[MARE e
: 9
0\66\6 27 27 banco de
/ inicio (eje x|
%5
‘)
¢ mar h
mar_|
mar_h mux
di
@O @1 @2 @3 out mux
?2?27?
el el e2 e3
blz:/l[lcos e4 { e5 eb e7
N el e9 |\ el0 ell
dol__~ dl ‘ ' d3
7 / /
Nl\‘A W
64b
out_mux< i out (hacia BRV)
7 Control ?:

mar_h, mar_|, mar h mux, d,,

outmux, ? 7 ?

35 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

2.3 ORGANI-
ZACION

MEMORIA: ACCESO DESFASADO. EJEMPLOS

Ejl. @ =32 — fila 1, columna 0 (e4, €5, €6, ...)

MAR

mar_in

1

2

3

MAR_H

MAR 0
MAR 1
MAR 2
MAR 3

Actividad B0
Actividad B1
Actividad B2
Actividad B3

ouT

10

11

ciclos

Ej2. @ =48 — fila 1, columna 2 (e6, €7, €8, ...)

MAR

mar_in

1

2

3

MAR_H

MAR 0
MAR 1
MAR 2
MAR 3

Actividad B0
Actividad B1
Actividad B2
Actividad B3

ouT

10

11

ciclos

36

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

2.3 ORGANI-
ZACION

2.3.3 MEMORIA: ACCESO DESFASADO. RESUELTOS

Ejl. @ =32 — fila 1, columna 0 (e4, €5, €6, ...)

mar_in 1 1 1 1 2 3
MAR
MAR H 1 1 1 1 2 3
MAR 0 1 3
MAR 1 1
MAR 2 1 2
MAR 3 1 2
Actividad B0 e4 e8
Actividad B1 eS e9
Actividad B2 e6 el
Actividad B3 e7 ell
1 2 3 4 5 7 | 8 9 |10 | 11
OouT L=1+4 e4 | eS | e6 | e7 | e8

ciclos

e9

37

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

2.3 ORGANI- ,
ZACION 2.3.3 SINCRONO VS. DESFASADO: RESUMEN

3 Sincrono

Ej2. @ =48 — fila 1, columna 2 (e6, €7, €8, ...)

mar_in 1 2 3
MAR
MAR H 1 2 3
Actividad B0 e4 e8
Actividad B1 e5 e9
Actividad B2 e6 el0
Actividad B3 e7 ell
1 2 3 4 5 6 7 8 9 | 10 | 11 | ciclos
ouT L=4+.. e6 [e7 |e8 |e9 |ell

O Desfasado
Ej2. @ =48 — fila 1, columna 2 (e6, €7, €8, ...)

mar_in 1 2 3
MAR
MAR _H 1 2 3
MAR 0 2 3
MAR 1 2
MAR 2 1 2
MAR 3 1 2
Actividad B0 e8 el2
Actividad B1 e9 el3
Actividad B2 e6 el
Actividad B3 e7 ell
12|34 |s5|6]| 7|89 |10]11]cilos
ouT L=1+4 e6 | e7 |e8 |e9 |ell

38 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.4 CINCO
PROCS. PROCESADOR 1

O3 BRV con 2L + 1E (y reg. vec. minimos)
v 2buses L: BRV ->{M ® ALU}
v lbusE: {M®& ALU} - BRV

O Memoria de 1 puerto {L @ E}. Solo 1 UF

E . .
BRV
BRpf | Vol (V1| |, . . |V7 M
Fi
L1 »
L I
., *[+ 64 b
m punto de conexion
I

O Segmentacion. Ejemplo.

— Coma flotante, enteras (p.e. Reg ALUi Reg)

Busq | Deco Reg Latencia Produccion
Riesgos | Lec BRV UFs escr escr °oe
-escalar | [ooy R mem lec v3.0 !l V3.l
- vector

T Lanzamiento en orden
Detencion “mientras’ riesgo

39 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.4 CINCO
PROCS. PROCESADOR 2

O 3 buses lectura: BRV — {M, ALU}

O 2 buses escritura: {M, ALU} - BRV

1
S

Vo \'%i M

i

{ punto de conexion

O Instrucciones independientes y sin riesgos estructurales

B Dl R L WVLR

B Dl R L WVLR

O Instrucciones dependientes o con riesgos estructurales

B |D'| R L wVLR |

B Dl DZ D3 D4 I)5 Dn R L

v Regla: tultimo D = altimo W

40 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.4 CINCO
PROCS. PROCESADOR 3

O 2 UFs
v ALU para sumar

v ALU para sumar/multiplicar

O 3 buses de escrituray 5 de lectura

[AnY Ay

il 11 ol
< < <jr<q

Y

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.4 CINCO
PRrROCS.

PROCESADOR 4

]l DE 2

A Dos ALUs dedicadas

3 Dos puertos de lectura y uno de escritura por reg. vectorial.
La Unidad de Control permite dos flujos de lectura y uno de

escritura en cada registro vectorial

Encadenamiento general — solapar dependencias datos

...

i+p+q

\

\

\

\

\

\

\

\

\

\

\

\

!

—1 -1]
= = \
\

\

1 1 :
'V 3 = S \
!

al H \
= = \
\

\

\

\

\

\

\

\

\

A A \

Y Y \
\

\

\

\

\

\

\

\ V7 M ~
\

\

\

\

\

\

N I \
\

\

\

\

\

\

\

\

\

\

\

\

h o N
\

A A :
AvzAvr ki \'[I :
I . lvrRvrl furd rL N
\

1+p R4 R :
v Vv \
\

\

\

\

\

\

Y \

\

\

\

\

\

!

=+ * N

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

0O jiLas antidependencias tampoco bloquean!!

O Temporizacion riesgos de datos productor-consumidor:

42

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

2.4 CINCO
PROCS PROCESADOR 4 2 DE 2

O Instrucciones dependientes

B D!'| R L wVLR

|
B p'Ip2ipllptl'™R) YoV [V Vywuir

B |B2|B|B* D

Encadenamiento *

O “Primera lectura de registros bajo primera produccion”
o bien,

Regla: Gltimo D = Gltimo L

O Ejercicio. Para el siguiente codigo:
v Dibujar el diagrama de ciclos

v En el primer ciclo de encadenamiento
- Dibuyjar flechas verticales de productor a consumidor
- Determinar las posiciones de los punteros de escritura y
lectura de los registros V1 y V4

addv v1i,v2,V3
1v v4, (rl)

addv v5,V4,V1

O Para casa: cambiar addv V5,V4,V1 pormulv V5,V4,V1

43 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.4 CINCO
PROCS PROCESADOR 5

O Replicar los caminos de proceso y memoria.
Ejemplo: el Processador 4 con 2 parallel lanes

pares A A A Impares A A AE

/ | 5

Efq e V% M E]q . V% M
iy i Ty i §
7 7 \'L A‘l Té é'l Aurl E
7 7 \'L é‘l TLI é-, & :
i i i i l §
vy vy §

+ * + - §

PISTA 0 PISTA 1 g
| I I

0 El Banco de Registros Vectorial (BRV) y la memoria
se particionan: pares en una particion e impares en la otra.

0 Cada una de las dos ALUs (FP add, FP mul) se duplican.

O En el primer ciclo de ejecucion entran en paralelo a las dos pistas
los elementos (0, 1) de los registros vectoriales fuente. En el
segundo ciclo entran los elementos (2, 3), y asi sucesivamente ...

0 Comparando con el Procesador 4 de una pista, el nimero de
ciclos por elemento, Ce, se divide por el nimero de pistas.

44 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.5 RENDI-

MIENTO RENDIMIENTO SIN SECCIONAR 1 DE 2
i v VO,Ra
codigo
ejemplo | mulv VLV2,V3 GFLOPS ?
addv. V4,V5,V6

O El rendimiento depende de #n, el tamafio del vector

supongamos n < MVL!

v C, (n<MVL) = Cﬁjos +n-C, ciclos

Ciijos = latencia UFs + penalizaciones

penal. = riesgos estructurales y dependencias
C. = ciclos por elemento

' Tym<mv) =6, Te
O R =velocidad en FLOPS; se aplican k FLOPs a cada elemento
v Rn(nSMVL)an/TnanF/Cn

Ren GFLOPS - TcennsoFen GHz

Ry (n<MvL)
A

n-k

R, = E irreal
n (Cﬁjos+”'ce)'TC |

|
MVL

1. MVL: Maximum Vector Length, nimero de elementos de un Registro Vectorial.

45 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.5 RENDI-
MIENTO

RENDIMIENTO SIN SECCIONAR

2DE 2

O Nip

longitud de vector que consigue
MITAD del rendimiento maximo

RN12 =Rp(MVL®0)/2 — Nyp= Cﬁjos/Ce - Tﬁjos/Te

R, T
A
R+ - -
R,/2 /l Tﬁ7
! > 7 , > 7
Nir2 N1
v Daidea de la sobrecarga vectorial
(latencias y penalizaciones)
v es independiente de T,
solo depende de la arquitectura y del algoritmo
0 N,

Longitud minima de vector que consigue
igual velocidad
en las versiones escalar y vectorial

RNy =Rese = Ny = Cﬁjos [(Cese - Ce) = Tﬁjos /[(Tese - Te)

v mide la sobrecarga vectorial y la velocidad relativa entre

los procesadores vectorial y escalar

46

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

2.5 RENDI-
MIENTO COMPARAR RENDIMIENTO SIN SECCIONAR 1 DE 2

O Supongamos los siguientes parametros
para los cinco procesadores anteriores:

v T.=1ns
v Lat {+,* mem } =6, 7, 12 ciclos
v LI=1ciclo
v Segmentacion pagina 39:
- aritméticas, loads: B, D", R, Lat, W"'ER
- stores: B, D", R, WYLR Tat
n =1 si no hay riesgo estructural ni dependencia;

n > 1 en caso contrario
VLR = valor del registro VLR € {0..64}

3 Vamos a calcular
Ch (n<MVL)
Rss (MVL =64
R MVL)

R

pico

47 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

2.5 RENDI-
MIENTO

COMPARAR RENDIMIENTO SIN SECCIONAR

2 DE 2

Cn se calcula con reg. vect de n elem.

Proc i

(Rpico, GFLOPS)

Rg4 con n = 64 C,, ciclos
Ryconn =0 — Ry MvL o) Codigo | Rgg GFLOPS
R, GFLOPS
Cod 1 Cod 2 Cdd 3 Cod 4
lv. VO, Ra mulv V1, V2,V3 lv. VO, Ra lv. VO,Ry
mulv V1, V2, V3 addv V4, V5,V2 mulsv V1, FO,V0 lv. VI, Rx
addv V4, V5,V6 addv V2, V2Vl ||mulsv V2, Fa V1
addv V3, V0,V2
sv. Ry, V3
Procl (1) | Proc2 (1) | Proc3 (2) | Proc4 (2) | Proc5 (4)
30+ 3n 18+ 2n 15+n
Cdd 1 0.58 0.88 1.62 = ?
0.66 1 2
17+ 2n 10 +n
Cdd 2 0.88 = = 1.73 ?
1 2
30+n 0
Cod 3 no no no 1.36 '
2
56 + 5n 41 + 3n
Cod 4 0.34 = = 0.55 ?
0.4 0.66

48

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

https://www.desmos.com/calculator/lcvokcya7s

)
fz,%
e
[
22
c
o
=)
Rinf Proc. 5
/‘——-__-#-——_—__
R64 proc. 5
R64 proc. 4
0:5 |
64 128 192 256
49 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

https://www.desmos.com/calculator/lcvokcya7s

(pagina en blanco)

50

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidals, Jesus Alastruey

2.6 ZV: Organizacion de un procesador vectorial
segmentado con ALMa tipo DLXV

Un procesador vectorial de una arquitectura tipo DLXV se segmenta en 8 etapas para las
instrucciones vectoriales basicas: aluV, LV, SV. El trabajo en cada etapa para cada instruccion
se muestra en la tabla:

aluv Lv SV
B busqueda instruccion
D1 deco 1/ (@dst salto lectura BRint
D2 deco 2 calculo @ base
[riesgos en recursos?
L [riesgos en registros? lectura reg nada lectura reg
lanzamiento y vectoriales vectoriales
reserva recursos

paso crossbar 1

X1 red ida paso crossbar 1 '
generacion (@
- mem_wr
alu/ operacion o . -
. op mem_rd liberar recursos
mem acceso a memoria - 1 .

en ultimo ciclo

X2 red vuelta paso crossbar 2
. escritura registro vectorial destino
W escritura . 1 .
liberar recurso en ultimo ciclo

La ruta de datos se muestra en la siguiente hoja. La parte izquierda corresponde a un trozo
del procesador escalar. Su operacion y su relacion con la parte vectorial puede deducirse
observando la ruta de datos.

Hay dos unidades de calculo multioperacion (UF1 y UF2) y una memoria multibanco de
dos puertos, uno de escritura y otro de lectura. O sea, cada banco de memoria soporta una
lectura y una escritura simultaneas, con la misma latencia que una lectura o una escritura por

separado. La latencia de la primera lectura no depende del banco de inicio porque el acceso es
desfasado.

No hay control hardware de colision entre lectura y escritura en memoria. Se solapan los
flujos y el compilador ya se preocupara de no generar codigo vectorial si las dependencias en
memoria pueden dar lugar a riesgos (RAW, WAR o WAW).

Cada registro vectorial tiene dos puertos de lectura y uno de escritura. La unidad de control
permite ejecutar de forma solapada y segura a instrucciones dependientes en cualquier caso:

* Dependencia prod-cons. Encadenamiento general.

* Antidependencia. Flujo de escritura por detras del de lectura.

-50-

Mci

kY V4
Y Y @ , v VLR v VVMR
1
Y
D2 aluﬂz
y Y
;7 BRvec coco]
L ok v -
Mcd out oo
A4
—
Qt Vmar |[Vstr Vsca
Xl (Generacidén @) Crossbar 1 (17x5)
learR's ;Vmarw’s l\/mdrln s
I | i — — i,y o =
Ty
1 v v v v l—l—_l 2
a u M ejemplo 4 bancos in UF1 UF2
P 1 lect, lescr
mecm
Y A\ 4 Y y Y
Vmdrout s
Xz Crossbar 2 (3x8)
XX}
1

-51-

En una instruccion vectorial de tamafio minimo (VLR = 1) se ocupa cada etapa un ciclo,
salvo alu/mem, que se ocupan un numero de ciclos igual a la latencia de las unidades
funcionales o de memoria. Para VLR>1 todas las etapas por debajo de L pueden ser
multiciclo. Los siguientes ejemplos muestran la ocupacion de las etapas para VLR=6:

Ejemplo 1: ADDV, Lat_sum = 2, Tasa iniciacion =1

B X

D1 X

D2 X

L X | X | X X | X

X1 X | X X | X | X

+ X X | X | X | X

X2 X | X | x| x| x| X

w Lat_sum X | X | X X | X
resumen: B |D1|D2| L |[X1| * 2¢c | X2 W 6¢c

Ejemplo 2: LV, Lmem = 4, sin conflictos de banco

B X
D1 X
D2 X
L X

X1 X | x | x| x| x| x

mem X X X X X X X X X

X2 X | x| x| x| x| X

w Lat mem X | X | x| x| X |X

resumen: B (D1{D2| L X1 mem 4c X2 W 6¢c

Ejemplo 3: SV, Lmem = 4, sin conflictos de banco

B X
D1 X
D2 X

L X [X | X | X | X |X Lat mem

X1 X | x| x| x| x| x

mem X | X | X | X | X |X|X]|X|X
X2
W

resumen: B ([D1/D2| L X1 6¢ mem 4c

-52-

Este procesador lanza en orden hasta 1 instruccion vectorial o escalar por ciclo.
Instrucciones escalares y vectoriales independientes pueden solaparse. Pueden ejecutarse a la
vez hasta cuatro instrucciones vectoriales (1 LV, 1 SV y 2 aluV)

La etapa L se encarga de controlar los riesgos en las instrucciones vectoriales por
dependencias de datos (en registros 0 memoria) y por falta de recursos:

* RECURSOS (UFs, puertos de memoria, puertos de registros, ...). Se reservan en la
etapa L y se liberan en el ultimo ciclo de ejecucion. En caso de bloqueo por recurso,
el ultimo ciclo de detencion coincide con el ciclo de liberacion. Ver dibujo.

i+k necesita un recurso que usa i

i: - ©660660

de 1

|
(\ | |
. ultimo ciclo
|
|
|

L 'L 'X1
itk: °oo i i I

* DEPENDENCIAS prod-cons en REGISTROS. Existe encadenamiento general. No
existen restricciones, incluso 1oads y stores encadenan.

Puede solaparse la primera lectura de una instruccion consumidora (etapa L) con la
primera escritura de una instruccion productora (etapa W). Ver dibujo.

i+k usa dato producido por i

i+k:

El procesador ZV de referencia tiene las siguientes caracteristicas:

MVL 64 tamafio registros vectoriales
+ Lsum =2c¢, TI=1c
latencia, tasa de iniciacion
* Lmul =3¢, TI=1c
mem 8 bancos, Lmem = 4c¢ sistema sobrado
Tc (f) Ins (1000 Mhz = 1GHz)
Coherencia entre Mcd y Mp asegurada por hardware (ya veremos)

-53-

3. DOS ASPECTOS DE PROGRAMACION:
VECTOR LENGTH Y VECTOR STRIDE

3.1 VECTOR LENGTH

Vectores de n elementos, pero
Registros vectoriales de MVL elementos:

SOLUCIONES:

O n<64
se programa VLR con 7 (instr. DLXV movi2s)

0 n>64

Técnica de Seccionado o Strip-Mining

¢j. 220 elementos con MVL =64 — 11 011100
28 64 64 64

1teracion residual
al principio

64 64 64

28

3 secciones 'y pico ... al final

iteracion residual

O Modbdulo y division entera por MVL (potencia de dos):

- Operaciones con mascara, desplazamientos

- Soporte especial: p.e. repertorio de Convex!

1. Paqui Quintana, R. Espasa y M. Valero. "An ISA comparison between Superscalar and Vector
Processors". En Proc. of the Int. Conf. on Vector and Parallel Processing (VECPAR9S). Lecture

Notes in Computer Science, issue 1573, pp. 548-560, 1999. Springer Verlag publisher.

54 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

Konnse[y snsaf ‘S[eUIA I0IOIA ~MVZINQ - eoneuojuy “Suy - sazopesaosordnniy S¢

mﬁwsm [e [enpIsSal UQIORI)I v m&&oﬁa [e [enpIsal cﬂoﬁo“w
OadNd
OdaNd — TAN ="TA
o (ML +[Ox-e= DA m TA =+ NI
UL+ TAW[TAWT]=10d i , OadNng
OQaNd | WA+ Ox-e=(DA 3
7 | OddNd o L [-TA+ANI ‘NI =1 Od ”
W - Of+ Ox = (0 E - TAIW/Y T =11 0d
9 [FIAWN+HET=10d - TAWN pow U = TA
TAN "TANTTAW/U] T =11 0d [=ANI
OdaNd
T M4 + X - e = (A 7
uT=10d

(uorstoaxd o[qop o o[duwirs A XV 0 AdXVS) AdXV 031p9)

. OAQVNOIDOES,, 0DIA0D Ad NOIDVIANAD) 7' 4ANLS
A HLONAT dOLDdA "¢

3. VECTOR LENGTH Y
STRIDE 3.3 RENDIMIENTO CON SECCIONADO

Bucle ejecutado en modo vectorial (3 secciones y pico)

Resto al principio

Cdodigo AXPY seccionado con MVL = 64

1 and Rmod, Rn, R3g Rx = &X[0];

2 srl Rent, Rn, #6 Fa=a

3 movi2s VLR, Rmod Ry = &Y[0];
buc: LV VO, Rx 28 Ro=n;

5 MULSV V1, Fa, VO
6 LV V2,Ry
7 ADDV V3, V2, VI

| e Ryp = OX3F
|
|
|

8 SV Ry,V3 A
R,, (MFLOPS)

9 movs2i Rn,VLR R, |
10 bz out, Rent T
11 nop T ?
12 sll Rsize, Rn, #3 T
13 add Rx,Rx, Rsize 200 1
14 add Ry, Ry, Rsize 100 =

. | | | >

15 movi2s VLR, #64 6I4 [| .
16 jmp buc

(Rendimiento de ZV
out: dec Rent en funcion de n?

56 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastruey

3. VECTOR LENGTH Y
STRIDE 3.3 RENDIMIENTO CON SECCIONADO

Modelo de ejecucion

O Cyuee Ciclos del prologo y del epilogo:
instr. escalares {1:3}

tiempo desde ultimo bloque n hasta final

O Cg; costes fijos (incluso con VLR = 1)

Latencias + Penalizaciones

O Cyycle ciclos de control de bucle

instr. escalares {9:17}
en paralelo con las vectoriales anteriores

v ciclos
desde que se lanza la altima instr. vect. de una seccidon
hasta que se lanza la primera de la seccidn siguiente.

v aveces, Cyyele = 0,

porque la primera instr. vect. de la seccion siguiente esta
detenida por recursos o dependencias.

C,=Crase T [n/ MVL—|'(Cﬁj + Coucte) T 7-Ce

O A partir de C,, podemos derivar
R,, R4 R, ..
Ny, Ny

57 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

Rn(GFLOPS) = ‘% « F(GHz)
Ejercicio

obtener formulas para Ny y N,

Hipotesis: son menores que MVL

58

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidals, Jesus Alastruey

Konnse[y snsaf ‘S[eUIA I0IOIA ~MVZINQ - eoneuojuy “Suy - sazopesaosordnniy 6S

4)

(=UA UD
q (=u)y uoo ;=UIN
pd onqg dwfl
. g L=t9Su‘u)
. g
g SdOTAD (= ™Y
_ g
. 1a = u ‘u
i} 5 N k)
" i i IXLT "mﬁ en'fa As
1c
L _ _N[I_H . J
v Mg 7 XIXT TA‘ZA'EA AQAY
° H oﬁ H_ ! Q_N_ T
O 2 Mg Z X XTI AdzZA AT
o _ | :
_ 1 _ _ T
I MpQ X! c XT “ m w_w M7 1 c IeT OA‘RdTA ASTAN
| W S m @ I wwon
ZhT M9 vt s g¢ mge oy
(r+€)
AZ U SOJUSWIRA 07T 9P AdXYV 9P BPR[[BId9p UQIonoag
Pdd] AdXYV ‘OAVNOIDDAS A OLNAINIANAY €°¢ ddIALS

A HLONHT dOLDHIA "¢

Konnse[y snsaf ‘S[eUIA I0IOIA ~MVZINQ - eoneuojuy “Suy - sazopesaosordnniy 09

(")

= P9<<U ‘UD) L=UAU)
o (=u) uod ;=YIN
pd onqg dwfl .
. g L=P9>uu)
. g
e SdOT4D ¥16°0 ="
_ d
. 1d uz+ ZI| 9/u | =19 <<u ‘u)
. ik - e
" i i IXLT "mﬁ en'ka As
@
L _ _N[I_H , p
v Mg 7 XIXT TA'ZA'EA AQAY
° H ©~ H_ ! Q_N_ T
O 7] Mg C Xy XT a4z AT
o " | _
\ 101 T _ m | 11 T
[MpQ X! c XT " m w_w M7 1 c IeT OA‘Rd ' TA ASTAN
| W T | @ il xacon
ZhT Mr9 A 7ARe gc nge “p
(r+€)
AZ U SOJUSWI[3 07T 9P AdXV 9P Bpe[[EIop ugronoa(y
add ¢ AdXYV ‘OAVNOIDDAS A OLNAINIANAY €°¢ 4ArdLS

A HLONHT dOLDHIA "¢

Konnse[y snsaf ‘S[eUIA I0IOIA ~MVZINQ - eoneuojuy “Suy - sazopesaosordnniy

19

z

N

=$9Su‘up = $9<<U ‘U)) 01 +UZ+ TI[#9/U |+ L = UA UD
. ug+6g =ud uod 7zl =YIN
g ong dwl o
@ UZH6ZT =9 S U ‘u)
. d
e SdOT4D ¥16°0 ="
. d
. 1a Uz+ TI[#9/8 | =9 <<U ‘u)
2a - D)
z8 o
T TXL2 R en'Ad S
| — .y
I Mgz XX TA‘ZA'EA AQAY
- H ©~ H_ ! e_N_ T
v L M8z R XZA AT
_ 1 " _ _ T
_ My9 RS xﬁ “ s MBZ e X1 0A‘RA‘TA ASTAW
“ A vmg —hy m =t Xg0A AT
Xt ! . I T 1
Zv1 Mr9 vt s oc Mg e Xt x1aad

Grre)

AZ U9 SOUSWI[d 07T 9P AdXV 9P BPR[[BI9P UQIoNnoafy

pAd € AdXYV :OQVNOIODHES A OLNHINIANTY €°¢

A HLONHT dOLDHIA "¢

AATILS

Konnse[y snsaf ‘S[eUIA I0IOIA ~MVZINQ - eoneuojuy “Suy - sazopesaosordnniy

9

T=XPWAR()=UTWAR()ZZ=XPUXRO)=UTWXR =B TTR [=XRTR()=SDTRT=TDTRT " 0=ADTR®
0T=XDTRT=XPWATR()=UTWATR()ZZ=XPUXIR()=UTWX TR T=Md IR Tdz=pxeweisyls Tdz=cxewrisayiln tdg=gxewuriayiln tdz=Txewel1ayin Idz=0xewuel1sayisn(
=pUTWEISYIRO=CUTWEISYIR()=ZUTWEISYIR)=TUTWEISYIR0=0UTWeIaY33 Tdz=pXeus3 Tdz=cxPus3 Tdz=zXPUSR TAZ=TXBWSR TAZ=0XBWSR)=FUTWS 3
=CUTWSY)=ZUTWSI0=TUTWSI)=0UTWSI=FAd3=cAdy=7AdR=TAdR=0Ad=yXd3=cxd3=7XdR=TxXdR=0XdR=FI3=CI9=I8=TI9=0T86 %X+ 2dZ3CTx623V9

/X8Z%TTO0dZ%LT18C%/%Xx2=VA%62%%¥x202%92%02%628C%/XxT=CARZ/V 16 0=CA3% 16" 0=TA%62%%Xx2dZ%CT+62%V9
/X87%TTo082%/Xx2=04A80=p2dAas0=codhinp=zgadhasp=T72dA1np=0adhas;dyd xspuT /wod 307dooz//:d11y

jyuTTewaad

O0TZ 002 0aT 02T OLZT 09T 05T OFT OET OST OTT 00T 05 08 0 09 035 OF 08 oOg OT]
| (RaZ+BTW(b0/ONBI+ LT % 2| = (O 0
= souns [
o
_ ﬁx*m + _m_mux\x*m_ = ﬂxU._._n_
o] uoIouUNn o . L
_ 2/p16°0) = (34 0
w LaIaun 4 .
‘0
_ 160 = ()4
_D LIDIaILIN o . =N
_ (%4 2+2T 4 (PO/%)189)/%,2| = (1) L0
_D Ligiaun 4 .
20
‘sEDL}ALEIED
senno A salejod SEPEUBRIDDD UE |————""1} o

sauolauny ‘sauciauny Jedyelb apand inbg
bumod g-z

OF

pAdp AdXV ‘OQVNOIDOES A OLNHINIANY €€

AATILS
A HIONAT YOLDIA °€

3. VECTOR LENGTH Y
STRIDE 3.4 RECORRIDOS CON STRIDE

O Procesado de elementos no contiguos

a separacion constante (stride = paso)

for (i=0; i<n; i++)
for (3=0; j<n; J++)
{ A[i][3] = 0.0; A =B*C

for (k=0; k<n; k++)

}

] .

J
A B k C
k %
1 [1 — 1 |[—

N _/

}{ Producto escalar o interno

O B[1][k]*C[k][]] esvectorizable enk si cargamos

C[0:n-1]1[7j] enunreg. vectorial (si n>64 secc.)

O s=n*8 bytes = separacion en un registro R

LVWS V1, (R1,R2) ———5 for (i=0; i<VLR; i++)
V1.i=mem (R] +1*R2);

SVWS (R1,R2),V1 DLXV

63 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

O Vectorizacion de la multiplicacion de matrices en forma ijk:

LV
LVIS
MULV

RED SUM

SV

V0, Ry
V1, (Rqy Rpyxg)
V2, V0,V1
VLR
Ripgs V2 P Ry = Ryt .ZOVz.i
iz
Rar Repp

64

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

4. Conflictos en el Acceso a Bancos de Memoria

4. CONFLICTOSEN EL ACCESO A

BANCOS DE MEMORIA

4.1 INTRODUCCION
4.2 SISTEMAS AJUSTADOS

4.3 SISTEMAS SOBRADOS

65 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria 4.1 Introduccion

4.1 INTRODUCCION

Memoria = carga y descarga de registros vectoriales

MEM
00 —e="
S1: LVxx V1, .. . Hinin Vi S (V2
S2: SUBVS V2,VLFi || Fi
—
Lmem Lsub
Con un control elaborado:
LV |, .y Lmem :|I|—|—|—|—| . on IIH“
SUBVS _o—+r—++++—+ -
Lsub
LV VL, R@ — Cepem = 1 ciclo/dato
LVWS VI, (R@,Rs) — Cepem = ?

66 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria

Almacenamiento

ALMACENAMIENTO

Palabras consecutivos en bancos consecutivos

1

“bancos entrelazados por palabras o entrelazado de menos peso”

Suponemos:

ancho banco = ancho BUS memoria/registros vect. = tamafo palabra

Ejemplo: M = 8 bancos, S =3

1 S 6

©

2 3 4
L2 4] 5]]|C

8

()| 10]] 11| ||| 13]] 14

16

171108 19]]20]|CD]|]| 22

(24)

25 (| 26 | |@D| | 28| | 29 | | (30)

31

PROPIEDAD FUNDAMENTAL

Una secuencia de accesos con separacion S bancos
visita un subconjunto de P bancos del total de M

M=38

S

1[2]3]4]5]8 1Y

P

3 4 b= ed(s

1) En otros sistemas, p.e. en un multiprocesador, las palabras que forman un bloque de cache
pueden residir consecutivas en el mismo banco de memoria principal. Se dice entonces que los
bancos estan entrelazados por bloques (no por palabras).

67

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria 4.2 Sistemas Ajustados: M =L

4.2 SISTEMAS AJUSTADOS: M =L
Ejemplo: L =4 ciclos y M = 4 bancos

3 Acceso sin conflicto: .S = 5 modulos

m(ml m2
@ 1 2
A 4 \Q 6
v P = — 4
12 13 14 \@
| 18-

4 C.a(.ia banco diferente 16 17 1719
visitado apgrta @ ///
1 dato / L ciclos
v \fliSitam(];SV{; bancos 1@/ ciclo (acceso desfasado)
Flujo = =) —
0 20
P datos / L ciclos m0,® ‘/ e
v Ceporn = Flujor! = mi| @ L
L/P ciclos/dato = @‘1' 0 |
1 cpe m2 —
o e

SALIDA (0)

OCC)

3 Acceso con conflicto: S =4 modulos

v unicamente visitamos el banco 0; P = 3 =1
mcd(4, 4)

v Cepem = L/P=4 cpe

68 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria 4.2 Sistemas Ajustados: M =L

4.2 SISTEMAS AJUSTADOS: M =L

Co= Nciclos _

N

elementos

L _ L-mcdM.,)S)_
P M

mcd(M,S)

0 Strides IMPARES — sin conflicto - Ce o, = 1

S =020 con o impar

DEMO, suponiendo n°® de bancos es potencia de 2, M = 2"

Ce = mecd(M,S) =med (2", 0020)22021

O Strides PARES — con conflicto - Ce o, > 1

S = 2k, concimpary k>1

DEMO (M = 2™)

Conflicto — Cepem > |

Ce = mcd(M,S) =mcd(c e 2k,2m) = pmin(km)

69 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria 4.3 Sistemas Sobrados: M > L

4.3 SISTEMAS SOBRADOS: M > L
Ejemplo: M=8,L =4

3 Acceso sin conflicto S =2

0 1 2 3 4 5 6 7
ORI OIEROIERIOK
] 9o [|ao] | 11| [af] 13]]|0d]|| 15
ae)[| 17| 19] [0 | 21| | 22]] 23
24 || 25| [26| | 27 || 28] |29 |]30]] 31

Pelementos
Lciclos

Flujo=BW = = 1 elemento/ciclo

P=L=4

permitimos mas strides libres de conflicto
STRIDES STRIDES

~ ~

/ no no
conflicto / conflicto

sist. AJUSTADOS sist. SOBRADOS

70 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

4. Conflictos en el Acceso a Bancos de Memoria 4.3 Sistemas Sobrados: M > L

4.3 SISTEMAS SOBRADOS: M> L

Suponemos L = 2! (irreal)

O Strides sin conflicto: IMPARES y algunos PARES

S =0ce2k concimpary 0 <k<m-I

DEMO (M =2">[=2}
Sin conflicto > P2>1L
2m

P= >20 5 2m=I>med(S,2m) = 2mintk,m)
mced(S, 2™)

—> m—I[>2min(k,m) > m—-I1>k

No hay conflicto con PARES si tienen “pocas” potencias de dos.

O Strides con conflicto: parte de los PARES

S = ce2k conocimpary k> m-I

DEMO (M = 2™)

Conflicto — Cepem > |
med (2™, S) > 1
[~min(k, m)
Cemem = é = L'mCd(S’M) — 2.2 = 2l +min(k,m)—m
P M "

Ejemplo: Ce (sistema L, M, S) = Ce(8, 16, 30) =

71 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

5. Arquitectura DLXV

5. ARQUITECTURA DLXV

Repertorio completo de instrucciones

72 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

5. Arquitectura DLXV

DLXYV - VMIPS: cédigos de operacion

DLXYV - VMIPS: CODIGOS DE OPERACION

F-8 Appendix F Vector Processors (4th edition)

Instruction Operands Function

ADDV.D Vi,v2,v3 Add elements of V2 and V3, then put each result in V1.

ADDVS.D V1,v2,F0 Add FO to each element of V2, then put each result in V1.

SUBY.D Vi,v2,v3 Subtract elements of V3 from V2, then put each result in V1.

SUBVS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in V1.

SUBSY.D V1,Fo,v2 Subtract elements of V2 from FO0, then put each result in V1.

MULY.D Vi,v2,v3 Multiply elements of V2 and V3, then put each result in V1.

MULVS.D V1,v2,F0D Multiply each element of V2 by FO, then put each result in V1.

DIVV.D V1,v2,V3 Divide elements of VZ by V3, then put each result in V1.

DIVVS.D V1,v2,F0 Divide elements of VZ by FO, then put each result in V1.

DIVSY.D V1,FO,v2 Divide FO by elements of V2, then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.

5V R1,V1 Store vector register V1 into memory starting at address R1.

LVKS V1, (R1,R2) Load V1 from address at R1 with stride in B2, i.e., R1+i = R2.

SVRS (R1,R2}),V1 Store V1 from address at R1 with stride in R2, i.e., R1+1 = R2.

LVI V1, (R1+VZ) Load V1 with vector whose elements are at R1+V2 (1). i.e.. Y2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2(1), i.e., V2 is an index.

CVI ¥Y1,R1 Create an index vector by storing the values 0, 1 «R1, 2 xR1,...,63 xRl into V1.

S--V.D V1i,v2 Compare the elements (EQ, NE, GT, LT, GE, LE) in ¥1 and V2. If condition is true, put

5--V5.D V1,FD a | in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction 5--V5. D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1 VLR,R1 Move contents of R1 to the vector-length register.

MFC1 R1,VLR Move the contents of the vector-length register to R1.

MVTM VM, FO Move contents of FO to the vector-mask regisier.

MVEM FO,VM Move contents of vector-mask register to FO.

Figure F.3 The VMIPS vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers, there are two spedial registers, VLR [discussed in Section F.3) and YM (discussed in Section F4). These
special registers are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The operations
with stride are explained in Section E3, and the uses of the index creation and indexed load-store operations are
explained in Section F4.

0 [HePal2] J. HENNESSY and D. PATTERSON, Computer Architec-
ture: a quantitative approach. 5th Edition, Morgan Kaufmann, 2012.

Chapter 4 and Appendix G: Vector Processors in More Depth

73

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

Konnsely snsof ‘S[euI A J0JOIA AVZINN - eoneunoju] “3uj - sazopesadsordnmniy vl

I0309A TOP T OjUSWSTD [© US
(3s‘p1‘nTe) uordoeasdo SqTYUT (0=T MUWA)
T
T
3 % T
«ls 9P U f '3 2w>3 an\wwuu/ 3 \ o,
T A
= > °
9 {lagg g 10} 7’5/ e,
— (-]
VU +.[0a @ xsowp o] AN

Cid)) ANA e
opTaIS ¢ I
, »\ v\
oseq
4[-
T
‘ BLIOWIA
ﬂ
(qr) | dIA souo1oe1do 3
U
drag rag
ta 1303 RS ERNIE:

BIN'TV ®[9p olnfj ap eweieip :039[dwod AX 1A O
uoroerado ap s0Ipod :SATNA - AX'TA AX'1Q eInosymbry g

5. Arquitectura DLXV DLXYV - VMIPS: codigos de operacion

O LVI - SVI: gather - scatter

Base address: | el 0])] Indexing vector: TE A B

Indexed gather

GATHER| data:

Base address: | =i=Ei] 0]

Indexing vector:

Indexed gather

SCATTER| dat

Figura: https://gain-performance.com/2017/06/15/umesimd-tutorial-9-gatherscatter-operations

75 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion

6. COMPILACION

6.1 Introduccion.
Fases en el back-end del compilador:
extraccion automatica de paralelismo
vectorial

6.2 Transformaciones previas que simplifican
el analisis de dependencias

6.3 Analisis y grafo de dependencias.
Tests aproximados

6.4 Optimizaciones independientes de la
arquitectura: renombrar, expansion
escalar, copia de vectores

6.5 Vectorizacion
- Procedimiento basico
- Vectorizacion parcial vs. total:
distribucion e intercambio de bucles
- Reduccion

75 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

6.1 fases en el back-end del compilador

6.1 FASES EN EL BACK-END DEL COMPILADOR

Front-end: analisis 1éxico y sintactico

Programa escalar representado en lenguaje intermedio

U

Transformaciones
que simplifican el
analisis de las
dependencias

U

Grafo y analisis
de dependencias

U

Optimizaciones
independientes de
la arquitectura
vect/par

U

Vectorizacion

U

Generacion de
codigo.
Optimizacion

U

Programa
vectorial
optimizado

Propagacion y evaluacion de expres. constantes
Extraccion de invariantes
Normalizacion de bucles

Construccion del grafo
Tipos y distancia de las dependencias
Analisis de dependencias. Test MCD

Eliminar antidependencias y dep. de salida
- Renombrar

- Expansion escalar

- Copia de vectores

Vectorizacion total y parcial
- Distribucion e intercambio de bucles

Reduccion, punteros en C

Asignacion de registros vectoriales
Seleccidn de instrucciones vectoriales
Seccionado

EJEC(progr. escalar) = EJEC (prog. vectorial)
+

f estatica vect TT

76

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidials, Jesus Alastruey

6. Compilacion

6.2 Transformaciones que simplifican el analisis de las dependencias

6.2 TRANSFORMACIONES QUE SIMPLIFICAN EL
ANALISIS DE LAS DEPENDENCIAS

O Propagacion y evaluacion de expresiones constantes +

Extraccidon de invariantes

DO 1 =1,N

PI = 3.14

PD = 2*PI

A(i) = PD * R(1) **2
ENDDO

Otro ejemplo de invariantes

DO i = 1,N
DO j = 1,M
A(i,3) = B(J) * C(1)
ENNDDO

ENDDO

[Normalizacion de bucles:

PI 3.14
PD 6.28
= |DO1=1,N
A(1)= 6.28 * R(1) **2
ENDDO

- Normalizar el paso de la variable de control
- Eliminar variables de induccion, o sea,
indexar vectores unicamente con las variables de control del bucle

aux = aux + 2
A(j) = A(3-1) + B(aux)
ENNDDO
ENDDO

DO i = 1,100
aux = 1
DO 3 = 1,300,3 =

DO i = 1,100
T———=
DO nj = 1,100

BT ~ 4
auan aAUA !

No

A(3*nj-2) = A(3*nj-3) + B(i+2*nj)
ENNDDO
ENDDO

3*nj-2, 3*nj-3, 2*nj+i = combinacidn
lineal de las variables de control de
bucle

77 Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidials, Jesus Alastruey

QL Konnse[y snsof A S[eUIA JOIOIA MVZINN - BONBWIOIUT BLIAIUAZU] - SaI0pesadoidnny

+ [T-Tl0 = [T]D <« (, OPIOA PROJ [d 93] ApUOP 3qLIdSd 0l01 91038 [9 1S BSed anb
:0pPepIND U0 SLIOUdPUdap Se[JeZi[euk OLIBSAIAU S [

d

i [2]0 "> [¢]lg oxed ‘[¢]d > [2]D ugroeuspioar op ojdwelg O

souo1oe1ado A BLIOWAW B SOS990B 9P BAISEW UQIIBUIPI0IT BUN
sowezIoJ uoroe[Iduwios us IBZII0JOA [V O

uonanysujl 10329A rd l

>

8p0H pPozLio}oaA apo [eiusnbag Jejeas

‘[1]lg +9- [T]1D (++T !N > T !0=T) 03
SVIDONHANAdAA HA O4VdED) A SISI'TVYNY €°9

serouapuadap op oje1d A sisieuy €9 uoredwo) ‘9

6. Compilacion 6.3 Analisis y grafo de dependencias

DEPENDENCIAS EN MEMORIA ENTRE SENTENCIAS1
R: -————- : : .y
S y R son sentencias de asignacion
S: . S depende de R si:

O Rantes que S en orden de programa (R <, S)

O Ry S referencian a la misma posicion de memoria

[una referencia al menos es una escritura

« Las dependencias establecen relaciones de orden parcial
que cualquier ejecucion “legal” debe respetar.

Tres tipos

R escribe y S lee
Dependencia verdadera RO S R—+> S
flow dependence, RAW hazard

R lee y S escribe
Antidependencia RO S R—+» S
antidependence, WAR hazard

Ry S escriben
Dependencia de salida R &° s R -o» S
output dependence, WAW hazard

Si Ry S estan en un bucle,
R; y S; indican la ejecucion de la iteracion i-€sima

1) La investigacion en vectorizacion automatica se inicia en los afios 70, y el siguiente trabajo de la
Universidad de Illinois se considera uno de los mas importantes para su herramienta bésica,
el analisis de dependencias.
Kuck, Kuhn, Padua, Leasure, and Wolfe. "Dependence graphs and compiler optimizations". In
Proc. of the 8th ACM Symposium on Principles of Programming Languages, pp. 207-218. 1981.

79 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.3 Analisis y grafo de dependencias

- Ejemplo 1 -

1= 1,64
Sl: A(1)= B(1)*C
S2: B(i)= B(1-1) + A(1)

por inspeccion: S1; 0 S2; posicion A (1)

S1; O S2; posicion B (1)

Pero ...

S1, A(l)= B(1l)*C iDependencias entre iteraciones!
527 .@= B(0) + A(1)
S2; 0 S2;,1 enpos B(1)
s1, A(2)=|B(2)*C
522 B(2)= @ t Al2) loop carried dependence, LCD
¥ o sea, dependencias generadas por el
bucle

A = distancia de la dependencia: numero de iteraciones
que separa el uso de las mismas
R; 6 Sy—>A= j-120 posiciones de memoria
A

R—> S

O Grafo de dependencias: grafo dirigido, anotado con distancias:
» Vectorizable en parte

S1
0 0 A(1:64)= B(1:64)*C
< } i= 1,64

S2

_/|: S2: B(i)= B(i-1) + A(1i)

1 ciclo unitario de dependencia

80 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

6.3 Analisis y grafo de dependencias

- Ejemplo 2 -

1= 1,64
Sl: A(i+1l)= A(i) + B(1)
S2: B(i+l)= B(1) - A(1)

ejecucion

S1,
52,

s1,
52,

A O sea: NO es vectorizable !

S1

S2

:65)= A(l:64) + B(Ls

81 Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vifials, Jestis Alastruey

6. Compilacion 6.3 Analisis y grafo de dependencias

- Ejemplo 3: AXPY -

1= 1,64 0
[S: Y(1)= a*X (1) + Y(1) (/+>

S S

... 0 simplemente

Autociclos de antidep. a distancia 0, pueden obviarse: Vectorizable

- Ejemplo 4 -
i= 1,64 |
|: S: fac(i)= fac(i-1) * 1 m

S

Autociclos dependencias verdaderas distancia > 0, No Vectorizable

- Ejemplo S -

1= 1,64
|: S: A(1)= A(1+3) + A(1)

secuencia de cdlculos:
S1
S
S3 S
S
Ss
Vectorizable: A(l:64)= A(4:67) + A(l:64)°

a. Esta notacion corresponde a un lenguaje real y en uso: FORTRAN 90,
el sucesor directo de FORTRAN 77

82 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.3 Analisis y grafo de dependencias

A Vectorizable: A(1:64)= A(4:67) + A(1:64)!
- Ejemplo 6: escalado -
i= 1,64
[s
S: A(1)= k*A(1
VECT, PAR

- Ejemplo 7: progresion geométrica-

1= 1,64
[S: A(i+1l)= k*A(1) S

no VECT, no PAR

- Ejemplo 8: escalado con desplazamiento a laizquierda -

1= 1,64
[S: A(1)= k*A(1+1) S

si VECT, no PAR

- Ejemplo 9 -
i= 1,064 S1
Sl: A(i)= B(it+2)
S2: B(i)= A(1-1) S2

si VECT, no PAR

* Escribir el codigo vectorial

1) Esta notacion corresponde a un lenguaje real y en uso: FORTRAN 90,
el sucesor directo de FORTRAN 77

83 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.3 Analisis y grafo de dependencias

- Ejemplo 10 -

1= 1,64 S1
S1: A(it+2)= B(1)
S2: B(1i+2)= A(1i+1) S2

no VECT, no PAR

ANALISIS DE DEPENDENCIAS

Caso bastante general:
« conjunto de bucles anidados normalizados
* cdbdigo en el bucle mas interno y sin sentencias condicionales

* espacio de iteraciones conocido en compilacion

real*8 A(dim;, dim,, ...dimg)

j‘l= 1 I} maXl

[j‘k—]_: l,maxk_l
— lk: 1,man

Sl: A(fl(j‘l’ ...j_k),f2(j_1, "'ik)""fm(j‘l’ lk)) = ...

S2: ... = A(gl(il, ...ik),g2(i1, "'ik)”"gm(ilf lk))

En cada iteracion del codigo S1 S2, las variables de control forman
una k-tupla (i;, ...i,) diferente. La union de todas ellas se llama

Espacio de Iteraciones (Esplt). Esplt es el producto cartesiano de los k
conjuntos de nimeros naturales que recorre cada variable de control.

Puede establecerse un orden de programa total entre k-tuplas (<)

84 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.3 Analisis y grafo de dependencias

Las funciones £ y g son funciones de indexacion. Calculan un indice a
partir de los valores (i, ...i,) de las variables de control

PREGUNTAS ...

a

1P, Q € Esplt | escren Sl, o lecten S2; paraP <, Q; ?

3T, Z € Esplt | lect en S2; 6 escrenSl, paraT <, Z; ?b

a. P.e. para P = (i, iy, i3) = (2, 3, 4), en S1 se escribe el elemento A(1,2) y para Q = (4, 1, 1), en S2 se lee el mismo elemento.
b. Pe. para T = (3, 3, 3), en S2 se lee el elemento A(9,1) y para Z = (4, 1, 1), en S1 se escribe el mismo elemento.

Caso sencillo:
» K =1 variable de control

e m=1 dimensidén

— 1= 1, max

S1: A(f(1))=
S2: ... = A(g(i))...

3 dependencia prod/cons a distancia A sii®

Sl,

s
l 3p, q < Esplt | f(p) =g(q) parap<q
S2g k=q-p

a. P.e. parap =6 en S1 se escribe el elemento A(19) y para q = 6, en S2 se lee e/ mismo elemento.

J antidependencia a distancia A sii®

s1,

1 A 3t ,z e Esplt | g(t)=1f(z) parat<z
SZt A=z-t

a. Pe. parat=10, en S2 se lee el elemento A(31) y para z= 12, en S1 se escribe e/ mismo elemento.

85 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

6.3 Analisis y grafo de dependencias

- Ejemplo 11 - fy g son lineales

1= 1,100

S1: A(2i+7)= B(i)-3
S2: C(1)= A(31+1)

secuencia de calculos:

S1

S2

VECT ?, PAR?

i escr +2

Eqn. dependencias prod/cons: S1 o S2

3p, q e [1..100] | f(p)=g(q) parap<q

m
1 |9
L 2p+7=3q+l (A=q-p)
2 / Despejamos q y enumeramos p; q = 2p/3+2
3 — pl1|21]3]451]6 |7 |8]9]10 ..
4/ q |no|no{4 |nojno| 6 nojno|8 |no
5 / 2=>0 1 0 -1
6 /
7 / Eqn. antidependencias: S2 6~ S1
dt,z e [1..100 | t)y=f(z) parat<z
o [1.100] [g =fz) p
3tH1 =2z+7 (A=2z-1t)
9 / Despejamos z y enumeramos t; z = 3t/2-3
10—]t |2|3]4]5|6|7]8]9]10.. 68
11/ z |no|l 0|no| 3 |no| 6 [no| 9|no| 12 99
12 / 2>0 -2 -1 0 1 2 ... 31

0 Este tipo de ecuacidn se llama ecuacion Diofantica

86

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidials, Jesus Alastruey

6. Compilacion

6.3 Analisis y grafo de dependencias

- Ejemplo 12 - fy g son lineales

1= 1,100

S1

S1l: C(1i)= A(31i+1)
S2: A(2i+7)= B(1)-3

S2
VECT ?, PAR ?

W
escr +2

Eqn. dependencias prod/cons: S2 & S1

1

2 Despejamos q y enumeramos p;

3 1213141516 |7 |8 |9 |10 ..
4

5 A

6

7 Eqn. antidependencias: S1 o~ S2

8

9 Despejamos z y enumeramos t;

10 t |1]23(41]5]6]7 |8]9]10 ..
11 z

12 A

87

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion Tests aproximados

TESTS APROXIMADOS

Resolver las ecuaciones directamente es costoso en tiempo
Los limites inferior y superior a veces no son constantes

0 Tests aproximados, faciles de calcular:

v Condicion necesaria para que existan ciclos de dependencias
* se cumple? — no vectorizamos

* muy conservador ...

v Condicion suficiente para la independencia
* se cumple ? — vectorizamos

* muy exigente
O Test MCD para funciones de indexacion lineales (cond. necesaria)
f— a-1tb g — cit+d
Asumimos posible ciclo de dependencias si med(a, ¢) divide (d-b)
- ejemplos 11y 12 -

a=3,b=1

c=2,d=7

... pues asumimos dependencias ciclicas
y no vectorizamos

} med(3, 2) = 1 divide a (6) — SI

Ejercicios:
v demostracion test MCD

v buscar un ejemplo vectorizable que no pase el test MCD

88 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

EJERCICIO E5

Ejercicio E5

En bucles con un solo nivel de anidacion pueden aparecer varios tipos de
dependencias.

1 € rango N

R
R: var(r)
S: var (s)
Los indicesry s S
son funciones lineales de i: (i), s(i) VECT 2, PAR?
En la tabla siguiente
se resumen todas las posibilidades.
ind
(L ind W
var (r) 4 -
ind ind
\ Q: §
L E

var (s)

Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion Ejercicio E5

Por ejemplo:

1 € rango N

r y s son funciones lineales de i
A € N es la distancia de la dependencia

R: var(r)

S: wvar(s)

Podemos formular las tres ecuaciones de dependencias:

P o

v R §° 8 sii AN r(i) =s(i+A); A>0; i,i+)\ e rango

P o

v 8 8° Rsii AN s(i) =r(i+A); A>1; i,i+)\ € rango

v~ R ind S caso contrario
ejemplos de este caso:

DO i= 2, 100
R: A(21-1)=
S: A(6it+4)
ENDDO

DO 1= 1, 100
R: A(21)=
S: A(2i+]1)=
ENDDO

Ejercicio. Se pide lo siguiente:

Repetir el analisis anterior para el caso
“war (r) es Lecturay var (s) es Escritura’

b]

v Las tres ecuaciones de dependencias

v Un ejemplo de cada caso, con funciones de indexacion diferentes
de las empleadas en los ejemplos anteriores.

90 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.4 Optimizaciones no ligadas a la arquitectura

6.4 OPTIMIZACIONES NO LIGADAS A LA
ARQUITECTURA

U
Grafo y analisis
de dependencias
U

Optimizaciones * Eliminar antidependencias y dep. de salida
independientes de - Renombrar

la arquitectura - Expansion escalar

vect/par - Copia de vectores

U

Vectorizacion
U

91 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.4 Optimizaciones no ligadas a la arquitectura

Renombrar

Problema: reutilizar vectores o escalares para ahorrar memoria o variables

Transformacion:
v" Nombre diferente a cada asignacion (parte izquierda)

v Propagar nombres nuevos a las sentencias posteriores
(partes derechas)

DO i= 1, N S1

Sl: U(i)= A(i) + 4 ljf-)o

S2: A(i-1)= U(i)*2 + C(i) S2

S3: U(i)= A(i) - 4 = 1(_‘}0 0 /0
S4: B(i)= U(1)*3 + D(1) Sf()

ENDDO S4

- Ejemplo 13 - no vect

Transformacion:

-U@) > T(1) en S1

- propagar T(i) en S2

DO i= 1, N 31

Sl: T(i)= A(i) + 4 lﬁ'>0

S2: A(i-1)= T(1)*2 + C(1) S2

S3: U(i)= A(i) - 4 = ¢1

S4: B(i)= U(i)*3 + D(i) ifO

ENDDO 4
casi vect

v (Aumentan las necesidades de almacenamiento?

92 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.4 Optimizaciones no ligadas a la arquitectura

Expansion Escalar

Problema: variables escalares que se utilizan en iteraciones sucesivas para
almacenar valores diferentes

Transformacion:
v Promocionar el escalar a vector (parte izquierda)

v Propagar nombres nuevos a las sentencias posteriores
(partes derechas)

DO 1= 1, N

1 1@
Sl: U= A(i) + B(i) S1
S2: D(i)= U*2 + C(i) =

1 0
ENDDO
S2
- Ejemplo 14 - no vect

Transformacion:
-U — U(1) en S1

- Propagar U(i1) en S2

DO i =1, N -
Sl: U(i)= A(i) + B(1i) io
S2 ()= U(i)*2 + C(i) =

S2
ENDDO
U= A(N) + B(N)

vect

v ;Aumentan las necesidades de almacenamiento?

93 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

6.4 Optimizaciones no ligadas a la arquitectura

Copia de vectores!

Problema: pre-uso y post-definicion de los elementos de un vector

LLLLLL ———

EEEEEE ———

Transformacion:

v Crear una copia del vector de solo-lectura

v Propagar nombre copia a las sentencias posteriores

(partes derechas)

DO i= 1, N

S1: A(i)= B(i) * 2
S2: B(i)= A(i+1l) + 3
ENDDO

S1

S2

- Ejemplo 15 - no vect

Transformacion:
- A — tmpA en S2’

DO i= 1, N

S2' . tmpA(1i)= A(1i+1)
Sl: A(i)= B(1) * 2
S2: B(i)= tmpA(i) + 3
ENDDO

S2’
'{
= SI |0
't
S2

vect

v (Aumentan las necesidades de almacenamiento?

1) También llamado node splitting, particionado de nodos

94 Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

6.5 VECTORIZACION

Optimizaciones
independientes de
la arquitectura
vect/par

U

« Vectorizacion total y parcial

- Distribucion e intercambio de bucles

Vectorizacion .,
e Reduccion

e Punteros en C

U

Generacion de
codigo.
Optimizacion

95 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

Vectorizacion total
No existen ciclos de dependencias

Transformacion:

v Cambiar el orden de las sentencias para que todos los arcos vayan

hacia abatjo1

v Generar codigo vectorial sentencia a sentencia, empezando por
cualquiera que sea independiente

DO 1= 1, N S1
S1: A(i)= D(i) - C(i))
S2: B(i)= A(i+1) + 1 — g T0
S3: C(i)= B(i) * 2 0¢
ENDDO q3

- Ejemplo 16 -

- Algoritmo de “flotacion’: peso proporcional al n® de arcos entrantes

S2
S2(1:N) es B(l:N)= A(2:N+1)+1 1y
S1(1:N) es ... = s1 |0
S3(1:N) oi

S3

v. Con varios niveles de anidacion, una sentencia puede
vectorizarse con respecto a un bucle si no esta en un ciclo de
dependencias generadas por ese bucle — veremos ejemplos

1) Comrobad que este nuevo orden de jecucion secuencial es correcto

96 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.5 Vectorizacion

Vectorizacion parcial, distribucion de bucles!
Problema 1 de 2: existen ciclos de dependencias

Transformacion: extraer las sentencias sin ciclos de dependencias

« Particionar el grafo en subgrafos nodo-disjuntos relacionados
entre si de forma aciclica (w bloques)

* Reordenar con las dependencias hacia abajo

e Distribuir/cortar en varios bucles

1,100 1,100 [» SEC

QJ/'

[

b &
S
-

P = DO Q)

1) También llamado loop fision, corte de bucles

97 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion

6.5 Vectorizacion

DO 1 =1, N Q1
Sl: A(i) = B(i) + 4 ¢0
S2: C(i) = A(i) + B(i-1) S2
S3: E(i) = C(i+1) = | 0L 0 ¢1 1
S4: B(i) = C(i) + 2 S3
ENDDO
S4
- Ejemplo 17 -
TCl:Sl TCI TC3
T0H =S2, S4 &\3 f/l
TC3=S3
%)
S1(1:N) S1
S3(1:N)
DO i =1, N 0| S3
S2: C(i) = A(i) + B(i-1) = |0 %1
S4:B(i) = C(1) + 2 S2
ENDDO 0()1
S4

98

Multiprocesadores - Ing. Informatica - UNIZAR

Victor Vidials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

Vectorizacion parcial, distribucion de bucles!
Problema 2 de 2: dos niveles de anidacion de bucles no perfectos

Transformacion:
« Sies legal, distribuir el bucle mas externo

* Vectorizar el bucle mas interno, si es posible,
aplicando lo anterior

» Paralelizar el bucle mas externo, si es posible

S
o @ & VEC
& va J < — SEC 0 PAR
m 1l m
a st es legal a o VEC
L X L X L X

no tocamos los espacios de iteracion

1) También llamado loop fision, corte de bucles

99 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jests Alastruey

6. Compilacion 6.5 Vectorizacion

do j= 1, maxcols
S1: a(3)= 0.0 S1
do 1= 1, maxrows
f—
S2: b(i,3)= 0.0
enddo 52
enddo

- Ejemplo 18 -

Transformacion:
- Distribuir el bucle exterior

do j= 1, maxcols
S1: a(j)= 0.0
enddo

do j= 1, maxcols

S1(1:maxcols)

= PAR(1:maxcols)
[S2(1:maxrows)

do 1= 1, maxrows
S2: b(1,37)= 0.0
enddo
enddo

100 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

Vectorizacion parcial/total:
intercambio de bucles

Problema:
v En bucles anidados el recorrido del espacio de iteraciones impide:
1. Una fraccion vectorial elevada
2. Un acceso eficiente a memoria

3. Vectorizacion

Transformacion:

v Intercambiar el orden de anidacion de los bucles, si es legal

do Jj= 1, 64
do 1=1, 8
A(i,3)= B(i,J)*C(i) = | = |l dl
enddo A B C
enddo

- Ejemplo 19 -

1. Intercambiar para aumentar la fraccion vectorial

dO i=]_, 8 B %
A(i,1:64)= B(i,1:64)*C(i) | = _ «
C

enddo A B

101 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

6. Compilacion

6.5 Vectorizacion

integer maxlen
parameter (maxlen = 64)

real A(maxlen, maxlen)

do 1= 1, maxlen

do j= 1, maxlen
A(i,7)= 0.0
enddo
enddo

do 1= 1, 8
do j= 1, maxlen
A(i,7)= float(1+])
enddo
enddo

! intercambiar para mejorar el

| acceso a la memoria multibanco?

! no intercambiamos para

| preservar vectores largos

- Ejemplo 20 -

2. Intercambiar para mejorar el acceso a memoria

a. En FORTRAN las matrices se almacenan por columnas: aj, columna —> 211> 321> @315 - 312> 322, 3305 -..

En C, se almacenan por filas.

102 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

real A(64,64)

do j= 2, 63
do 1= 1, 64

S: A(i,j)= (A(i,3-1) + 2*A(i,3j) + A(i,7+1))*0.25
enddo

enddo

- Ejemplo 21 -

3. No es necesario intercambiar para poder vectorizar

En este ejemplo el bucle j genera ciclos de dependencias, pero el bucle
i no, y por tanto la sentencia es vectorizable en i

do J= 2, 63
A(l:64,7)= (A(1l:64,3-1) + 2*A(1:64,7) + A(1l:64,3+1))*0.25
enddo

;Como lo hemos sabido?

103 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

do J= 1, 64
do i= 1, 64 El bucle i tiene
S: A(i+1,3)= A(i,Jj) * B(i) una recurrencia a distancia 1
enddo que impide vectorizar
enddo

- Ejemplo 22 -

3. Intercambiar para poder vectorizar

En este ejemplo
1. El intercambio es legal, y
2. Posibilita la vectorizacion del bucle interno

do 1= 1, 064
A(i+1,1:64)= A(1,1:64) * B(1)
enddo

. Como lo hemos sabido?

104 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6.5 Vectorizacion

6. Compilacion

DIAGRAMA DE DEPENDENCIAS CON ANIDACIONES

04

do = 1,

04

do i= 1,

* B(1)

A(j—+llj): A(l/j)

St
enddo
enddo

h

3-1, ...

e 201,2°2,2-3, ...

1:64 x i=1:64} ={1-1, 1-2, 13,

Esplter — {]

-~
-~
-~
~ -
———
-
=
-~ -

—{

(o)

\o ||||||||||||| o bv
@\ A @\
\o ||||||||||||| e _ ___________ bv
— o o
— P —
- Y - T 0 p

Victor Vifials, Jestis Alastruey

Multiprocesadores - Ing. Informatica - UNIZAR

105

6.5 Vectorizacion

6. Compilacion
O Alrecorrer Esplt en el orden de programa, camino a trazos,
los accesos a memoria determinan las dependencias.

Cualquier otro orden que las respete, es legal

J
.
Ari=Aq A=A QAnTApB
0 S\ o ‘\p e
A31=Ag 1 A3ppTAy 1 AzzTAgs :
0 : b Fo\ e : b
v :' : :' : :' |
A=Az A=Az AyTAsg g !
b ’1 b ’1 b ’1 b
vy \/ | \/

/
7’ S -

_<m: E(A21)9 L(A21)9 E(A3l)a L(A31),

(Como representar las dependencias?

i dist j, dist i OOJ
>

S

J

Es una recurrencia en (1), y por tanto no es vectorizable !!

Victor Vifials, Jesus Alastruey

106 Multiprocesadores - Ing. Informatica - UNIZAR

6. Compilacion 6.5 Vectorizacion

O Intercambiar los bucles es recorrer Esplt en otro orden:

j

Ar1=Aq A=A Ar3=Aq3

<m>: E(Ag1), E(Ag), E(Ap3), ... L(Ag1), E(A3zy), L(Ap)), E(Azp)...

O El nuevo recorrido, respeta las dependencias ?
v. SI— el intercambio es legal

v NO — no es legal

O Abhora el bucle interno (j) ejecuta los calculos en otro orden.
En este nuevo orden NO hay dependencias entre calculos consecutivos
Es posible vectorizar en (j) !!

do i= 1, 64
A(i+1,1:64)= A(i,1:64) * B(1)
enddo

107 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

6. Compilacion 6.5 Vectorizacion

RESUMEN DEL PROCEDIMIENTO MANUAL

1) Desplegar Esplt,
anotando referencias a memoria y dependencias

2) Grafo de dependencias
3) (Se puede vectorizar y paralelizar?

4) (Es legal el intercambio?
en caso afirmativo, repetir (3)

5) Escoger la opcion mejor

do i= 2, 64
do j= 2, 32

Sl: A(i,3)= B(4,9)

$2: B(i-1, j-1)= A(i-1,7)

enddo
enddo
- Ejemplo 23 -

Estudiar las posibilidades de codificacion y valorar su rendimiento
~i PAR PASO (3) ~j PAR

|:j SEC si/no |:i SEC si/no
_i SEC _3j SEC

|:j VEC si/no |: i VEC si/no

_i PAR ~3j PAR
|:j VEC si/no i VEC si/no

|

108 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

6. Compilacion 6.5 Vectorizacion

void calc array (int** a)
{
for (1=1; 1<N; ++1)
for (j=1; J<N; ++7)
al1] (3] = ali-1][3] + al1][]-1]

- Ejemplo 24 -

Leer el texto y reflexionar

“This code shows a nested loop operating on a 2D array with cross-
iteration dependencies over both loops, making it appear serial. From the
dependence graph it can be shown that iterations can be grouped into
independent sets, allowing parallel execution if loop skewing and
interchange are used. Techniques relying on dependence testing would
overlook this parallelism. Furthermore, the 2D array in (a) is represented
as an array of pointers to arrays, thwarting a parallelizing compiler’s
attempt to statically analyze this section of code.”

Garcia, S.; Donghwan Jeon; Louie, C.; Taylor, M.B.; , "The Kremlin
Oracle for Sequential Code Parallelization," IEEE Micro, vol.32, no.4, pp.
42-53, July-Aug. 2012

IEEE Micro Special Issue on Parallelization of Sequential Code

109 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

6. Compilacion 6.5 Vectorizacion

Reduccion

En este contexto reducir es una operacion matematica que quita una
dimension a una estructura de datos:

matriz — vector, vector — escalar, ...

Es una operacion frecuente en calculo cientifico.
Los repertorios vectoriales tienen instrucciones para operadores de
reduccion asociativos:

v' Maximo, minimo, OR, AND, suma, producto

v Ojo con el problema asociatividad / precision finita

Transformacion:

v Detectar los autociclos de dependencias debidos al reuso de la
variable escalar de reduccion

v Sustituir el bucle de reduccidn por la instruccion apropiada

110 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

6. Compilacion 6.5 Vectorizacion

s=0

p=1 Si:)l 1yt
DO i= 1, 128 %

S1: A(i)= B(i) + C(i) = o S2

S2: s =s + A(1)

S3: p=p * A(1) S3)1 91t
ENDDO 3

- Ejemplo 25 -

- Vectorizar usando las instrucciones de lenguaje maquina apropiadas,
y en este caso seccionar

s= 0
p= 1
do 1=1,2

Sl: A(64(i-1)+1:641i)= B(64(i-1)+1:641) + C(64(i-1)+1:641)
S2: s = s + SUM(64 (1-1)+1:0641)
S3: s = p * PROD(64(i-1)+1:641)

enddo

111 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastruey

6. Compilacion 6.5 Vectorizacion

Bucles con condicionales: operaciones con
mascara

Cddigos con muchos saltos, por ejemplo, un bucle con una sentencia
condicional en su cuerpo, pueden ser vectorizados usando mascaras
vectoriales que bloquean las operaciones para las cuales la condicion no es
cierta

for (i = 0; i < MAX; i++)
if (cond (1))
c[i] = a[i] + Db[i]

vt el e f (o]
<
-'ar”s] - afi+4] | afi+3] - afi+1] , afi]
B
» -‘ b[i+6] --b[i+4] b[i+3] -‘b[in] b[i]
-\ [i+6] - cli+d] | cliv3] -\ cli+1] | <l

112 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jestis Alastruey

6. Compilacion 6.5 Vectorizacion

Punteros en C!

The following loop may not get vectorized because of a potential aliasing
problem between pointers a, b and ¢

void add (float *a, float *b, float *c) {
for (int 1=0; 1<SIZE; 1i++)
c[i] += a[i-1] + bIl1i];

If the restrict keyword is added to the parameters,
the compiler will trust you, that you will not access the memory in question
with any other pointer and vectorize the code properly

voild add (float * restrict a,
float * restrict b, float * restrict c) {

for (int 1=0; 1<SIZE; 1i++)
cli] += al[1i-1] + bl1];

The downside of using restrict is that not all compilers support this
keyword, so your source code may lose portability.

O restrict es un cualificador complicado, que puede ayudar al
compilador a generar ejecutables mas rapidos en contextos no
relacionados con vectorizar. Para mas informacion:

How to Use the restrict Qualifier in C, Douglas Walls, Sun ONE Tools

Group, Sun Microsystems, July 2003 (revised March 2006)
http://web.archive.org/web/2012022505504 1/http://developers.sun.com/solaris/articles/

cc_restrict.html

1) http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/
compiler c/optaps/common/optaps_vec use.htm

113 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesis Alastruey

7. Ley de Amdhal

7. LEY DE AMDHAL

0 Modelo matematico sencillo que calcula la mejora en rendimiento
al ejecutar parte de las operaciones de un programa en menos tiempo:

+ un modo lento (escalar)

+ un modo rapido (vectorial)

0 Sea N el numero de operaciones en coma flotante de un programa
y 1, el porcentaje que puede realizarse en modo vectorial

+ TPF,): tiempo por FLOP en modo (escalar, vectorial)

+ G =TPF/TPF,

N TPF,
N-f,-TPF,+N-(1-f)-TPF,

Speed_up = Tegeatar/ Tvectorial =

1 1 1

TPF, N 1
f-TPFS+(1—fv) A=-f)+f-c SsTh/G

+ Speed up (f,—1) > G

¢+ G50 = Speed up - 1/1s
U

fs 7T = Speed up 4 |
"El modo lento va a limitar, aunque el modo rapido sea fantastico"

113 Multiprocesadores - Ing. Informatica - UNIZAR Victor Viiials, Jestis Alastru@

7. Ley de Amdhal

O Valor habitual de £, entre 0,4 y 0,75 para programas compilados
U

Un buen computador vectorial debe tener un buen procesador escalar
A Caso de estudio:
+ Computador A: TPF, = 3,3ns ; TPF,, = Ins (G=3,3)
+ Computador B: TPF,=6,6ns ; TPF,=0,5ns (G=13,2)

+ Computador C: TPF = 6,6ns ; TPF,, = 1 ns (G=6,6)
1

R=R_-Sup = R -—
fi+1,/G

GFLOPS

1.8
1.6
1.4
1.2
L1

0.8
L 0.6

—0.4

—0.2

>

0.1 0.2 0.3
| | |

<
'S

0.5 0.6 0.7 0.8 0.9

Permalink to this graph:

http://fooplot.com/plot/2hgbw5aoc?

114 Multiprocesadores - Ing. Informatica - UNIZAR Victor Vifials, Jesus Alastru@

	Víctor Viñals Yúfera y Jesús Alastruey Benedé
	Multiprocesadores
	Curso 2024-25
	3º Grado en Ingeniería Informática
	Especialidad Ingeniería de Computadores
	Basado en los apuntes de la asignatura “Procesadors Vectorials” de la profesora Montserrat Peirón Guardia, Facultat d’Informàtica de Barcelona (FIB), UPC.
	Algunas transparencias tomadas de cursos de los profesores José María Llabería y Mateo Valero Cortés, FIB, UPC.
	Basada en la asignatura “Fundamentos de Arquitecturas Paralelas”, de Ingeniería informática, impartida desde el curso 1995-96 hasta el 2012-13.

	1. Intro.
	Marco: el PARALELISMO
	Objetivos
	(1) ¯ tiempo de ejecución de una aplicación
	(2) ­ productividad múltiples usuarios
	(3) ­ productividad aplicaciones multihilo
	- servidores web, bases de datos, ...
	(4) Tolerancia a fallos: p.ej. sistemas navegación de un avión
	(5) Simplificar componentes y especializar función. Por ejemplo: sistemas empotrados en-chip (teléfono móvil)

	1. Intro.
	Marco: el PARALELISMO
	Consecuencias
	HARDWARE para (1, 2, 3)
	Combinación de:
	ejecutar varias instrucciones por ciclo ® ILP
	la misma instrucción opera sobre varios datos ® SIMD
	un procesador ejecuta varios hilos (threads) ® MT
	muchos procesadores interconectados ® MIMD

	Mucha memoria accesible desde los procesadores con gran ancho de banda
	Mucho disco accesible desde la memoria con gran ancho de banda (entrada/salida)

	1. Intro.
	Marco: el PARALELISMO
	Consecuencias
	COMPILACIÓN
	Extracción automática de paralelismo a partir de códigos secuenciales
	vectorización ® SIMD
	paralelización ® MIMD

	Por ejemplo: <https://godbolt.org/z/B67Rxu>
	SOFTWARE: modelos de programación paralela
	Paralelismo vectorial: FORTRAN 90
	Paralelismo de datos: p.ej. High Performance FORTRAN
	Single-program, multiple-data (SPMD): Co-Array FORTRAN
	Memoria compartida:
	OpenMP <http://www.openmp.org>
	Pthreads (ANSI/IEEE POSIX std. 1003.1)
	Java
	Intel Threading Building Blocks (TBB) en C++
	C11, C++11, ...

	Paso de mensajes:
	MPI
	...

	1. Intro.
	1.1 Problemas Científicos Numéricos
	OBJETIVO (1): ¯ Tex de una aplicación
	Supercomputación
	Aplicaciones numéricas
	predicción meteorológica, dinámica de fluidos, dinámica molecular, alineamiento genético
	simulación aerodinámica ala, estacionario: 1018 operaciones doble precisión ala, turbulencia: 1020 DP FLOPs avión, turbulencia: 1023 DP FLOPs
	¡Y muchas más!, ver p.ej. <http://www.bsc.es/index.php> computer, earth and life sciences

	Estructuras de datos: grandes matrices densas o dispersas
	Tipos de datos: generalmente números reales (coma flotante), 32/64 bits, IEEE 754
	“Pocos” bucles con muchas iteraciones
	Tiempo de ejecución limitado por el cálculo compute-bound o por el acceso a memoria memory-bound
	Paralelismo de datos
	= Supercomputadores numéricos

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Código
	Real*8 C(max),A(max),B(max)
	DO I = 1, max
	C(I) = A(I) + B(I)
	ENDDO

	Segmentación
	F: fetch
	D/L: decod. y lect. operandos en Rx
	ALU: operaciones enteras
	MEM: acceso a memoria
	ERx: escritura en registros
	U1, U2: operaciones coma flotante

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Procesador Segmentado
	Rcont = max; Ra,Rb,Rc = &A, &B, &C
	bu: LD F1, M[Ra]
	2: LD F2, M[Rb]
	3: ADDF F3, F1 + F2
	4: ST M[Rc], F3
	5: ADD Ra, #8
	6: ADD Rb, #8
	7: ADD Rc, #8
	8: DEC Rcont
	9: BNE bu

	CÓDIGO Y DATOS cargados en caches
	Ciclos / iteración =
	CPF(ciclos/flop) =
	TPF(ns/flop) =
	R(MFLOPS) =

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Reordenando Código
	¡
	o
	¡
	o
	è
	¡
	o
	o
	o

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Desenrollando d = 4

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Desenrollando d = ¥
	LD F1n, M[Ra+n*8]
	LD F2n, M[Rb+n*8]
	[---]
	ADDF F3n, F1n, F2n
	[---]
	ST M[Rc+n*8], F3n
	CPF(ciclos/flop) =
	TPF(ns/flop) =
	R(MFLOPS) =

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Procesador Supersegmentado
	bu: LD F1, M[Ra]
	2: LD F2, M[Rb]
	3: ADD Ra, #8
	4: ADD Rb, #8
	5: ADDF F3, F1, F2
	6: ADD Rc, #8
	7: DEC Rcont
	8: ST M[Rc], F3 ; inicializamos
	9: BNE bu ; Rc con 8 menos!
	[--]

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Procesador Superescalar
	Cambiamos el control
	Mantenemos rutas de datos (» coste)
	Tc = 0.5 ns è 2 GHz
	Suponemos grado 2: se buscan dos instrucciones por ciclo
	Pero sólo se ejecutan en paralelo si utilizan las dos rutas de datos: entera y coma flotante
	Hay que planificar para formar parejas de instrucciones sin dependencias entera-coma flotante
	El efecto es “esconder” los ciclos de ejecución de ADDF
	Ciclos/FLOP

	d = 1
	d = 4
	Ciclos/ FLOP
	9
	4.5
	3

	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Resumen
	TPF obtenidos en los diferentes casos en ns (entre paréntesis, la velocidad R en MFLOPS)

	Segmentado
	Rmax = 2 GFLOPS
	5 (200)
	2.75 (363.6)
	2 (500)
	0.5
	Supersegmentado
	Rmax = 4 GFLOPS
	2.75 (363.6)
	1.4375 (695)
	1 (1000)
	0.25
	Superescalar
	Rmax = 2 GFLOPS
	4.5 (222)
	2.25 (444)
	1.5 (666)
	0.5

	1. Intro.
	1.3 Versión Vectorial de la Suma de Vectores
	bu: LD F11, M[Ra]
	LD F12, M[Ra+8] ... LD F1N, M[Ra+(N-1)*8]
	LD F21, M[Rb]
	LD F22, M[Rb+8] ... LD F2N, M[Rb+(N-1)*8]
	ADDF F31, F11, F21
	ADDF F32, F12, F22 ... ADDF F3N, F1N, F2N
	ST M[Rc], F31 ... ST M[Rc + (N-1)*8], F3N
	ADD Ra, #N*8 ADD Rb, #N*8 ADD Rc, #N*8
	SUB Rcont, #N
	BNE bu
	1 instrucción vectorial corresponde a N instrucciones del bucle N-desenrollado
	Instrucciones por iteración =
	Ancho de banda con memoria =
	Tiempo de ejecución =

	2. Extension
	Vectorial
	2. Extensión Vectorial de una arquitectura ld/st
	2.1 Arquitectura y Organización
	Primeros supercomputadores tipo CISC (M-M)
	Instrucción compleja: ADDV @md, @mf1, @mf2
	lee dos flujos desde memoria calcula escribe el flujo resultado hacia memoria
	Organización segmentada
	- Latencia de obtención de operandos muy grande, sobre todo para paso no secuencial. Es difícil encadenar
	- CDC Star 100 (‘72), TI ASC (‘72)

	Después, y en la actualidad, filosofía RISC (R-R), o sea,
	desacoplar instrucciones de cálculo y de acceso a memoria:
	Instr. vectoriales de acceso a memoria para carga/descarga de registros vectoriales: LV, SV
	Instr. vectoriales de cálculo sobre los registros vectoriales: ADDV
	VLR: Vector Length Register nº de elementos a procesar p.ej. para vectores de 64 elementos necesito 6 + 1 bits
	VMR: Vector Mask Register impide que algunas operaciones se realicen
	Ventajas de un repertorio vectorial:

	Compacto
	Una instrucción pequeña codifica N operaciones

	Expresivo: La instrucción indica al hardware
	que las operaciones son independientes
	el número de operaciones
	el “patrón” de acceso a memoria: en secuencia (stride = 1 elemento) o a saltos (stride > 1 elemento)

	Escalable
	el mismo binario puede ejecutarse en una o varias “pistas” segmentadas (parallel pipelines or lanes)

	Bajo consumo de energía
	Ahorramos energía en el acceso a la memoria de instrucciones y en la decodificación (1/N)
	Cuando se ejecutan las operaciones de una instrucción vectorial no hay que gastar energía en comprobar dependencias

	2. Extension
	Vectorial
	2.2 Repertorio básico de instrucciones
	Ejemplo: DLXV Diagrama de flujo de la ALMa

	2. Extension
	Vectorial
	2.2 Repertorio básico de instrucciones
	Ejemplos
	movi2s VLR,r2 ; VLR = r26:0 Î {0:64}
	lv V0,[r3] ; V0.i = mem [r3 + i*8]
	sv [r5],V4 ; mem [r5 + i*8] = V4.i
	addv V1,V2,V3 ; V1.i = V2.i + V3.i
	addsv + subsv V1,f0,V3 ; V1.i = f0 -V3.i
	subvs V1,V3,f5 ; V1.i = V3.i - f5

	VLR
	acción
	0
	NOP
	1
	i = 0:0
	i = 0:VLR-1
	2
	i = 0:1
	64
	i = 0:63
	65
	i = 0:63
	127
	Problema: codificar en ensamblador
	integer i, max
	parameter (max = múltiplo de 64)
	real*8 C(max), A(max), B(max)
	do i= 1,max
	C(i) = A(i) + B(i)
	enddo
	Suponemos registros enteros inicializados:
	RA = &A(0), RB = &B(0), RC = &C(0), Rcont = max, R64 = 64

	2. Extension
	Vectorial
	2.3. Organización y Segmentación
	SIMD: Single Instruction Multiple Data
	Extensiones multimedia: Intel MMX (1982), luego Intel SSE
	Vectores cortos
	No hay registro VLR: la longitud vectorial va en el CO
	Freescale/Apple/IBM Altivec, SPARC VIS, ARM Neon

	Extensiones vectoriales: Intel AVX, AVX-512, ARM SVE, RVV
	Soporte hw: ALUs replicadas y BR vectorial (BRV)
	BRV de AVX-512 ® 32 registros de 512 bits: ZMM0-31

	Procesadores Matriciales (Array Processors)
	Históricamente fueron los primeros:
	Solomon computers (Westinghouse Electric Corporation, 1960-62) ® ILLIAC IV (8x8) en 1968-74
	Soporte hw: Nodos (mem+regs+ALU) + Red Interconexión Directa entre nodos
	STARAN (74), BSP (82) Connection Machines:
	- CM1 - CM2 - CM5 (1985 - 87 - 93)

	Actualidad: procesado de imagen y de señal
	Procesadores Vectoriales Segmentados (pipelined)

	Memoria-memoria
	ADDV @md, @mf1, @mf2
	CDC Star 100 (72), TI ASC (72)

	Memoria-registros (Seymour Cray, 1975)
	Vectores de tamaño grande, hasta 4K elementos
	Soporte hw: Banco Registros Vectorial + Memoria Multibanco + ALUs + segmentación
	Cray 1 (76), Cray2, Cray X-MP y Cray Y-MP CDC Eta y Cyber IBM 3090 VF Fujitsu VP200 Hitachi S-810 Convex Alliant NEC SX/2 - ... - SX/9 - SX/ACE (85 - 07 -13)

	2.3. Organizacion
	2.3.1 Banco de Registros Vectorial
	BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1LÅ1E)

	2.3. Organizacion
	2.3.1 Banco de Registros Vectorial
	BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1LÅ1E)

	2.3 Organizacion
	2.3.1 Banco de Registros Vectorial
	BRV con p buses L, q buses E y Reg Vec de 1 puerto
	1 flujo por registro
	O bien lectura desde un bus L (L1..Lp)
	O bien escritura desde un bus E (E1..Eq)

	Globalmente máx. 8 flujos
	Ejemplo: 5 buses L y 3 buses E permiten a la vez
	Dos operaciones de dos operandos, y
	Una operación de un operando

	2.2 Organizacion
	2.3.1 Banco de Registros Vectorial
	Mejora: 2 puertos por Vi: lectura y escritura (1L+1E)
	Ya es posible addv v1, v5,v1
	Solapar dependencias?
	Solapar antidependencias?
	Podemos
	añadir puertos de lectura en cada Vi
	tener un BRV con p buses L y q buses E

	2.3 Organizacion
	2.3.1 Banco de Registros Vectorial
	Reg Vec con 2 puertos separados: Lectura y Escritura

	2.3 Organizacion
	2.3.2 Unidades Funcionales
	Descripción temporal:
	Latencia (ciclos): tiempo desde que entran los operandos hasta que sale el resultado.
	Lat. iniciación (LI) = lat. finalización (ciclos/operación): nº min. ciclos entre entradas consecutivas de operandos

	Sumadores, Multiplicadores
	L = nº de etapas, LI = 1 ciclo/op
	División, Raíces, Exponenciación, Trigonométricas
	L > nº etapas, por reutilización
	LI > 1
	Modelo de ejecución:

	2.3 Organizacion
	2.3.3 Memoria Multibanco
	Ejemplo de memoria:
	- 4 GiB con 1 puerto compartido de lec/escr
	- 4 bancos de 4 ciclos de latencia
	Queremos este comportamiento en lectura:
	¿Cómo?
	- Multibanco: nº bancos = latencia memoria
	- Entrelazado “por palabras”: “palabras consecutivas en bancos consecutivos”, asumimos números de 8 bytes alineados
	- L = 4 ciclos ® M = 4 bancos de 1GiB
	- Acceso síncrono o acceso desfasado

	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono
	@32bits ® nº banco = (@32bits/8) mod 4 ® {0, 1, 2, 3}
	Parte del control: - Cargar MAR_H cada cuatro ciclos (ojo primer acceso!) - Cargar todos los Di cada cuatro ciclos - Multiplexar Di en out cada ciclo

	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono. Ejemplo s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	MAR_H
	B0
	D0
	B1
	D1
	B2
	D2
	B3
	D3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	MAR_H
	B0
	D0
	B1
	D1
	B2
	D2
	B3
	D3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT

	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono. Resuelto s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	MAR_H
	1
	2
	3
	B0
	D0
	e4
	e8
	B1
	D1
	e5
	e9
	B2
	D2
	e6
	e10
	B3
	D3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4
	e4
	e5
	e6
	e7
	e8
	e9
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	MAR_H
	1
	2
	3
	B0
	D0
	e4
	e8
	B1
	D1
	e5
	e9
	B2
	D2
	e6
	e10
	B3
	D3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4
	-
	-
	e6
	e7
	e8
	e9

	2.3 Organizacion
	2.3.3 Memoria: Síncrono vs. Desfasado
	Problemas con acceso Síncrono:
	lectura: latencia variable o irregular
	escritura
	- un registro MDRin para cada banco
	- es lenta: (1 1 1 1 4) (1 1 1 1 4) ...

	Una solución: acceso desfasado los bancos son más independientes
	un registro MAR para cada banco
	control más complejo
	resultado:

	Veamos cómo se implementa -->

	2.2 Organizacion
	2.3.3 Memoria: Acceso Desfasado
	Control ?:
	mar_h, mar_l, mar_h_mux, di, outmux, ? ? ?

	2.3 Organizacion
	Memoria: Acceso Desfasado. Ejemplo s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	MAR_1
	MAR_2
	MAR_3
	Actividad B0
	Actividad B1
	Actividad B2
	Actividad B3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	MAR_1
	MAR_2
	MAR_3
	Actividad B0
	Actividad B1
	Actividad B2
	Actividad B3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT

	2.3 Organizacion
	2.3.3 Memoria: Acceso Desfasado. Resuelto s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	1
	1
	1
	2
	3
	MAR_H
	1
	1
	1
	1
	2
	3
	MAR_0
	1
	2
	3
	MAR_1
	1
	2
	MAR_2
	1
	2
	MAR_3
	1
	2
	Actividad B0
	e4
	e8
	Actividad B1
	e5
	e9
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 1 + 4
	e4
	e5
	e6
	e7
	e8
	e9

	2.3 Organizacion
	2.3.3 Síncrono vs. Desfasado: resumen
	Síncrono
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)
	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	Actividad B0
	e4
	e8
	Actividad B1
	e5
	e9
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4 + ...
	...
	e6
	e7
	e8
	e9
	e10
	Desfasado
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	2
	3
	MAR_1
	2
	MAR_2
	1
	2
	MAR_3
	1
	2
	Actividad B0
	e8
	e12
	Actividad B1
	e9
	e13
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 1 + 4
	e6
	e7
	e8
	e9
	e10

	2.4 Cinco Procs.
	Procesador 1
	BRV con 2L + 1E (y reg. vec. mínimos)
	2 buses L: BRV ®{M Å ALU}
	1 bus E: {M Å ALU} ® BRV

	Memoria de 1 puerto {L Å E}. Sólo 1 UF
	Segmentación. Ejemplo.

	2.4 Cinco Procs.
	Procesador 2
	3 buses lectura: BRV ® {M, ALU}
	2 buses escritura: {M, ALU} ® BRV
	Instrucciones independientes y sin riesgos estructurales
	B
	D1
	R
	L
	WVLR
	B
	D1
	R
	L
	WVLR
	Instrucciones dependientes o con riesgos estructurales

	B
	D1
	R
	L
	WVLR
	B
	D1
	D2
	D3
	D4
	D5
	...
	...
	...
	...
	Dn
	R
	L
	Regla: último D = último W

	2.4 Cinco Procs.
	Procesador 3
	2 UFs
	ALU para sumar
	ALU para sumar/multiplicar

	3 buses de escritura y 5 de lectura

	2.4 Cinco Procs.
	Procesador 4 1 de 2
	Dos ALUs dedicadas
	Dos puertos de lectura y uno de escritura por reg. vectorial. La Unidad de Control permite dos flujos de lectura y uno de escritura en cada registro vectorial Encadenamiento general ® solapar dependencias datos
	¡¡Las antidependencias tampoco bloquean!!
	Temporización riesgos de datos productor-consumidor:

	2.4 Cinco Procs
	Procesador 4 2 de 2
	Instrucciones dependientes
	B
	D1
	R
	L
	WVLR
	B
	D1
	D2
	D3
	D4
	R
	L
	WVLR
	B
	B2
	B3
	B4
	D
	...
	Encadenamiento
	“Primera lectura de registros bajo primera producción”

	o bien,
	Regla: último D = último L
	Ejercicio. Para el siguiente código:
	Dibujar el diagrama de ciclos
	En el primer ciclo de encadenamiento - Dibujar flechas verticales de productor a consumidor - Determinar las posiciones de los punteros de escritura y lectura de los registros V1 y V4
	addv V1,V2,V3
	lv V4,(r1)
	addv V5,V4,V1

	Para casa: cambiar addv V5,V4,V1 por mulv V5,V4,V1

	2.4 Cinco Procs
	Procesador 5
	Replicar los caminos de proceso y memoria. Ejemplo: el Processador 4 con 2 parallel lanes
	El Banco de Registros Vectorial (BRV) y la memoria se particionan: pares en una partición e impares en la otra.
	Cada una de las dos ALUs (FP add, FP mul) se duplican.
	En el primer ciclo de ejecución entran en paralelo a las dos pistas los elementos (0, 1) de los registros vectoriales fuente. En el segundo ciclo entran los elementos (2, 3), y así sucesivamente ...
	Comparando con el Procesador 4 de una pista, el número de ciclos por elemento, Ce, se divide por el número de pistas.

	2.5 Rendimiento
	Rendimiento sin Seccionar 1 de 2
	lv V0,Ra
	mulv V1,V2,V3
	addv V4,V5,V6
	El rendimiento depende de n, el tamaño del vector supongamos n £ MVL
	Cn (n £ MVL) = Cfijos + n × Ce ciclos Cfijos = latencia UFs + penalizaciones penal. = riesgos estructurales y dependencias Ce = ciclos por elemento
	Tn (n £ MVL) = Cn × Tc

	R = velocidad en FLOPS; se aplican k FLOPs a cada elemento
	Rn (n £ MVL) = n × k / Tn = n × k × F / Cn R en GFLOPS ® Tc en ns o F en GHz

	2.5 Rendimiento
	Rendimiento sin Seccionar 2 de 2
	N1/2 longitud de vector que consigue Mitad del rendimiento máximo
	Da idea de la sobrecarga vectorial (latencias y penalizaciones)
	es independiente de Tc sólo depende de la arquitectura y del algoritmo

	Nv Longitud mínima de vector que consigue igual velocidad en las versiones escalar y vectorial
	mide la sobrecarga vectorial y la velocidad relativa entre los procesadores vectorial y escalar

	2.5 Rendimiento
	Comparar Rendimiento sin Seccionar 1 de 2
	Supongamos los siguientes parámetros para los cinco procesadores anteriores:
	Tc = 1 ns
	Lat { +, *, mem } = 6, 7, 12 ciclos
	LI = 1 ciclo
	Segmentación página 39:
	- aritméticas, loads: B, Dn, R, Lat, WVLR
	- stores: B, Dn, R, WVLR, Lat

	n = 1 si no hay riesgo estructural ni dependencia;
	n > 1 en caso contrario
	VLR = valor del registro VLR Î {0..64}
	Vamos a calcular Cn (n £ MVL) R64 (MVL = 64) R¥ (MVL ¥)
	Rpico

	2.5 Rendimiento
	Comparar Rendimiento sin Seccionar 2 de 2
	Cn se calcula con reg. vect de n elem.
	R64 con n = 64
	R¥ con n = ¥ ® R¥ (MVL ¥)
	Proc i (Rpico, GFLOPS)
	Código
	Cn ciclos
	R64 GFLOPS
	R¥ GFLOPS
	lv V0, Ra
	mulsv V1, F0,V0
	addv V2, V2,V1
	https://www.desmos.com/calculator/lcvokcya7s
	(página en blanco)

	2.6 ZV: Organización de un procesador vectorial segmentado con ALMa tipo DLXV
	aluV
	LV
	SV
	B
	búsqueda instrucción
	D1
	deco 1/ @dst salto
	lectura BRint
	D2
	deco 2
	cálculo @ base
	L
	¿riesgos en recursos?
	¿riesgos en registros?
	lanzamiento y
	reserva recursos
	lectura reg vectoriales
	nada
	lectura reg vectoriales
	X1
	red ida
	paso crossbar 1
	paso crossbar 1
	generación @
	alu/ mem
	operación o acceso a memoria
	op
	mem_rd
	mem_wr
	liberar recursos en último ciclo
	X2
	red vuelta
	paso crossbar 2
	W
	escritura
	escritura registro vectorial destino liberar recurso en último ciclo
	Ejemplo 1: ADDV, Lat_sum = 2, Tasa iniciación = 1

	B
	x
	D1
	x
	D2
	x
	L
	x
	x
	x
	x
	x
	x
	X1
	x
	x
	x
	x
	x
	x
	+
	x
	x
	x
	x
	x
	x
	x
	X2
	x
	x
	x
	x
	x
	x
	W
	Lat_sum
	x
	x
	x
	x
	x
	x
	resumen:
	B
	D1
	D2
	L
	X1
	+ 2c
	X2
	W 6c
	Ejemplo 2: LV, Lmem = 4, sin conflictos de banco

	B
	x
	D1
	x
	D2
	x
	L
	x
	X1
	x
	x
	x
	x
	x
	x
	mem
	x
	x
	x
	x
	x
	x
	x
	x
	x
	X2
	x
	x
	x
	x
	x
	x
	W
	Lat_mem
	x
	x
	x
	x
	x
	x
	resumen:
	B
	D1
	D2
	L
	X1
	mem 4c
	X2
	W 6c
	Ejemplo 3: SV, Lmem = 4, sin conflictos de banco

	B
	x
	D1
	x
	D2
	x
	L
	x
	x
	x
	x
	x
	x
	Lat_mem
	X1
	x
	x
	x
	x
	x
	x
	mem
	x
	x
	x
	x
	x
	x
	x
	x
	x
	X2
	W
	resumen:
	B
	D1
	D2
	L
	X1 6c
	mem 4c
	MVL
	64
	tamaño registros vectoriales
	+
	Lsum = 2c, TI = 1c
	latencia, tasa de iniciación
	*
	Lmul = 3c, TI = 1c
	mem
	8 bancos, Lmem = 4c
	sistema sobrado
	Tc (f)
	1ns (1000 Mhz = 1GHz)
	Coherencia
	entre Mcd y Mp asegurada por hardware (ya veremos)

	3. Dos Aspectos de Programación: vector length y vector stride
	3.1 Vector length
	Vectores de n elementos, pero Registros vectoriales de MVL elementos:
	Soluciones:
	n £ 64 se programa VLR con n (instr. DLXV movi2s)
	n > 64
	Técnica de Seccionado o Strip-Mining
	Módulo y división entera por MVL (potencia de dos): - Operaciones con máscara, desplazamientos - Soporte especial: p.e. repertorio de Convex

	3. Vector Length y Stride
	3.2 Generación de código “seccionado”
	Código AXPY (SAXPY o DAXPY: simple o doble precisión)
	DO i = 1, n
	y(i) = a × x(i) + y(i)
	ENDDO

	3. Vector Length y Stride
	3.3 Rendimiento con Seccionado
	Bucle ejecutado en modo vectorial (3 secciones y pico)
	Código AXPY seccionado con MVL = 64
	1 and Rmod, Rn, R3F
	2 srl Rent, Rn, #6
	3 movi2s VLR, Rmod
	buc: LV V0, Rx
	5 MULSV V1, Fa, V0
	6 LV V2, Ry
	7 ADDV V3, V2, V1
	8 SV Ry, V3
	9 movs2i Rn,VLR
	10 bz out, Rent
	11 nop
	12 sll Rsize, Rn, #3
	13 add Rx, Rx, Rsize
	14 add Ry, Ry, Rsize
	15 movi2s VLR, #64
	16 jmp buc
	out: dec Rent

	3. Vector Length y Stride
	3.3 Rendimiento con Seccionado
	Modelo de ejecución
	Cbase ciclos del prólogo y del epílogo:
	instr. escalares {1:3}
	tiempo desde último bloque n hasta final
	Cfij costes fijos (incluso con VLR = 1)
	Latencias + Penalizaciones
	Cbucle ciclos de control de bucle
	instr. escalares {9:17} en paralelo con las vectoriales anteriores
	ciclos desde que se lanza la última instr. vect. de una sección hasta que se lanza la primera de la sección siguiente.
	a veces, Cbucle = 0, porque la primera instr. vect. de la sección siguiente está detenida por recursos o dependencias.

	Cn = Cbase + én/MVLù×(Cfij + Cbucle) + n×Ce
	A partir de Cn, podemos derivar Rn, R64, R¥, ... N1/2, Nv

	3. Vector Length y Stride
	3.4 Recorridos con Stride
	Procesado de elementos no contiguos
	a separación constante (stride = paso)
	for (i=0; i<n; i++)
	for (j=0; j<n; j++)
	{ A[i][j] = 0.0;
	for (k=0; k<n; k++)
	A[i][j] = A[i][j] + B[i][k]*C[k][j];
	}

	B[i][k]*C[k][j] es vectorizable en k si cargamos
	C[0:n-1][j] en un reg. vectorial (si n>64 secc.)
	s = n*8 bytes = separación en un registro R
	Vectorización de la multiplicación de matrices en forma ijk:

	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 1 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV

	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 2 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV

	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 4 de 4
	permalink:
	http://fooplot.com/index.php?&type0=0&type1=0&type2=0&type3=0&type4=0&y0=2*x/%28ceil%28x/ 64%29*12%2B2*x%29&y1=0.914&y2=0.914/2&y3=2*x/%2829%20%2B%202*x%29&y4=2*x/%2817%2Bceil%28x/ 64%29*12%2B2*x%29&r0=&r1=&r2=&r3=&r4=&px0=&px1=&px2=&px3=&px4=&py0=&p...

	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 3 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV
	Ejercicio
	obtener fórmulas para N1/2 y Nv
	Hipótesis: son menores que MVL
	4.1 Introducción
	4.2 Sistemas Ajustados
	4.3 Sistemas Sobrados

	4.1 Introducción
	Memoria = carga y descarga de registros vectoriales
	Con un control elaborado:

	Almacenamiento
	Palabras consecutivos en bancos consecutivos
	“bancos entrelazados por palabras o entrelazado de menos peso”

	Suponemos:
	ancho banco = ancho BUS memoria/registros vect. = tamaño palabra

	Ejemplo: M = 8 bancos, S = 3
	Propiedad Fundamental
	Una secuencia de accesos con separación S bancos
	visita un subconjunto de P bancos del total de M
	M = 8
	S
	1
	2
	3
	4
	5
	8
	P
	8
	4

	4.2 Sistemas Ajustados: M = L
	Ejemplo: L = 4 ciclos y M = 4 bancos
	Acceso sin conflicto: S = 5 módulos
	Cada banco diferente visitado aporta 1 dato / L ciclos
	Visitamos P bancos Flujo = BW = P datos / L ciclos
	Cemem = Flujo-1 = L/P ciclos/dato = 1 cpe

	Acceso con conflicto: S = 4 módulos

	4.2 Sistemas Ajustados: M = L
	Strides IMPARES ® sin conflicto ® Cemem = 1 , con s impar

	DEMO, suponiendo nº de bancos es potencia de 2, M = 2m
	= mcd (2m,) = 20 = 1
	Strides PARES ® con conflicto ® Cemem > 1 , con s impar y k³1

	DEMO (M = 2m)
	Conflicto ® Cemem > 1
	= mcd(,2m) = 2min(k,m)

	4.3 Sistemas Sobrados: M > L
	Ejemplo: M = 8, L = 4
	Acceso sin conflicto S = 2
	Flujo = BW =
	permitimos más strides libres de conflicto

	4.3 Sistemas Sobrados: M > L
	Suponemos L = 2l (irreal)
	Strides sin conflicto: IMPARES y algunos PARES , con s impar y 0 £ k £ m-l No hay conflicto con PARES si tienen “pocas” potencias de dos.

	DEMO (M = 2m > L = 2l)
	Sin conflicto ® P ³ L ®
	® ®
	Strides con conflicto: parte de los PARES , con s impar y k > m-l Ejemplo: Ce (sistema L, M, S) = Ce(8, 16, 30) =

	DEMO (M = 2m)
	Conflicto ® Cemem > 1 mcd (2m, S) > 1
	Repertorio completo de instrucciones

	DLXV - VMIPS: códigos de operación
	[HePa12] J. HENNESSY and D. PATTERSON, Computer Architecture: a quantitative approach. 5th Edition, Morgan Kaufmann, 2012.
	• Chapter 4 and Appendix G: Vector Processors in More Depth

	DLXV completo: diagrama de flujo de la ALMa
	LVI - SVI: gather - scatter
	6.1 Introducción. Fases en el back-end del compilador: extracción automática de paralelismo vectorial
	6.2 Transformaciones previas que simplifican el análisis de dependencias
	6.3 Análisis y grafo de dependencias. Tests aproximados
	6.4 Optimizaciones independientes de la arquitectura: renombrar, expansión escalar, copia de vectores
	6.5 Vectorización - Procedimiento básico - Vectorización parcial vs. total: distribución e intercambio de bucles - Reducción

	6.1 fases en el back-end del compilador
	Front-end: análisis léxico y sintáctico
	Programa escalar representado en lenguaje intermedio

	ß
	Transformaciones que simplifican el análisis de las dependencias
	• Propagación y evaluación de expres. constantes
	• Extracción de invariantes
	• Normalización de bucles

	ß
	Grafo y análisis de dependencias
	• Construcción del grafo
	• Tipos y distancia de las dependencias
	• Análisis de dependencias. Test MCD

	ß
	Optimizaciones independientes de la arquitectura vect/par
	• Eliminar antidependencias y dep. de salida - Renombrar - Expansión escalar - Copia de vectores

	ß
	Vectorización
	• Vectorización total y parcial - Distribución e intercambio de bucles
	• Reducción, punteros en C

	ß
	Generación de código. Optimización
	• Asignación de registros vectoriales
	• Selección de instrucciones vectoriales
	• Seccionado

	ß
	Programa vectorial optimizado
	EJEC(progr. escalar) = EJEC (prog. vectorial) + f estática vect ­­

	6.2 Transformaciones que simplifican el análisis de las dependencias
	Propagación y evaluación de expresiones constantes + Extracción de invariantes Otro ejemplo de invariantes
	Normalización de bucles : - Normalizar el paso de la variable de control - Eliminar variables de inducción, o sea, indexar vectores únicamente con las variables de control del bucle

	6.3 Análisis y grafo de dependencias
	Al vectorizar en compilación forzamos una reordenación masiva de accesos a memoria y operaciones
	Ejemplo de reordenación: C[2] <p B[3], pero B[3] <m C[2] !
	Es necesario analizar las dependencias con cuidado: que pasa si el store rojo escribe donde lee el load verde ? Þ C[i] = C[i-1] + ...
	Dependencias en memoria entre sentencias
	S y R son sentencias de asignación
	S depende de R si:
	R antes que S en orden de programa (R <p S)
	R y S referencian a la misma posición de memoria
	una referencia al menos es una escritura
	• Las dependencias establecen relaciones de orden parcial que cualquier ejecución “legal” debe respetar.

	Tres tipos
	R escribe y S lee
	Dependencia verdadera
	flow dependence, RAW hazard
	R d S
	R lee y S escribe
	Antidependencia
	antidependence, WAR hazard
	R d- S
	R y S escriben
	Dependencia de salida
	output dependence, WAW hazard
	R do S
	Si R y S están en un bucle, Ri y Si indican la ejecución de la iteración i-ésima
	- Ejemplo 1 -

	por inspección: S1i d S2i posición A(i) S1i d- S2i posición B(i)
	Pero ...

	S11
	S21
	¡Dependencias entre iteraciones!
	S2i d S2i+1 en pos B(i)
	loop carried dependence, LCD
	o sea, dependencias generadas por el bucle
	S12
	S22
	l = distancia de la dependencia:
	Ri d Sj ® l = j-i ³0
	número de iteraciones que separa el uso de las mismas posiciones de memoria
	Grafo de dependencias: grafo dirigido, anotado con distancias:
	• Vectorizable en parte
	- Ejemplo 2 -

	S11
	S21
	S12
	S22
	O sea: NO es vectorizable !
	- Ejemplo 3: AXPY -

	Autociclos de antidep. a distancia 0, pueden obviarse: Vectorizable
	- Ejemplo 4 -

	Autociclos dependencias verdaderas distancia > 0, No Vectorizable
	- Ejemplo 5 -

	S1
	S2
	S3
	S4
	S5
	Vectorizable: A(1:64)= A(4:67) + A(1:64)
	Vectorizable: A(1:64)= A(4:67) + A(1:64)
	- Ejemplo 6: escalado -
	- Ejemplo 7: progresión geométrica-
	- Ejemplo 8: escalado con desplazamiento a laizquierda -
	- Ejemplo 9 -
	• Escribir el código vectorial

	- Ejemplo 10 -

	Análisis de dependencias
	Caso bastante general:
	• conjunto de bucles anidados normalizados
	• código en el bucle mas interno y sin sentencias condicionales
	• espacio de iteraciones conocido en compilación

	En cada iteración del código S1 S2, las variables de control forman una k-tupla (i1, ...ik) diferente. La unión de todas ellas se llama Espacio de Iteraciones (EspIt). EspIt es el producto cartesiano de los k conjuntos de números naturales que re...
	Puede establecerse un orden de programa total entre k-tuplas (<p)
	Las funciones f y g son funciones de indexación. Calculan un índice a partir de los valores (i1, ...ik) de las variables de control

	PREGUNTAS ...
	$ P, Q Î EspIt ½ escr en S1P d lect en S2Q para P £p Q; ?
	$ T, Z Î EspIt ½ lect en S2T d- escr en S1Z para T <p Z; ?
	Caso sencillo:
	• K = 1 variable de control
	• m = 1 dimensión
	$ dependencia prod/cons a distancia l sii

	$ p, q Î EspIt ½ f(p) = g(q) para p £ q
	l = q - p
	$ antidependencia a distancia l sii

	$ t, z Î EspIt ½ g(t) = f(z) para t < z
	l = z - t
	- Ejemplo 11 - f y g son lineales

	i
	Eqn. dependencias prod/cons: S1 d S2
	1
	$ p, q Î [1..100] ½ f(p) = g(q) para p £ q
	2p+7 = 3q+1 (l = q - p)
	2
	Despejamos q y enumeramos p; q = 2p/3+2
	3
	4
	5
	6
	7
	Eqn. antidependencias: S2 d- S1
	8
	$ t, z Î [1..100] ½ g(t) = f(z) para t < z
	3t+1 = 2z+7 (l = z - t)
	9
	Despejamos z y enumeramos t; z = 3t/2-3
	10
	11
	12
	Este tipo de ecuación se llama ecuación Diofántica
	- Ejemplo 12 - f y g son lineales

	i
	Eqn. dependencias prod/cons: S2 d S1
	1
	2
	Despejamos q y enumeramos p;
	3
	4
	5
	6
	7
	Eqn. antidependencias: S1 d- S2
	8
	9
	Despejamos z y enumeramos t;
	10
	11
	12

	Tests aproximados
	Resolver las ecuaciones directamente es costoso en tiempo
	Los límites inferior y superior a veces no son constantes
	Tests aproximados, fáciles de calcular:
	• se cumple? ® no vectorizamos
	• muy conservador ...
	• se cumple ? ® vectorizamos
	• muy exigente

	Test MCD para funciones de indexación lineales (cond. necesaria)

	f ® a·i+b g ® c·i+d
	Asumimos posible ciclo de dependencias si mcd(a, c) divide (d-b)
	- ejemplos 11 y 12 -

	a = 3, b = 1
	c = 2, d = 7
	}
	mcd(3, 2) = 1 divide a (6) ® SI
	... pues asumimos dependencias cíclicas y no vectorizamos
	Ejercicios:

	Ejercicio E5
	En bucles con un solo nivel de anidación pueden aparecer varios tipos de dependencias.
	Los índices r y s son funciones lineales de i: r(i), s(i)
	En la tabla siguiente se resumen todas las posibilidades.
	var(r)
	{
	L
	ind
	ind
	E
	ind
	ind
	L
	E
	var(s)
	Por ejemplo:

	r y s son funciones lineales de i
	l Î N es la distancia de la dependencia
	Podemos formular las tres ecuaciones de dependencias:
	Ejercicio. Se pide lo siguiente:
	Repetir el análisis anterior para el caso “var(r) es Lectura y var(s) es Escritura”

	6.4 Optimizaciones no ligadas a la arquitectura
	ß
	Grafo y análisis de dependencias
	ß
	Optimizaciones independientes de la arquitectura vect/par
	• Eliminar antidependencias y dep. de salida - Renombrar - Expansión escalar - Copia de vectores

	ß
	Vectorización
	ß
	Renombrar
	Problema: reutilizar vectores o escalares para ahorrar memoria o variables
	Transformación:

	Þ
	no vect
	Transformación: - U(i) ® T(i) en S1 - propagar T(i) en S2
	Þ
	casi vect
	Expansión Escalar
	Problema: variables escalares que se utilizan en iteraciones sucesivas para almacenar valores diferentes
	Transformación:

	Þ
	no vect
	Transformación: - U ® U(i) en S1 - Propagar U(i) en S2
	Þ
	vect
	Copia de vectores
	Problema: pre-uso y post-definición de los elementos de un vector
	Transformación:

	Þ
	no vect
	Transformación: - A ® tmpA en S2’
	Þ
	vect

	6.5 Vectorización
	Optimizaciones independientes de la arquitectura vect/par
	ß
	Vectorización
	• Vectorización total y parcial - Distribución e intercambio de bucles
	• Reducción
	• Punteros en C

	ß
	Generación de código. Optimización
	Vectorización total
	No existen ciclos de dependencias
	Transformación:

	Þ
	- Algoritmo de “flotación”: peso proporcional al nº de arcos entrantes
	Þ
	Vectorización parcial, distribución de bucles
	Problema 1 de 2: existen ciclos de dependencias
	Transformación: extraer las sentencias sin ciclos de dependencias
	• Particionar el grafo en subgrafos nodo-disjuntos relacionados entre sí de forma acíclica (p bloques)
	• Reordenar con las dependencias hacia abajo
	• Distribuir/cortar en varios bucles

	Þ
	Þ
	Vectorización parcial, distribución de bucles
	Problema 2 de 2: dos niveles de anidación de bucles no perfectos
	Transformación:
	• Si es legal, distribuir el bucle mas externo
	• Vectorizar el bucle más interno, si es posible, aplicando lo anterior
	• Paralelizar el bucle más externo, si es posible

	Þ
	Transformación: - Distribuir el bucle exterior
	Þ
	Vectorización parcial/total: intercambio de bucles
	Problema:
	1. Una fracción vectorial elevada
	2. Un acceso eficiente a memoria
	3. Vectorización

	Transformación:

	Þ
	1. Intercambiar para aumentar la fracción vectorial
	Þ
	2. Intercambiar para mejorar el acceso a memoria
	3. No es necesario intercambiar para poder vectorizar
	En este ejemplo el bucle j genera ciclos de dependencias, pero el bucle i no, y por tanto la sentencia es vectorizable en i
	¿Cómo lo hemos sabido?
	El bucle i tiene una recurrencia a distancia 1 que impide vectorizar

	3. Intercambiar para poder vectorizar
	En este ejemplo
	1. El intercambio es legal, y
	2. Posibilita la vectorización del bucle interno
	¿Como lo hemos sabido?
	Diagrama de dependencias con anidaciones
	EspIter ® { j=1:64 ´ i =1:64} ={1 1, 1 2, 1 3, ... 2 1, 2 2, 2 3, ... 3 1, ...}
	Al recorrer EspIt en el orden de programa, camino a trazos, los accesos a memoria determinan las dependencias. Cualquier otro orden que las respete, es legal

	¿Cómo representar las dependencias?
	Es una recurrencia en (i), y por tanto no es vectorizable !!
	Intercambiar los bucles es recorrer EspIt en otro orden:
	El nuevo recorrido, respeta las dependencias ?
	Ahora el bucle interno (j) ejecuta los cálculos en otro orden. En este nuevo orden NO hay dependencias entre cálculos consecutivos Es posible vectorizar en (j) !!

	Resumen del procedimiento manual
	1) Desplegar EspIt, anotando referencias a memoria y dependencias
	2) Grafo de dependencias
	3) ¿Se puede vectorizar y paralelizar?
	4) ¿Es legal el intercambio? en caso afirmativo, repetir (3)
	5) Escoger la opción mejor

	Estudiar las posibilidades de codificación y valorar su rendimiento
	Leer el texto y reflexionar
	“This code shows a nested loop operating on a 2D array with cross- iteration dependencies over both loops, making it appear serial. From the dependence graph it can be shown that iterations can be grouped into independent sets, allowing parallel ex...
	Garcia, S.; Donghwan Jeon; Louie, C.; Taylor, M.B.; , "The Kremlin Oracle for Sequential Code Parallelization," IEEE Micro, vol.32, no.4, pp. 42-53, July-Aug. 2012
	IEEE Micro Special Issue on Parallelization of Sequential Code
	Reducción
	En este contexto reducir es una operación matemática que quita una dimensión a una estructura de datos:
	matriz ® vector, vector ® escalar, ...

	Es una operación frecuente en cálculo científico. Los repertorios vectoriales tienen instrucciones para operadores de reducción asociativos:
	Transformación:

	Þ
	- Vectorizar usando las instrucciones de lenguaje máquina apropiadas,
	y en este caso seccionar
	Bucles con condicionales: operaciones con máscara
	Códigos con muchos saltos, por ejemplo, un bucle con una sentencia condicional en su cuerpo, pueden ser vectorizados usando máscaras vectoriales que bloquean las operaciones para las cuales la condición no es cierta

	Punteros en C
	The following loop may not get vectorized because of a potential aliasing problem between pointers a, b and c

	}
	If the restrict keyword is added to the parameters, the compiler will trust you, that you will not access the memory in question with any other pointer and vectorize the code properly
	The downside of using restrict is that not all compilers support this keyword, so your source code may lose portability.
	restrict es un cualificador complicado, que puede ayudar al compilador a generar ejecutables mas rápidos en contextos no relacionados con vectorizar. Para mas información: How to Use the restrict Qualifier in C, Douglas Walls, Sun ONE Tools Group, ...
	Modelo matemático sencillo que calcula la mejora en rendimiento al ejecutar parte de las operaciones de un programa en menos tiempo:
	Sea N el número de operaciones en coma flotante de un programa y fv el porcentaje que puede realizarse en modo vectorial

	Speed_up = Tescalar / Tvectorial =
	fs ­­ Þ Speed_up ¯ ¯ "El modo lento va a limitar, aunque el modo rápido sea fantástico"
	Valor habitual de fv entre 0,4 y 0,75 para programas compilados

	Un buen computador vectorial debe tener un buen procesador escalar
	Caso de estudio:
	Permalink to this graph:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /LucidaConsole
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

