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 Basado en los apuntes de la asignatura “Procesadors Vectorials” de la 
profesora Montserrat Peirón Guardia, Facultat d’Informàtica de Bar-
celona (FIB), UPC.

 Algunas transparencias tomadas de cursos de los profesores José 
María Llabería y Mateo Valero Cortés, FIB, UPC.

 Basada en la asignatura “Fundamentos de Arquitecturas Paralelas”, de 
Ingeniería informática, impartida desde el curso 1995-96 hasta el 
2012-13.
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OBJETIVOS

(1)  tiempo de ejecución de una aplicación 

(2)  productividad múltiples usuarios

(3)  productividad aplicaciones multihilo

- servidores web, bases de datos, ...

(4) Tolerancia a fallos: p.ej. sistemas navegación de un avión

(5) Simplificar componentes y especializar función.
Por ejemplo: sistemas empotrados en-chip (teléfono móvil)  

1. INTRO. MARCO: EL PARALELISMO

Consecuencias
- Hardware
- Compilación
- Software

http://www.qualcomm.com/snapdragon/processors/800
Snapdragon 800 series
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CONSECUENCIAS

HARDWARE para (1, 2, 3)

 Combinación de:

 ejecutar varias instrucciones por ciclo  ILP

 la misma instrucción opera sobre varios datos  SIMD

 un procesador ejecuta varios hilos (threads)  MT

 muchos procesadores interconectados  MIMD

 Mucha memoria accesible desde los procesadores
con gran ancho de banda

 Mucho disco accesible desde la memoria
con gran ancho de banda (entrada/salida)

1. INTRO. MARCO: EL PARALELISMO

Figura: Linley Gwennap. AMD Rome Ruins Intel Hegemony. Microprocessor Report. Agosto 2019.

AMD EPYC Rome
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CONSECUENCIAS

COMPILACIÓN

 Extracción automática de paralelismo
a partir de códigos secuenciales

 vectorización  SIMD

 paralelización  MIMD

  Por ejemplo: <https://godbolt.org/z/B67Rxu>

SOFTWARE: modelos de programación paralela

 Paralelismo vectorial: FORTRAN 90

 Paralelismo de datos: p.ej. High Performance FORTRAN

 Single-program, multiple-data (SPMD): Co-Array FORTRAN

 Memoria compartida: 

 OpenMP   <http://www.openmp.org>

 Pthreads (ANSI/IEEE POSIX std. 1003.1)

 Java

 Intel Threading Building Blocks (TBB) en C++

 C11, C++11, ...

 Paso de mensajes:

 MPI

 ...

1. INTRO. MARCO: EL PARALELISMO
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OBJETIVO (1):  Tex de una aplicación

Supercomputación

 Aplicaciones numéricas

 predicción meteorológica, dinámica de fluidos,
dinámica molecular, alineamiento genético

 simulación aerodinámica
ala, estacionario: 1018 operaciones doble precisión
ala, turbulencia: 1020 DP FLOPs
avión, turbulencia: 1023 DP FLOPs

 ¡Y muchas más!, ver p.ej.
<http://www.bsc.es/index.php>
computer, earth and life sciences

 Estructuras de datos: grandes matrices densas o dispersas

 Tipos de datos: generalmente números reales (coma flotante), 
32/64 bits, IEEE 754

 “Pocos” bucles con muchas iteraciones

 Tiempo de ejecución limitado
por el cálculo compute-bound
o por el acceso a memoria memory-bound

 Paralelismo de datos

= Supercomputadores numéricos

1. INTRO.

1.1 PROBLEMAS CIENTÍFICOS NUMÉRICOS
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CÓDIGO

Real*8 C(max),A(max),B(max)

DO I = 1, max

C(I) = A(I) + B(I)

ENDDO

SEGMENTACIÓN

1. INTRO. 1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 
PROCESADORES ESCALARES

F D/L ALU MEM ERi

instrucciones enteros (alu, mem)

instrucciones coma flotante

F: fetch

D/L: decod. y lect. operandos en Rx

ALU: operaciones enteras

MEM: acceso a memoria

ERx: escritura en registros

U1, U2: operaciones coma flotante

U1 U2 ERf

@ dst. salto

Tc = 0.5 ns  F = 2 GHz

Saltos no
retardados

Todos los cortos
necesarios

Riesgos en D/L
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PROCESADOR SEGMENTADO

Rcont = max; Ra,Rb,Rc = &A, &B, &C

CÓDIGO Y DATOS cargados en caches

 Ciclos / iteración =

 CPF(ciclos/flop) =

 TPF(ns/flop) =

 R(MFLOPS) =

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES

bu: LD F1, M[Ra]

2: LD F2, M[Rb]

3: ADDF F3, F1 + F2

4: ST M[Rc], F3

5: ADD Ra, #8

6: ADD Rb, #8

7: ADD Rc, #8

8: DEC Rcont

9: BNE bu

F D A M E

1:

2:

3:

4:

5:

6:

7:

8:

9:

F D A M E

F D U1 U2 E

F D A M

F D A M E

F D A M E

F D A M E

F D A M E

F D A M E

F D A M E1:

1 112 3 4 5

@dst

cc
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REORDENANDO CÓDIGO

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES



















bu: LD F1, M[Ra]

2: ADD Ra, #8

3: LD F2, M[Rb]

4: ADD Rb, #8

5: ADDF F3, F1, F2

6: ST M[Rc], F3

7: ADD Rc, #8

8: DEC Rcont

9: BNE bu

[--]

bu:1:
2:

3:
4:

5:
6:

7:
8:

9:

1:
2:

bu:

 Un flop/iteración (instr. )

TPF = 5 ns, R = 200 MFLOPS

rendimiento máximo: 2 GFLOPS 

 Sobrecarga (overhead) del bucle:

lectura y escritura de operandos (instr. )

control de bucle y punteros (instr. )
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DESENROLLANDO D = 4

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES











































bu: LD F10, M[Ra]

2: LD F11, M[Ra+8]

3: LD F12, M[Ra+16]

4: LD F13, M[Ra+24]

5: LD F20, M[Rb]

6: LD F21, M[Rb+8]

7: LD F22, M[Rb+16]

8: LD F23, M[Rb+24]

9: ADDF F30, F10, F20

10:ADDF F31, F11, F21

11:ADDF F32, F12, F22

12:ADDF F33, F13, F23

13: ST M[Rc], F30

14: ST M[Rc+8], F31

15: ST M[Rc+16], F32

16: ST M[Rc+24], F33

17: ADD Ra, #32

18: ADD Rb, #32

19: ADD Rc, #32

20: SUB Rcont, #4

21: BNE bu

[--]

 Ciclos / iteración =

 CPF(ciclos/flop) =

 TPF(ns/flop) =

 R(MFLOPS) =
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DESENROLLANDO D = 

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES

LD F1n, M[Ra+n*8]

LD F2n, M[Rb+n*8]


[---]

ADDF F3n, F1n, F2n

[---]

ST M[Rc+n*8], F3n n 
= 
0.
.m
ax
-1









 CPF(ciclos/flop) =

 TPF(ns/flop) =

 R(MFLOPS) =

¡ IRREALIZABLE !  3 x max registros
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PROCESADOR SUPERSEGMENTADO

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES

F1 F2 D1 D2 ALU M1 M2 ER

F1 F2 D1 D2 U1 U2 U3 ERU4

coma flotante:

enteros:

Tc = 0.25 ns  4 GHz

@ dst salto

bu: LD F1, M[Ra]

2: LD F2, M[Rb]

3: ADD Ra, #8

4: ADD Rb, #8

5: ADDF F3, F1, F2

6: ADD Rc, #8

7: DEC Rcont

8: ST M[Rc], F3 ; inicializamos

9: BNE bu ; Rc con 8 menos!

[--]

2: F1 F2 D1 D2 EA M1 M2

bu: F1 F2 D1 D2 EA M1 M2

3: F1 F2 D1 D2 EA - -

4: F1 F2 D1 D2 EA - -

5: F1 F2 D1 D2 U4U1 U2 U3 E

6: F1 F2 D1 D2 EA - -

7: F1 F2 D1 D2 EA - -

8: F1 F2 D1 D2 A M1 M2

9: F1 F2 D1

1: F1 F2 D1 D2 A ...

 CPF =

 TPF =

 R = 
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PROCESADOR SUPERESCALAR

 Cambiamos el control

Mantenemos rutas de datoscoste)

Tc = 0.5 ns  2 GHz

 Suponemos grado 2:
se buscan dos instrucciones por ciclo

 Pero sólo se ejecutan en paralelo
si utilizan las dos rutas de datos: entera y coma flotante

 Hay que planificar para formar parejas de instrucciones
sin dependencias entera-coma flotante

 El efecto es “esconder” los ciclos de ejecución de ADDF

 Ciclos/FLOP 

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES

d = 1 d = 4 d = 

Ciclos/
FLOP

9 4.5 3
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RESUMEN

 TPF obtenidos en los diferentes casos en ns
(entre paréntesis, la velocidad R en MFLOPS)

1. INTRO.
1.2 RENDIMIENTO DE UNA SUMA DE VECTORES EN 

PROCESADORES ESCALARES

d = 1 d = 4 d = 
Tc 
ns

Segmentado
Rmax = 2 GFLOPS

5
(200)

2.75
(363.6)

2
(500)

0.5

Supersegmentado
Rmax = 4 GFLOPS

2.75
(363.6)

1.4375
(695)

1
(1000)

0.25

Superescalar
Rmax = 2 GFLOPS

4.5
(222)

2.25
(444)

1.5
(666)

0.5
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 1 instrucción vectorial corresponde a
N instrucciones del bucle N-desenrollado

 Instrucciones por iteración = 

 Ancho de banda con memoria = 

 Tiempo de ejecución =

1. INTRO. 1.3 VERSIÓN VECTORIAL DE LA SUMA DE VECTORES

bu: LD F11, M[Ra]

LD F12, M[Ra+8]
...

LD F1N, M[Ra+(N-1)*8]

LD F21, M[Rb]

LD F22, M[Rb+8]
...

LD F2N, M[Rb+(N-1)*8]

ADDF F31, F11, F21

ADDF F32, F12, F22
...

ADDF F3N, F1N, F2N

ST M[Rc], F31
...
ST M[Rc + (N-1)*8], F3N

ADD Ra, #N*8
ADD Rb, #N*8
ADD Rc, #N*8

SUB Rcont, #N

BNE bu

LV V1, M[Ra]

LV V2, M[Rb]

ADDV V3, V1, V2

SV V3, M[Rc]

ADD Ra, #N*8
ADD Rb, #N*8
ADD Rc, #N*8



max/N iteraciones

cuerpo-N
desenrollado
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2.1 ARQUITECTURA Y ORGANIZACIÓN

 Primeros supercomputadores tipo CISC (M-M)

 Instrucción compleja: ADDV @md, @mf1, @mf2
lee dos flujos desde memoria
calcula
escribe el flujo resultado hacia memoria

 Organización segmentada


- Latencia de obtención de operandos muy grande,
sobre todo para paso no secuencial.
Es difícil encadenar

- CDC Star 100 (‘72), TI ASC (‘72)

 Después, y en la actualidad, filosofía RISC (R-R), o sea,

desacoplar instrucciones de cálculo y de acceso a memoria:

 Instr. vectoriales de acceso a memoria para
carga/descarga de registros vectoriales: LV, SV

 Instr. vectoriales de cálculo sobre
los registros vectoriales: ADDV

 VLR: Vector Length Register
nº de elementos a procesar
p.ej. para vectores de 64 elementos necesito 6 + 1 bits

 VMR: Vector Mask Register
impide que algunas operaciones se realicen

2. EXTENSION

VECTORIAL

2. EXTENSIÓN VECTORIAL
DE UNA ARQUITECTURA LD/ST
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 Ventajas de un repertorio vectorial:

Compacto

 Una instrucción pequeña codifica N operaciones

Expresivo: 
La instrucción indica al hardware

 que las operaciones son independientes

 el número de operaciones

 el “patrón” de acceso a memoria: 
en secuencia (stride = 1 elemento)
o
a saltos (stride > 1 elemento)

Escalable

 el mismo binario puede ejecutarse
en una o varias “pistas” segmentadas
(parallel pipelines or lanes)

Bajo consumo de energía

 Ahorramos energía en el acceso a la memoria de 
instrucciones y en la decodificación (1/N)

 Cuando se ejecutan las operaciones
de una instrucción vectorial
no hay que gastar energía en comprobar dependencias
16 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



 Ejemplo: DLXV1 Diagrama de flujo de la ALMa2 

2. EXTENSION

VECTORIAL 2.2 REPERTORIO BÁSICO DE INSTRUCCIONES

1. [HePa12]: Appendix G
2. ALMa: Arquitectura de Lenguaje Máquina (en inglés ISA, Instruction Set Architecture)

+ *
- /

- /+ *
- /

BRi BRfp

Memoria

LV SV
rb rb

ri

movi2smovi2s

VLR

movs2i

ri

VMR (64b)

(7b)

64 datos x 8B

V7

V0 BRv

“V” “SV” “VS”

fi fi

4 KiB !

Simple precisión: addv.F doble precisión: addv.D

repertorio

escalar

r0,r1,... f0,f1,...
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EJEMPLOS

movi2s VLR,r2 ; VLR = r26:0     {0:64}

 

lv V0,[r3] ; V0.i = mem [r3 + i*8]

sv [r5],V4 ; mem [r5 + i*8] = V4.i

addv V1,V2,V3 ; V1.i = V2.i + V3.i

addsv      +
subsv V1,f0,V3 ; V1.i =  f0 -V3.i

subvs V1,V3,f5 ; V1.i = V3.i - f5 

2. EXTENSION

VECTORIAL 2.2 REPERTORIO BÁSICO DE INSTRUCCIONES

VLR accióna

a. nº elementos a procesar = max (VLR mod 64, 64 x VLR div 64)

0 NOP
1 i = 0:0

i = 0:VLR-12 i = 0:1

64 i = 0:63
65

i = 0:63
127
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PROBLEMA: CODIFICAR EN ENSAMBLADOR

Suponemos registros enteros inicializados:

RA = &A(0), RB = &B(0), RC = &C(0), Rcont = max, R64 = 64

integer i, max

parameter (max = múltiplo de 64)

real*8 C(max), A(max), B(max)

do i= 1,max

C(i) = A(i) + B(i)

enddo
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SIMD: Single Instruction Multiple Data

 Extensiones multimedia: Intel MMX (1982), luego Intel SSE

 Vectores cortos

 No hay registro VLR: la longitud vectorial va en el CO 

 Freescale/Apple/IBM Altivec, SPARC VIS, ARM Neon

 Extensiones vectoriales: Intel AVX, AVX-512, ARM SVE, RVV

 Soporte hw: ALUs replicadas y BR vectorial (BRV)

 BRV de AVX-512  32 registros de 512 bits: ZMM0-31

2. EXTENSION

VECTORIAL 2.3. ORGANIZACIÓN Y SEGMENTACIÓN

Array processors

Pipelined

Multimedia extensions
(general purpose)

1962 1972 1982 1992 2002 2012 2022

Vector extensions
(floating point) AVX (2008)

ALU de enteros
convencional de 64b: 
basta impedir la 
propagación del
acarreo en las fronteras
de 8 bits ...
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 Procesadores Matriciales (Array Processors)

Históricamente fueron los primeros:

 Solomon computers
(Westinghouse Electric Corporation, 1960-62)
 ILLIAC IV (8x8) en 1968-74

 Soporte hw: Nodos (mem+regs+ALU) +
Red Interconexión Directa entre nodos

 STARAN (74), BSP (82)
Connection Machines:

- CM1 - CM2 - CM5 (1985 - 87 - 93)

 Actualidad: procesado de imagen y de señal
 

Red de Interconexión Directa

M M M M

Mi

EPEPEPEP

P

M M M M

EPEPEPEP MiP

Red de Interconexión Directa

datos

datos
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 Procesadores Vectoriales Segmentados (pipelined)

Memoria-memoria

 ADDV @md, @mf1, @mf2

 CDC Star 100 (72), TI ASC (72)

Memoria-registros (Seymour Cray, 1975)

 Vectores de tamaño grande, hasta 4K elementos

 Soporte hw: Banco Registros Vectorial +
Memoria Multibanco +
ALUs + segmentación

 Cray 1 (76), Cray2, Cray X-MP y Cray Y-MP
CDC Eta y Cyber
IBM 3090 VF
Fujitsu VP200
Hitachi S-810
Convex
Alliant
NEC SX/2 - ... - SX/9 - SX/ACE (85 - 07 -13)


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Procesador
escalar

Control

... ... .... . .

Redes
de interconexión

UFs
vectoriales

Controlador
de memoria.

Cálculo de @s

Cache

Memoria

principal

BRV

... ... .... . .
BRV

. . .

. . .

Banco de
Registros
Vectorial

p buses E (escritura)

q buses L (lectura)

pq

. . .

I + D
PC, Ri, Fi, ...

Mem

. . .

. . .

Red Vuelta

Red Ida

multi-
banco

. . .

otro punto de vista:
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 BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1L1E) 

2.3. ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

Vi

E1

L1
L2

1 flujo por registro
( lec esc )

addv  v1, v2, v3 ?
addv v1, v2, v2 ?
addv  v1, v2, v1 ?

x8

en

V3.0

V3.63

V3

E1

L1

L2

r3

w3

@V3

w3

r3L1

r3L2

64 b

en

w3
r3

r3L1
r3L2

U
n
i
d
a
d

C
o
n
t
r
o
l

6b
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 BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1L1E) 

 

2.3. ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

más
detalle

Vi

E1

L1
L2

x8

V3.0

V3.63

V3
E1

L1

L2

0

w3

r36

en

r3w3

@V3

@V0

@V7

w0
r0

w7
r7

r0L1
r0L2

r7L1
r7L2

w3

r3L1

r3L2

U
n
i
d
a
d

C
o
n
t
r
o
l optativo

64 b

optativo
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 BRV con p buses L, q buses E y Reg Vec de 1 puerto

 1 flujo por registro

 O bien lectura desde un bus L (L1..Lp)

 O bien escritura desde un bus E (E1..Eq)

 Globalmente máx. 8 flujos

 Ejemplo: 5 buses L y 3 buses E permiten a la vez

 Dos operaciones de dos operandos, y

 Una operación de un operando

2.3 ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

Vi

E1

L1

Lp

Eq

x 8
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 Mejora: 2 puertos por Vi: lectura y escritura (1L+1E)

 Ya es posible    addv  v1, v5,v1

 Solapar dependencias?

 Solapar antidependencias?

 Podemos

 añadir puertos de lectura en cada Vi

 tener un BRV con p buses L y q buses E

2.2 ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

Vi

E1

L1

L2

x8

BRV CON 2 BUSES L, 1 BUS E Y REG VEC (1L+1E)

SÍ, se llama

encadenamiento
general

y necesita un
control elaborado
(lo veremos)

También, y usa
un control similar

addv V1,V2,V3

subv V4,V5,V1

addv V1,V2,V3

subv V3,V4,V5
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REG VEC CON 2 PUERTOS SEPARADOS:
LECTURA Y ESCRITURA

2.3 ORGANI-
ZACION 2.3.1 BANCO DE REGISTROS VECTORIAL

V3.0

V3.63

V3
E1

L1

L2

0

6

E

w3

BrOUT

@V3E

@V0L

@V7L

w0
r0

w7
r7

r0L1
r0L2

r7L1
r7L2

r3

r3L1

r3L2

U
n
i
d
a
d

C
o
n
t
r
o
l

optativo

@V0E

@V7E

0

6

E

r3

@V3L

BrIN

permisos
de carga

p0

p0
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 Descripción temporal:

 Latencia (ciclos): tiempo desde que entran los operandos 
hasta que sale el resultado.

 Lat. iniciación (LI) = lat. finalización (ciclos/operación)1:
nº min. ciclos entre entradas consecutivas de operandos

 Sumadores, Multiplicadores

L = nº de etapas, LI = 1 ciclo/op

 División, Raíces, Exponenciación, Trigonométricas

L > nº etapas, por reutilización

LI > 1

 Modelo de ejecución:

2.3 ORGANI-
ZACION 2.3.2 UNIDADES FUNCIONALES

1. La inversa se llama tasa iniciación = tasa finalización (operaciones/ciclo)

... C3 C2 C1
... A3 A2 A1

... B3 B2 B1

UF segmentada

1 L

... C3___C2___C1
... A3___A2___A1

... B3___B2___B1

UF parcialmente segmentada

L ciclos

L ciclos
LI

tiempo
C1__C2__C3__...

ciclos
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 Ejemplo de memoria:

- 4 GiB con 1 puerto compartido de lec/escr

- 4 bancos1 de 4 ciclos de latencia

 Queremos este comportamiento en lectura:

 ¿CÓMO?

- Multibanco: nº bancos = latencia memoria

- Entrelazado “por palabras”:
  “palabras consecutivas en bancos consecutivos”,

asumimos números de 8 bytes alineados

- L = 4 ciclos  M = 4 bancos de 1GiB

- Acceso síncrono o acceso desfasado

2.3 ORGANI-
ZACION 2.3.3 MEMORIA MULTIBANCO

1. También podemos decir “módulos“

Mem

E

L

out

in

loadV

storeV

BRV 4 ciclos

4 ciclos 1 c
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 @32bits  nº banco = (@32bits/8) mod 4 

 Parte del control: 
- Cargar MAR_H cada cuatro ciclos (ojo primer acceso!)
- Cargar todos los Di cada cuatro ciclos
- Multiplexar Di en out cada ciclo

2.3 ORGANI-
ZACION 2.3.3 MEMORIA: ACCESO SÍNCRONO

27 2

x

banco de
inicio (eje x)

@0 @1 @2 @3

e0
e4
e8
.
.

e1
e5
e9
.
.

e2
e6
e10
.
.

e3
e7
e11
.
.

B0 B1 B2 B3

Dir. Inicio Vector -  @32bits

despl.
en banco
(eje y)

D0 D1 D2 D3

x

sólo

cir
cu

ito

de l
ect

ura

out (hacia BRV)

MAR_H

64b

+ 1

RAMs

M = 4

mar_h UC

29+

27+

2-

mar_l
MAR_L

xxx 3-

5

mar_h
mar_l
mar_h_mux
d
out_mux

mar_h_mux

out_mux

dddd

bancos

mar_in
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Ej1. @ = 32 fila 1, columna 0 (e4, e5, e6, ...)  

Ej2. @ = 48 fila 1, columna 2 (e6, e7, e8, ...)  

2.3 ORGANI-
ZACION 2.3.3 MEMORIA: ACCESO SÍNCRONO. EJEMPLOS

MAR
mar_in 1

MAR_H

B0 D0

B1 D1

B2 D2

B3 D3

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT

MAR
mar_in 1

MAR_H

B0 D0

B1 D1

B2 D2

B3 D3

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT
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Ej1. @ = 32 fila 1, columna 0 (e4, e5, e6, ...)  

Ej2. @ = 48 fila 1, columna 2 (e6, e7, e8, ...)  

2.3 ORGANI-
ZACION 2.3.3 MEMORIA: ACCESO SÍNCRONO. RESUELTOS

MAR
mar_in 1 2 2 2 2 3 3 3 3 4 4

MAR_H 1 2 3

B0 D0 e4 e8

B1 D1 e5 e9

B2 D2 e6 e10

B3 D3 e7 e11

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT L = 4 e4 e5 e6 e7 e8 e9

MAR
mar_in 1 2 2 2 2 3 3 3 3 4 4

MAR_H 1 2 3

B0 D0 e4 e8

B1 D1 e5 e9

B2 D2 e6 e10

B3 D3 e7 e11

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT L = 4 - - e6 e7 e8 e9
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 Problemas con acceso Síncrono:

 lectura: latencia variable o irregular

 escritura

- un registro MDRin para cada banco

- es lenta: (1 1 1 1 4) ( 1 1 1 1 4) ...

 Una solución: acceso desfasado
los bancos son más independientes

 un registro MAR para cada banco

 control más complejo

 resultado: 

Veamos cómo se implementa -->

2.3 ORGANI-
ZACION 2.3.3 MEMORIA: SÍNCRONO VS. DESFASADO

4 ciclos 1 c

1 c 4 ciclos

LECTURA

ESCRITURA
34 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



 Control ?: 

2.2 ORGANI-
ZACION 2.3.3 MEMORIA: ACCESO DESFASADO

mar_h, mar_l, mar_h_mux, di,
outmux, ? ? ?

@0 @1 @2 @3

e0
e4
e8
.
.

e1
e5
e9
.
.

e2
e6
e10
.
.

e3
e7
e11
.
.

B0 B1 B2 B3

D0 D1 D2 D3

x

out (hacia BRV)

64b

M

?

00

27 2

x

banco de
inicio (eje x)

Dir. Inicio Vector

sólo

cir
cu

ito

de l
ect

ura

MAR_H

+ 1 mar_h UC

29+

27+ 2-

mar_l
MAR_L

xxx
3-

5

mar_h
mar_l
mar_h_mux
di

out_mux

mar_h_mux

d3d2d1d0

out_mux

? ? ?

mar_in

bancos
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Ej1. @ = 32 fila 1, columna 0 (e4, e5, e6, ...)  

Ej2. @ = 48 fila 1, columna 2 (e6, e7, e8, ...)  

2.3 ORGANI-
ZACION MEMORIA: ACCESO DESFASADO. EJEMPLOS

MAR
mar_in 1 2 3

MAR_H 1 2 3

MAR_0

MAR_1

MAR_2

MAR_3

Actividad B0

Actividad B1

Actividad B2

Actividad B3

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT

MAR
mar_in 1 2 3

MAR_H 1 2 3

MAR_0

MAR_1

MAR_2

MAR_3

Actividad B0

Actividad B1

Actividad B2

Actividad B3

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT
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Ej1. @ = 32 fila 1, columna 0 (e4, e5, e6, ...)  

2.3 ORGANI-
ZACION 2.3.3 MEMORIA: ACCESO DESFASADO. RESUELTOS

MAR
mar_in 1 1 1 1 2 3

MAR_H 1 1 1 1 2 3

MAR_0 1 2 3

MAR_1 1 2

MAR_2 1 2

MAR_3 1 2

Actividad B0 e4         e8

Actividad B1 e5         e9

Actividad B2 e6 e10

Actividad B3 e7 e11

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT L = 1 + 4 e4 e5 e6 e7 e8 e9
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 Síncrono

Ej2. @ = 48 fila 1, columna 2 (e6, e7, e8, ...)  

 Desfasado

Ej2. @ = 48 fila 1, columna 2 (e6, e7, e8, ...)  

2.3 ORGANI-
ZACION 2.3.3 SÍNCRONO VS. DESFASADO: RESUMEN

MAR
mar_in 1 2 3

MAR_H 1 2 3

Actividad B0 e4 e8

Actividad B1 e5 e9

Actividad B2 e6 e10

Actividad B3 e7 e11

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT L = 4 + ... ... e6 e7 e8 e9 e10

MAR
mar_in 1 2 3

MAR_H 1 2 3

MAR_0 2 3

MAR_1 2

MAR_2 1 2

MAR_3 1 2

Actividad B0         e8 e12

Actividad B1 e9 e13

Actividad B2 e6 e10

Actividad B3 e7 e11

1 2 3 4 5 6 7 8 9 10 11 ciclos

OUT L = 1 + 4 e6 e7 e8 e9 e10
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 BRV con 2L + 1E (y reg. vec. mínimos)

 2 buses L:    BRV {M  ALU}

 1 bus E:    {M  ALU} BRV

 Memoria de 1 puerto {L E}. Sólo 1 UF

 Segmentación. Ejemplo.

2.4 CINCO 
PROCS. PROCESADOR 1

V1V0 V7. . .
Fi

M

*/+

E

L1

L2

BRV

punto de conexión

BRpf

64 b

Busq Deco Reg Latencia Producción

Coma flotante, enteras (p.e. Reg ALUi Reg)

Riesgos Lec BRV UFs
mem lec

escr
V3.0

escr
V3.1

Lanzamiento en orden
Detención “mientras” riesgo

Lec VLR- escalar
- vector
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 3 buses lectura:    BRV {M, ALU}

 2 buses escritura:    {M, ALU} BRV 

 Instrucciones independientes y sin riesgos estructurales

 Instrucciones dependientes o con riesgos estructurales

 Regla: último D = último W 

2.4 CINCO 
PROCS. PROCESADOR 2

B D1 R L WVLR

B D1 R L WVLR

B D1 R L WVLR

B D1 D2 D3 D4 D5 ... ... ... ... Dn R L

V0 V7. . . M

punto de conexión
*/+
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 2 UFs

 ALU para sumar

 ALU para sumar/multiplicar

 3 buses de escritura y 5 de lectura
   

2.4 CINCO 
PROCS. PROCESADOR 3

V0 V7. . . M

*/++
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 Dos ALUs dedicadas

 Dos puertos de lectura y uno de escritura por reg. vectorial.
La Unidad de Control permite dos flujos de lectura y uno de 
escritura en cada registro vectorial

Encadenamiento general  solapar dependencias datos

 ¡¡Las antidependencias tampoco bloquean!!

 Temporización riesgos de datos productor-consumidor:  

2.4 CINCO 
PROCS. PROCESADOR 4        1 DE 2

Li+p

Li+p+q

V0 V7. . . M

*+

V3

Ei

i: op V3, ...

i+p: ... V3

i+p+q: ... V3

....

...
.

....
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 Instrucciones dependientes  

Encadenamiento 

 “Primera lectura de registros bajo primera producción”

o bien,

Regla: último D = último L

 Ejercicio. Para el siguiente código:

 Dibujar el diagrama de ciclos

 En el primer ciclo de encadenamiento
- Dibujar flechas verticales de productor a consumidor
- Determinar las posiciones de los punteros de escritura y 
lectura de los registros V1 y V4

addv V1,V2,V3

lv V4,(r1)

addv V5,V4,V1

 Para casa: cambiar addv V5,V4,V1 por mulv V5,V4,V1

2.4 CINCO 
PROCS PROCESADOR 4        2 DE 2

B D1 R L WVLR

B D1 D2 D3 D4 R L WVLR

B B2 B3 B4 D ...
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 Replicar los caminos de proceso y memoria. 
Ejemplo: el Processador 4 con 2 parallel lanes 

 El Banco de Registros Vectorial (BRV) y la memoria
se particionan: pares en una partición e impares en la otra.

 Cada una de las dos ALUs (FP add, FP mul) se duplican.

 En el primer ciclo de ejecución entran en paralelo a las dos pistas 
los elementos (0, 1) de los registros vectoriales fuente. En el 
segundo ciclo entran los elementos (2, 3), y así sucesivamente ...

 Comparando con el Procesador 4 de una pista, el número de 
ciclos por elemento, Ce, se divide por el número de pistas.

2.4 CINCO 
PROCS PROCESADOR 5

V0 V7. . . M

*+

impares

V0 V7. . . M

*+

pares

PISTA 0 PISTA 1
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 El rendimiento depende de n, el tamaño del vector
supongamos n  MVL1

 Cn (n  MVL) = Cfijos + nCe  ciclos

Cfijos = latencia UFs + penalizaciones

             penal. = riesgos estructurales y dependencias
Ce  =    ciclos por elemento

 Tn (n  MVL) = Cn Tc

 R = velocidad en FLOPS; se aplican k FLOPs a cada elemento

 Rn (n  MVL) = n k / Tn = n k F / Cn

R en GFLOPS    Tc en ns o F en GHz

2.5 RENDI-
MIENTO RENDIMIENTO SIN SECCIONAR        1 DE 2

1. MVL: Maximum Vector Length, número de elementos de un Registro Vectorial.

lv V0,Ra

mulv V1,V2,V3

addv V4,V5,V6

código
ejemplo GFLOPS ?

Rn (n  MVL)

n

Rn
n k

Cfijos n C e+  Tc
--------------------------------------------------=

MVL

R MVL 
k f
Ce
---------=

irreal
45 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



 N1/2 
longitud de vector que consigue
MITAD del rendimiento máximo

RN1/2 = RMVL/2       N1/2 = Cfijos/Ce = Tfijos/Te       

 Da idea de la sobrecarga vectorial
(latencias y penalizaciones)

 es independiente de Tc
sólo depende de la arquitectura y del algoritmo

 Nv
Longitud mínima de vector que consigue
igual velocidad
en las versiones escalar y vectorial

RNv = Resc      Nv = Cfijos / (Cesc - Ce) = Tfijos / (Tesc - Te)

 mide la sobrecarga vectorial y la velocidad relativa entre 
los procesadores vectorial y escalar

2.5 RENDI-
MIENTO RENDIMIENTO SIN SECCIONAR        2 DE 2

Rn

n
N1/2

R

R

Tn

n
-N1/2

Tfijos
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 Supongamos los siguientes parámetros
 para los cinco procesadores anteriores:

 Tc = 1 ns

 Lat { +, *, mem } = 6, 7, 12 ciclos

 LI = 1 ciclo

 Segmentación página 39:

- aritméticas, loads: B, Dn, R, Lat, WVLR

- stores: B, Dn, R, WVLR, Lat

n = 1 si no hay riesgo estructural ni dependencia; 

n > 1 en caso contrario

VLR = valor del registro VLR  {0..64}

 Vamos a calcular 
Cn (n  MVL)
R64 (MVL = 64)
R (MVL )

Rpico

2.5 RENDI-
MIENTO COMPARAR RENDIMIENTO SIN SECCIONAR        1 DE 2
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2.5 RENDI-
MIENTO COMPARAR RENDIMIENTO SIN SECCIONAR        2 DE 2

Cn se calcula con reg. vect de n elem.
R64 con n = 64

R con n = RMVL 

Proc i 
(Rpico, GFLOPS)

Código

Cn ciclos

R64 GFLOPS 

R GFLOPS

lv V0, Ra

mulsv V1, F0,V0

addv V2, V2,V1

lv V0, Ra

mulv V1, V2,V3

addv V4, V5,V6

Cód 1 Cód 3

mulv V1, V2,V3

addv V4, V5,V2

lv V0, Ry

lv V1, Rx

mulsv V2, Fa,V1

addv V3, V0,V2

sv Ry, V3

Cód 2 Cód 4

Proc1 (1) Proc2 (1) Proc3 (2) Proc4 (2) Proc5 (4)

Cód 1
30 + 3n

0.58
0.66

18 + 2n
0.88

1

15 + n
1.62

2
= ?

Cód 2
17 + 2n

0.88
1

= =
10 + n
1.73

2
?

Cód 3 no no no
30 + n
1.36

2

?

Cód 4
56 + 5n

0.34
0.4

= =
41 + 3n

0.55
0.66

?
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https://www.desmos.com/calculator/lcvokcya7s
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

                                    (página en blanco)
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Un procesador vectorial de una arquitectura tipo DLXV se segmenta en 8 etapas para las 
instrucciones vectoriales básicas: aluV, LV, SV. El trabajo en cada etapa para cada instrucción 
se muestra en la tabla:

La ruta de datos se muestra en la siguiente hoja. La parte izquierda corresponde a un trozo 
del procesador escalar. Su operación y su relación con la parte vectorial puede deducirse 
observando la ruta de datos.

Hay dos unidades de cálculo multioperación (UF1 y UF2) y una memoria multibanco de 
dos puertos, uno de escritura y otro de lectura. O sea, cada banco de memoria soporta una 
lectura y una escritura simultáneas, con la misma latencia que una lectura o una escritura por 
separado. La latencia de la primera lectura no depende del banco de inicio porque el acceso es 
desfasado.

No hay control hardware de colisión entre lectura y escritura en memoria. Se solapan los 
flujos y el compilador ya se preocupará de no generar código vectorial si las dependencias en 
memoria pueden dar lugar a riesgos (RAW, WAR o WAW).

Cada registro vectorial tiene dos puertos de lectura y uno de escritura. La unidad de control 
permite ejecutar de forma solapada y segura a instrucciones dependientes en cualquier caso:

• Dependencia prod-cons. Encadenamiento general.

• Antidependencia. Flujo de escritura por detrás del de lectura.

2.6 ZV: Organización de un procesador vectorial 
segmentado con ALMa tipo DLXV

aluV LV SV

B búsqueda instrucción

D1 deco 1/ @dst salto lectura BRint

D2 deco 2 cálculo @ base

L

¿riesgos en recursos?
¿riesgos en registros?

lanzamiento y
reserva recursos

lectura reg 
vectoriales

nada
lectura reg 
vectoriales

X1 red ida paso crossbar 1
paso crossbar 1

generación @

alu/
mem

operación o
acceso a memoria

op mem_rd
mem_wr

liberar recursos 
en último ciclo

X2 red vuelta paso crossbar 2

W escritura
escritura registro vectorial destino 

liberar recurso en último ciclo
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B

D

L

X

al
m

X

W

B
 D1

2

1

u
em

2

X

X

pc

@
outMci

ir

BRint

aluint

Rfp

in @
out

Vmar

Mcd

Vstr

BRvec

V0 V7

Generación @ Crossbar 1 (17x5)

VmarR´s VmarW´s

Mp inejemplo 4 bancos
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En una instrucción vectorial de tamaño mínimo (VLR = 1) se ocupa cada etapa un ciclo, 
salvo alu/mem, que se ocupan un número de ciclos igual a la latencia de las unidades 
funcionales o de memoria. Para VLR>1 todas las etapas por debajo de L pueden ser 
multiciclo. Los siguientes ejemplos muestran la ocupación de las etapas para VLR=6:

:

:

Ejemplo 1: ADDV, Lat_sum = 2, Tasa iniciación = 1

B x

D1 x

D2 x

L x x x x x x

X1 x x x x x x

+ x x x x x x x

X2 x x x x x x

W Lat_sum x x x x x x

resumen: B D1 D2 L X1 +  2c X2 W  6c

Ejemplo 2: LV, Lmem = 4, sin conflictos de banco

B x

D1 x

D2 x

L x

X1 x x x x x x

mem x x x x x x x x x

X2 x x x x x x

W Lat_mem x x x x x x

resumen: B D1 D2 L X1 mem  4c X2 W  6c

Ejemplo 3: SV, Lmem = 4, sin conflictos de banco

B x

D1 x

D2 x

L x x x x x x Lat_mem

X1 x x x x x x

mem x x x x x x x x x

X2

W

resumen: B D1 D2 L X1  6c mem  4c
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Este procesador lanza en orden hasta 1 instrucción vectorial o escalar por ciclo. 
Instrucciones escalares y vectoriales independientes pueden solaparse. Pueden ejecutarse a la 
vez hasta cuatro instrucciones vectoriales (1 LV, 1 SV y 2 aluV)

La etapa L se encarga de controlar los riesgos en las instrucciones vectoriales por 
dependencias de datos (en registros o memoria) y por falta de recursos:

• RECURSOS (UFs, puertos de memoria, puertos de registros, ...). Se reservan en la 
etapa L y se liberan en el último ciclo de ejecución. En caso de bloqueo por recurso, 
el último ciclo de detención coincide con el ciclo de liberación. Ver dibujo.

• DEPENDENCIAS prod-cons en REGISTROS. Existe encadenamiento general. No 
existen restricciones, incluso loads y stores encadenan.

Puede solaparse la primera lectura de una instrucción consumidora (etapa L) con la 
primera escritura de una instrucción productora (etapa W). Ver dibujo. 

El procesador ZV de referencia tiene las siguientes características:

MVL 64 tamaño registros vectoriales

+ Lsum = 2c, TI = 1c
latencia, tasa de iniciación

* Lmul = 3c, TI = 1c

mem 8 bancos, Lmem = 4c sistema sobrado

Tc (f) 1ns (1000 Mhz = 1GHz)

Coherencia entre Mcd y Mp asegurada por hardware (ya veremos)

i:

i+k:
L L X1

último ciclo
de i

i+k necesita un recurso que usa i

i:

i+k:
L L X1

i+k usa dato producido por i

WX2 W W
-53-



3.1 VECTOR LENGTH

Vectores de n elementos, pero
Registros vectoriales de MVL elementos:

SOLUCIONES:

 n  64
se programa VLR con n (instr. DLXV movi2s)

 n  64

Técnica de Seccionado o Strip-Mining

 Módulo y división entera por MVL (potencia de dos):
- Operaciones con máscara, desplazamientos
- Soporte especial: p.e. repertorio de Convex1

3. DOS ASPECTOS DE PROGRAMACIÓN:
VECTOR LENGTH Y VECTOR STRIDE

1. Paqui Quintana, R. Espasa y M. Valero. "An ISA comparison between Superscalar and Vector 
Processors". En Proc. of the Int. Conf. on Vector and Parallel Processing (VECPAR98). Lecture 
Notes in Computer Science, issue 1573, pp. 548-560, 1999. Springer Verlag publisher.

ej. 220 elementos con MVL = 64  11 011100

iteración residual
al principio

iteración residual
al final

28 64 64 64

64 64 64 28

3 secciones y pico ...
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3

Bucle ejecutado en modo vectorial (3 secciones y pico)

Código AXPY seccionado con MVL = 64

. VECTOR LENGTH Y 
STRIDE 3.3 RENDIMIENTO CON SECCIONADO

Resto al principio

1 and Rmod, Rn, R3F

2 srl Rent, Rn, #6

3 movi2s VLR, Rmod

buc: LV V0, Rx

5 MULSV V1, Fa, V0

6 LV V2, Ry

7 ADDV V3, V2, V1

8 SV Ry, V3

9 movs2i Rn,VLR

10 bz out, Rent

11 nop

12 sll Rsize, Rn, #3

13 add Rx, Rx, Rsize

14 add Ry, Ry, Rsize

15 movi2s VLR, #64

16 jmp buc

out: dec Rent

n

Rn (MFLOPS)

R

¿Rendimiento de ZV

64

100

200

Rx = &X[0];

Fa = a

Ry = &Y[0]; 

Rn = n;

R3F = 0x3F

?

en función de n?

28

64
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3

Modelo de ejecución

 Cbase ciclos del prólogo y del epílogo:

instr. escalares {1:3}

tiempo desde último bloque n hasta final

 Cfij costes fijos (incluso con VLR = 1)

Latencias + Penalizaciones

 Cbucle ciclos de control de bucle

instr. escalares {9:17}
en paralelo con las vectoriales anteriores

 ciclos
desde que se lanza la última instr. vect. de una sección
hasta que se lanza la primera de la sección siguiente.

 a veces, Cbucle = 0, 
porque la primera instr. vect. de la sección siguiente está 
detenida por recursos o dependencias.

 A partir de Cn, podemos derivar
Rn, R64, R, ...
N1/2, Nv

. VECTOR LENGTH Y 
STRIDE 3.3 RENDIMIENTO CON SECCIONADO

Cn = Cbase + n/MVL(Cfij + Cbucle) + nCe
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n

Rn GFLOPS  FLOPn
Cn

------------------- F GHz =

Ejercicio

obtener fórmulas para N1/2 y Nv

Hipótesis: son menores que MVL
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 Procesado de elementos no contiguos

a separación constante (stride = paso)

 B[i][k]*C[k][j] es vectorizable en k si cargamos

C[0:n-1][j] en un reg. vectorial (si n>64 secc.)

 s = n*8 bytes = separación en un registro R  

3. VECTOR LENGTH Y 
STRIDE 3.4 RECORRIDOS CON STRIDE

for (i=0; i<n; i++)

for (j=0; j<n; j++)

{ A[i][j] = 0.0;

for (k=0; k<n; k++)

A[i][j] = A[i][j] + B[i][k]*C[k][j];

}

A = B*C

= *

n

i

j

i
k

j

kA B C

Producto escalar o interno

LVWS V1, (R1,R2)

SVWS (R1,R2),V1

for (i=0; i<VLR; i++)
V1.i = mem (R1 + i*R2);

DLXV
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 Vectorización de la multiplicación de matrices en forma ijk:

LV V0, RB

LVWS V1, (RC, Rn*8)

MULV V2, V0,V1

RED_SUM Rtmp, V2 ; 

SV RA, Rtmp

Rtmp Rtmp V2.i
i 0=

VLR

+=
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4. Conflictos en el Acceso a Bancos de Memoria
4.1 INTRODUCCIÓN

4.2 SISTEMAS AJUSTADOS

4.3 SISTEMAS SOBRADOS

4. CONFLICTOS EN EL ACCESO A 

BANCOS DE MEMORIA
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4. Conflictos en el Acceso a Bancos de Memoria 4.1 Introducción
4.1 INTRODUCCIÓN

Memoria = carga y descarga de registros vectoriales

S1: LVxx V1, ...
S2: SUBVS V2, V1, Fi

Con un control elaborado:

LV V1, R@  Cemem = 1 ciclo/dato

LVWS V1, (R@,Rs)  Cemem = ?

MEM

V1 V2
Fi

Lmem Lsub

LVxx

SUBVS

...

...

... Lmem

Lsub

Cemem

max (Cemem , Cesub)
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4. Conflictos en el Acceso a Bancos de Memoria Almacenamiento
ALMACENAMIENTO

Palabras consecutivos en bancos consecutivos1 

“bancos entrelazados por palabras o entrelazado de menos peso”

Suponemos:

ancho banco = ancho BUS memoria/registros vect. = tamaño palabra

Ejemplo: M = 8 bancos, S = 3  

PROPIEDAD FUNDAMENTAL

1) En otros sistemas, p.e. en un multiprocesador, las palabras que forman un bloque de cache 
pueden residir consecutivas en el mismo banco de memoria principal. Se dice entonces que los 
bancos están entrelazados por bloques (no por palabras).

Una secuencia de accesos con separación S bancos
visita un subconjunto de P bancos del total de M

M = 8

S 1 2 3 4 5 8

P 8 4

0

8

16

24

7

15

23

31

1

9

17

25

6

14

22

30

2

10

18

26

5

13

21

29

4

12

20

28

3

11

19

27

20 1 3 4 5 6 7

P
M

mcd S M 
--------------------------=
67 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



4. Conflictos en el Acceso a Bancos de Memoria 4.2 Sistemas Ajustados: M = L
4.2 SISTEMAS AJUSTADOS: M = L

Ejemplo: L = 4 ciclos y M = 4 bancos

 Acceso sin conflicto: S = 5 módulos

 Acceso con conflicto: S = 4 módulos

 únicamente visitamos el banco 0:  

 Cemem = L/P = 4 cpe



 Cada banco diferente 
visitado aporta
1 dato / L ciclos

 Visitamos P bancos
Flujo = BW =
P datos / L ciclos

 Cemem = Flujo-1 =
L/P ciclos/dato =
1 cpe

P
4

mcd 5 4 
------------------------ 4= =

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

m2m0 m1 m3

16 17 18 19

20

@0

@5

@10

@15

@20
m0

m1

m2

m3

0 5 10 15SALIDA

1@/ciclo (acceso desfasado)

P
4

mcd 4 4 
------------------------ 1= =
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4. Conflictos en el Acceso a Bancos de Memoria 4.2 Sistemas Ajustados: M = L
4.2 SISTEMAS AJUSTADOS: M = L

 Strides IMPARES sin conflicto Cemem = 1


, con  impar

 Strides PARES con conflicto Cemem > 1


, con  impar y k1

DEMO, suponiendo nº de bancos es potencia de 2, M = 2m

= mcd (2m, ) = 20 = 1

DEMO (M = 2m)

Conflicto  Cemem > 1

= mcd( ,2m) = 2min(k,m)

Ce
Nciclos

Nelementos
-------------------------=

L
P
--- L mcd M S( , )

M
-------------------------------- mcd M S( , )== =

S = 20

Ce mcd M S( , )=  2
0

S = 2k

Ce mcd M S( , )=  2
k
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4. Conflictos en el Acceso a Bancos de Memoria 4.3 Sistemas Sobrados: M > L
4.3 SISTEMAS SOBRADOS: M > L

Ejemplo: M = 8, L = 4

 Acceso sin conflicto S = 2

Flujo = BW = 

permitimos más strides libres de conflicto

0

8

16

24

7

15

23

31

1

9

17

25

6

14

22

30

2

10

18

26

5

13

21

29

4

12

20

28

3

11

19

27

20 1 3 4 5 6 7

Pelementos
Lciclos

------------------------------
P L 4= =

1 elemento/ciclo=

STRIDES

pares impares

sist. AJUSTADOS

no
conflicto

STRIDES

pare
s

impares

sist. SOBRADOS

no
conflicto
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4. Conflictos en el Acceso a Bancos de Memoria 4.3 Sistemas Sobrados: M > L
4.3 SISTEMAS SOBRADOS: M > L

Suponemos L = 2l (irreal)

 Strides sin conflicto: IMPARES y algunos PARES


, con  impar y 0 k m-l

No hay conflicto con PARES si tienen “pocas” potencias de dos.

 Strides con conflicto: parte de los PARES


, con  impar y k m-l





Ejemplo: Ce (sistema L, M, S) = Ce(8, 16, 30) = 

DEMO (M = 2m > L = 2l)

Sin conflicto  P L

 

           

DEMO (M = 2m)

Conflicto  Cemem > 1

mcd (2m, S) > 1

S = 2k

P
2m

mcd S 2m 
----------------------------= 2l 2m l– mcd S 2m  2min k m =

m l min k m – m l k–

S = 2k

Cemem
L
P
--- L mcd S M 

M
---------------------------------- 2

l
2

min k m 


2
m

------------------------------- 2l min k m  m–+= = = =
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5. Arquitectura DLXV
Repertorio completo de instrucciones

5. ARQUITECTURA DLXV
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5. Arquitectura DLXV DLXV - VMIPS: códigos de operación
DLXV - VMIPS: CÓDIGOS DE OPERACIÓN

 [HePa12] J. HENNESSY and D. PATTERSON, Computer Architec-
ture: a quantitative approach. 5th Edition, Morgan Kaufmann, 2012.

• Chapter 4 and Appendix G: Vector Processors in More Depth

( 4th edition )
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5. Arquitectura DLXV DLXV - VMIPS: códigos de operación
 LVI - SVI: gather - scatter

Figura: https://gain-performance.com/2017/06/15/umesimd-tutorial-9-gatherscatter-operations
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6. Compilación
6.1 Introducción.
      Fases en el back-end del compilador:
      extracción automática de paralelismo 
      vectorial

6.2 Transformaciones previas que simplifican 
      el análisis de dependencias

6.3 Análisis y grafo de dependencias.
      Tests aproximados

6.4 Optimizaciones independientes de la 
      arquitectura: renombrar, expansión 
      escalar, copia de vectores

6.5 Vectorización
     - Procedimiento básico
     - Vectorización parcial vs. total:
        distribución e intercambio de bucles
     - Reducción

6. COMPILACIÓN
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6. Compilación 6.1 fases en el back-end del compilador
6.1 FASES EN EL BACK-END DEL COMPILADOR

Front-end: análisis léxico y sintáctico

Programa escalar representado en lenguaje intermedio


Transformaciones 
que simplifican el 
análisis de las 
dependencias

• Propagación y evaluación de expres. constantes

• Extracción de invariantes

• Normalización de bucles



Grafo y análisis 
de dependencias

• Construcción del grafo

• Tipos y distancia de las dependencias

• Análisis de dependencias. Test MCD


Optimizaciones 
independientes de 
la arquitectura 
vect/par

• Eliminar antidependencias y dep. de salida
- Renombrar
- Expansión escalar
- Copia de vectores



Vectorización
• Vectorización total y parcial

- Distribución e intercambio de bucles

• Reducción, punteros en C


Generación de 
código. 
Optimización

• Asignación de registros vectoriales

• Selección de instrucciones vectoriales

• Seccionado


Programa 
vectorial 
optimizado

EJEC(progr. escalar) = EJEC (prog. vectorial)
+

f estática vect 
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6. Compilación 6.2 Transformaciones que simplifican el análisis de las dependencias
6.2 TRANSFORMACIONES QUE SIMPLIFICAN EL 
ANÁLISIS DE LAS DEPENDENCIAS

 Propagación y evaluación de expresiones constantes +
Extracción de invariantes 

Otro ejemplo de invariantes 

 Normalización de bucles:
- Normalizar el paso de la variable de control
- Eliminar variables de inducción, o sea,
  indexar vectores únicamente con las variables de control del bucle 

DO i = 1,N

PI = 3.14

PD = 2*PI

A(i) = PD * R(i) **2

ENDDO



PI = 3.14

PD = 6.28

DO i = 1,N

A(i)= 6.28 * R(i) **2

ENDDO

DO i = 1,N

DO j = 1,M

A(i,j) = B(j) * C(i)

ENNDDO

ENDDO



?

DO i = 1,100

aux = i

DO j = 1,300,3

aux = aux + 2

A(j) = A(j-1) + B(aux)

ENNDDO

ENDDO



DO i = 1,100

aux = i

DO nj = 1,100

aux = aux + 2

A(3*nj-2) = A(3*nj-3) + B(i+2*nj)

ENNDDO

ENDDO

3*nj-2, 3*nj-3, 2*nj+i combinación 
lineal de las variables de control de 
bucle
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6. Compilación 6.3 Análisis y grafo de dependencias
DEPENDENCIAS EN MEMORIA ENTRE SENTENCIAS1 

• Las dependencias establecen relaciones de orden parcial
que cualquier ejecución “legal” debe respetar.  

R: ------

...

S: ------

S y R son sentencias de asignación  

S depende de R si:    

 R antes que S en orden de programa (R <p S)

 R y S referencian a la misma posición de memoria

 una referencia al menos es una escritura

1) La investigación en vectorización automática se inicia en los años 70, y el siguiente trabajo de la 
Universidad de Illinois se considera uno de los mas importantes para su herramienta básica,
el análisis de dependencias.
Kuck, Kuhn, Padua, Leasure, and Wolfe. "Dependence graphs and compiler optimizations". In 
Proc. of the 8th ACM Symposium on Principles of Programming Languages, pp. 207-218. 1981.

Tres tipos

R escribe y S lee
Dependencia verdadera 
flow dependence, RAW hazard

R  S

R lee y S escribe
Antidependencia
antidependence, WAR hazard

R  S

R y S escriben
Dependencia de salida
output dependence, WAW hazard

R  S

Si R y S están en un bucle,
Ri y Si indican la ejecución de la iteración i-ésima

R S

R S

R S
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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 1 -  

por inspección: S1i  S2i posición A(i)

S1i 
 S2i posición B(i)

Pero ...  

 Grafo de dependencias: grafo dirigido, anotado con distancias:  

i= 1,64

S1: A(i)= B(i)*C

S2: B(i)= B(i-1) + A(i)

S11
S21

A(1)= B(1)*C

B(1)= B(0) + A(1)

¡Dependencias entre iteraciones!

S2i  S2i+1 en pos B(i)

loop carried dependence, LCD
o sea, dependencias generadas por el 
bucle

S12
S22

A(2)= B(2)*C

B(2)= B(1) + A(2)

•
•
•

 = distancia de la dependencia: 

Ri  Sj   = j-i 0

número de iteraciones
que separa el uso de las mismas
posiciones de memoria

R S


S1

S2

00

1

• Vectorizable en parte 
A(1:64)= B(1:64)*C

i= 1,64

S2: B(i)= B(i-1) + A(i)

ciclo unitario de dependencia
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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 2 -  

 O sea: NO es vectorizable ! 

i= 1,64

S1: A(i+1)= A(i) + B(i)

S2: B(i+1)= B(i) - A(i)

ejecución

S11
S21

S12
S22

•
•
•

A(2:65)= A(1:64) + B(1:64)

B(2:65)= B(1:64) - A(1:64)

LV B(1:64)

LV A(1:64)

ADDV +

SV A(2:65)= 

A(1:64)

B(1:64)

-

B(2:65)= 

S1

S2
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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 3: AXPY -  

- Ejemplo 4 -  

- Ejemplo 5 -  

i= 1,64

S: Y(i)= a*X(i) + Y(i)

Autociclos de antidep. a distancia 0, pueden obviarse: Vectorizable

i= 1,64

S: fac(i)= fac(i-1) * i

Autociclos dependencias verdaderas distancia > 0, No Vectorizable

i= 1,64

S: A(i)= A(i+3) + A(i)

secuencia de cálculos:

S1

S2

S3

S4

S5

Vectorizable:         A(1:64)= A(4:67) + A(1:64)a

a. Esta notación corresponde a un lenguaje real y en uso: FORTRAN 90,
el sucesor directo de FORTRAN 77

S

0

S
... o simplemente

S

1

S
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6. Compilación 6.3 Análisis y grafo de dependencias
 Vectorizable:         A(1:64)= A(4:67) + A(1:64)1

- Ejemplo 6: escalado -  

- Ejemplo 7: progresión geométrica-  

- Ejemplo 8: escalado con desplazamiento a laizquierda -  

- Ejemplo 9  -  

• Escribir el código vectorial

1) Esta notación corresponde a un lenguaje real y en uso: FORTRAN 90,
el sucesor directo de FORTRAN 77

i= 1,64

S: A(i)= k*A(i

i= 1,64

S: A(i+1)= k*A(i)

i= 1,64

S: A(i)= k*A(i+1)

i= 1,64

S1: A(i)= B(i+2)

S2: B(i)= A(i-1)

S

VECT, PAR

S

no VECT, no PAR

S

si VECT, no PAR

S1

si VECT, no PAR

S2
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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 10  -  

ANÁLISIS DE DEPENDENCIAS

Caso bastante general:

• conjunto de bucles anidados normalizados

• código en el bucle más interno y sin sentencias condicionales

• espacio de iteraciones conocido en compilación  

En cada iteración del código S1 S2, las variables de control forman 
una k-tupla (i1, ...ik) diferente. La unión de todas ellas se llama 

Espacio de Iteraciones (EspIt). EspIt es el producto cartesiano de los k 
conjuntos de números naturales que recorre cada variable de control.

Puede establecerse un orden de programa total entre k-tuplas (<p)

i= 1,64

S1: A(i+2)= B(i)

S2: B(i+2)= A(i+1)

real*8 A(dim1, dim2, ...dimm)

i1= 1,max1
...

ik-1= 1,maxk-1
... ik=  1,maxk

S1: A(f1(i1, ...ik),f2(i1, ...ik),...fm(i1, ...ik)) = ...

S2: ... = A(g1(i1, ...ik),g2(i1, ...ik),...gm(i1, ...ik))

S1

no VECT, no PAR

S2
84 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



6. Compilación 6.3 Análisis y grafo de dependencias
Las funciones f y g son funciones de indexación. Calculan un índice a 
partir de los valores (i1, ...ik) de las variables de control  

Caso sencillo:

• K = 1 variable de control

• m = 1 dimensión  

PREGUNTAS ...

 P, Q  EspIt  escr en S1P  lect en S2Q para P p Q;     ?a

 T, Z  EspIt  lect en S2T 
 escr en S1Z para T <p Z;     ?b

a. P.e. para P = (i1, i2, i3) = (2, 3, 4), en S1 se escribe el elemento A(1,2) y para Q = (4, 1, 1), en S2 se lee el mismo elemento.

b. P.e. para T = (3, 3, 3), en S2 se lee el elemento A(9,1) y para Z = (4, 1, 1), en S1 se escribe el mismo elemento.

i= 1, max

S1: A(f(i))= ...

S2: ...    = A(g(i))...

 dependencia prod/cons a distancia  siia

a. P.e. para p = 6 en S1 se escribe el elemento A(19) y para q = 6, en S2 se lee el mismo elemento.

 p, q  EspIt  f(p) = g(q) para p  q

 = q - p

 antidependencia a distancia  siia

a. P.e. para t = 10, en S2 se lee el elemento A(31) y para z = 12, en S1 se escribe el mismo elemento.

 t, z  EspIt  g(t) = f(z) para t < z

 = z - t

S1p

S2q



S1z

S2t


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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 11  -  f y g son lineales

 Este tipo de ecuación se llama ecuación Diofántica

i= 1,100

S1: A(2i+7)= B(i)-3

S2: C(i)= A(3i+1)

secuencia de cálculos:

i Eqn. dependencias prod/cons: S1  S2

1
 p, q  [1..100]  f(p) = g(q) para p  q

2p+7 = 3q+1    ( = q - p)

2 Despejamos q y enumeramos p; q = 2p/3+2

3

4

5

6

7 Eqn. antidependencias: S2  S1

8
 t, z  [1..100]  g(t) = f(z) para t  z

3t+1 = 2z+7    ( = z - t)

9 Despejamos z y enumeramos t; z = 3t/2-3

10

11

12

S1

VECT ?, PAR ?

S2

escr +2
lect +3

9
4

p 1 2 3 4 5 6 7  8  9 10 ...

q no  no 4  no no 6 no no  8 no

0  1 0 -1

t 1  2 3 4 5 6 7  8 9 10 ... 68

z no 0 no  3 no  6  no  9  no 12 99

>0  -2  -1 0 1 2 ...  31
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6. Compilación 6.3 Análisis y grafo de dependencias
- Ejemplo 12 - f y g son lineales  

i= 1,100

S1: C(i)= A(3i+1)

S2: A(2i+7)= B(i)-3

i Eqn. dependencias prod/cons: S2  S1

1

2 Despejamos q y enumeramos p; 

3

4

5

6

7 Eqn. antidependencias: S1  S2

8

9 Despejamos z y enumeramos t;

10

11

12

S1

VECT ?, PAR ?

S2

lect +3
escr +2

p 1 2 3 4 5 6 7 8 9 10 ...

q 

 

t 1  2 3 4 5 6 7  8 9 10 ...

z 

 
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6. Compilación Tests aproximados
TESTS APROXIMADOS

Resolver las ecuaciones directamente es costoso en tiempo

Los límites inferior y superior a veces no son constantes

 Tests aproximados, fáciles de calcular:

 Condición necesaria para que existan ciclos de dependencias

• se cumple?  no vectorizamos

• muy conservador ...

 Condición suficiente para la independencia

• se cumple ?  vectorizamos

• muy exigente

 Test MCD para funciones de indexación lineales (cond. necesaria)

f  a·i+b        g  c·i+d

Asumimos posible ciclo de dependencias si mcd(a, c) divide (d-b)

- ejemplos 11 y 12 - 

Ejercicios:

 demostración test MCD

 buscar un ejemplo vectorizable que no pase el test MCD

a = 3, b = 1
c = 2, d = 7 } mcd(3, 2) = 1 divide a (6)  SI

... pues asumimos dependencias cíclicas
    y no vectorizamos
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6. Compilación Ejercicio E5
EJERCICIO E5

En bucles con un solo nivel de anidación pueden aparecer varios tipos de 
dependencias. 

En la tabla siguiente
se resumen todas las posibilidades. 

i  rango N

R:    var(r)

S:    var(s)

Los índices r y s
son funciones lineales de i: r(i), s(i)

var(r)

L ind

ind 

E

ind ind 

L E

var(s)

R

VECT ?, PAR ?

S

{
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6. Compilación Ejercicio E5
Por ejemplo: 

Podemos formular las tres ecuaciones de dependencias:

 R  S sii    

 S  R sii       

 R ind S caso contrario
ejemplos de este caso: 

Ejercicio. Se pide lo siguiente:

Repetir el análisis anterior para el caso
“var(r) es Lectura y var(s) es Escritura”

 Las tres ecuaciones de dependencias

 Un ejemplo de cada caso, con funciones de indexación diferentes 
de las empleadas en los ejemplos anteriores.

i  rango N

r y s son funciones lineales de i 
 N es la distancia de la dependencia     

R: var(r) =  ... 

S: var(s) =  ... 

DO i= 2, 100

R: A(2i-1)=

S: A(6i+4)= 

ENDDO

DO i= 1, 100

R: A(2i)=

S: A(2i+1)= 

ENDDO

 r i  s i +   0 i; i + rango;=

 s i  r i +   1 i; i + rango;=
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6. Compilación 6.4 Optimizaciones no ligadas a la arquitectura
6.4 OPTIMIZACIONES NO LIGADAS A LA 
ARQUITECTURA



Grafo y análisis 
de dependencias


Optimizaciones 
independientes de 
la arquitectura 
vect/par

• Eliminar antidependencias y dep. de salida
- Renombrar
- Expansión escalar
- Copia de vectores



Vectorización

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6. Compilación 6.4 Optimizaciones no ligadas a la arquitectura
Renombrar

Problema: reutilizar vectores o escalares para ahorrar memoria o variables

Transformación:

 Nombre diferente a cada asignación (parte izquierda)

 Propagar nombres nuevos a las sentencias posteriores
(partes derechas) 

 ¿Aumentan las necesidades de almacenamiento?

DO i= 1, N

S1: U(i)= A(i) + 4

S2: A(i-1)= U(i)*2 + C(i)

S3: U(i)= A(i) - 4

S4: B(i)= U(i)*3 + D(i)

ENDDO



- Ejemplo 13 - no vect

Transformación:
- U(i)  T(i) en S1
- propagar T(i) en S2

DO i= 1, N

S1: T(i)= A(i) + 4

S2: A(i-1)= T(i)*2 + C(i)

S3: U(i)= A(i) - 4

S4: B(i)= U(i)*3 + D(i)

ENDDO



casi vect

S1

S2

S3

S4

1

1

0

0 0

0

0

S1

S2

S3

S4

1

1

0

0
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6. Compilación 6.4 Optimizaciones no ligadas a la arquitectura
Expansión Escalar

Problema: variables escalares que se utilizan en iteraciones sucesivas para 
almacenar valores diferentes

Transformación:

 Promocionar el escalar a vector (parte izquierda)

 Propagar nombres nuevos a las sentencias posteriores
(partes derechas) 

 ¿Aumentan las necesidades de almacenamiento?

DO i= 1, N

S1: U= A(i) + B(i)

S2: D(i)= U*2 + C(i)

ENDDO



- Ejemplo 14 - no vect

Transformación:
- U  U(i) en S1
- Propagar U(i) en S2

DO i = 1, N

S1: U(i)= A(i) + B(i)

S2: C(i)= U(i)*2 + C(i)

ENDDO

U= A(N) + B(N)



vect

S1

S2
1 0

1

S1

S2

0
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6. Compilación 6.4 Optimizaciones no ligadas a la arquitectura
Copia de vectores1

Problema: pre-uso y post-definición de los elementos de un vector 

Transformación:

 Crear una copia del vector de solo-lectura

 Propagar nombre copia a las sentencias posteriores
(partes derechas) 

 ¿Aumentan las necesidades de almacenamiento?

1) También llamado node splitting, particionado de nodos

DO i= 1, N

S1: A(i)= B(i) * 2

S2: B(i)= A(i+1) + 3

ENDDO



- Ejemplo 15 - no vect

Transformación:
- A  tmpA en S2’

DO i= 1, N

S2’: tmpA(i)= A(i+1)

S1: A(i)= B(i) * 2

S2: B(i)= tmpA(i) + 3

ENDDO



vect

LLLLLL

EEEEEE

S1

S2

1 0

S2’

S1
0

0

S2

1
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6. Compilación 6.5 Vectorización
6.5 VECTORIZACIÓN

Optimizaciones 
independientes de 
la arquitectura 
vect/par


Vectorización

• Vectorización total y parcial
- Distribución e intercambio de bucles

• Reducción

• Punteros en C


Generación de 
código. 
Optimización
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6. Compilación 6.5 Vectorización
Vectorización total

No existen ciclos de dependencias

Transformación:

 Cambiar el orden de las sentencias para que todos los arcos vayan 

hacia abajo1

 Generar código vectorial sentencia a sentencia, empezando por 
cualquiera que sea independiente 

 Con varios niveles de anidación, una sentencia puede 
vectorizarse con respecto a un bucle si no está en un ciclo de 
dependencias generadas por ese bucle  veremos ejemplos

1) Comrobad que este nuevo orden de jecución secuencial es correcto

DO i= 1, N

S1: A(i)= D(i) - C(i)

S2: B(i)= A(i+1) + 1

S3: C(i)= B(i) * 2

ENDDO



- Ejemplo 16 -

- Algoritmo de “flotación”: peso proporcional al nº de arcos entrantes

S2(1:N) es B(1:N)= A(2:N+1)+1

S1(1:N) es ...

S3(1:N)



S1

S2

S3

1

0

0

S2

S1

S3

1

0

0

96 Multiprocesadores - Ing. Informática - UNIZAR Víctor Viñals, Jesús Alastruey



6. Compilación 6.5 Vectorización
Vectorización parcial, distribución de bucles1

Problema 1 de 2: existen ciclos de dependencias

Transformación: extraer las sentencias sin ciclos de dependencias

• Particionar el grafo en subgrafos nodo-disjuntos relacionados 
entre sí de forma acíclica ( bloques)

• Reordenar con las dependencias hacia abajo

• Distribuir/cortar en varios bucles

1) También llamado loop fision, corte de bucles

1, 100









1, 100




1, 100




1, 100









SEC

VEC


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6. Compilación 6.5 Vectorización
DO i = 1, N

S1: A(i) = B(i) + 4

S2: C(i) = A(i) + B(i-1)

S3: E(i) = C(i+1)

S4: B(i) = C(i) + 2

ENDDO



- Ejemplo 17 -

S1(1:N)

S3(1:N)

DO i = 1, N

S2: C(i) = A(i) + B(i-1)

S4:B(i) = C(i) + 2

ENDDO



S1

S2

S3

S4

0

1 100

1 3

2

0  0   1

1 = S1

2 = S2, S4

3 = S3

S1

S3

S2

S4

1

10

0
0
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6. Compilación 6.5 Vectorización
Vectorización parcial, distribución de bucles1

Problema 2 de 2: dos niveles de anidación de bucles no perfectos

Transformación: 

• Si es legal, distribuir el bucle mas externo

• Vectorizar el bucle más interno, si es posible,
aplicando lo anterior

• Paralelizar el bucle más externo, si es posible 

1) También llamado loop fision, corte de bucles









VEC





no tocamos los espacios de iteración

si es legal





















VEC

SEC o PAR
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6. Compilación 6.5 Vectorización
do j= 1, maxcols

S1: a(j)= 0.0

do i= 1, maxrows

S2: b(i,j)= 0.0

enddo

enddo



- Ejemplo 18 -

Transformación:
- Distribuir el bucle exterior

do j= 1, maxcols

S1: a(j)= 0.0

enddo

do j= 1, maxcols

do i= 1, maxrows

S2: b(i,j)= 0.0

enddo

enddo



S1

S2

S1(1:maxcols)

S2(1:maxrows)

PAR(1:maxcols)
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6. Compilación 6.5 Vectorización
Vectorización parcial/total:
                   intercambio de bucles

Problema: 

 En bucles anidados el recorrido del espacio de iteraciones impide:

1. Una fracción vectorial elevada

2. Un acceso eficiente a memoria

3. Vectorización

Transformación:

 Intercambiar el orden de anidación de los bucles, si es legal  

do j= 1, 64

do i=1, 8

A(i,j)= B(i,j)*C(i)

enddo

enddo



- Ejemplo 19 -

1. Intercambiar para aumentar la fracción vectorial

do i= 1, 8

A(i,1:64)= B(i,1:64)*C(i)

enddo



= *

A B C

= *

A B C
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6. Compilación 6.5 Vectorización
 
integer maxlen

parameter (maxlen = 64)

real A(maxlen, maxlen)

do i= 1, maxlen ! intercambiar para mejorar el

do j= 1, maxlen ! acceso a la memoria multibancoa

A(i,j)= 0.0

enddo

enddo

do i= 1, 8 ! no intercambiamos para

do j= 1, maxlen ! preservar vectores largos

A(i,j)= float(i+j)

enddo

enddo

a. En FORTRAN las matrices se almacenan por columnas: afila columna  a11, a21, a31, ... a12, a22, a32, ...
En C, se almacenan por filas.

- Ejemplo 20 -

2. Intercambiar para mejorar el acceso a memoria
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6. Compilación 6.5 Vectorización
real A(64,64)

do j= 2, 63

do i= 1, 64

S: A(i,j)= (A(i,j-1) + 2*A(i,j) + A(i,j+1))*0.25

enddo

enddo

- Ejemplo 21 -

3. No es necesario intercambiar para poder vectorizar

En este ejemplo el bucle j genera ciclos de dependencias, pero el bucle 
i no, y por tanto la sentencia es vectorizable en i

do j= 2, 63

A(1:64,j)= (A(1:64,j-1) + 2*A(1:64,j) + A(1:64,j+1))*0.25

enddo

¿Cómo lo hemos sabido?
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6. Compilación 6.5 Vectorización
do j= 1, 64

do i= 1, 64

S: A(i+1,j)= A(i,j) * B(i)

enddo

enddo

El bucle i tiene
una recurrencia a distancia 1

que impide vectorizar

- Ejemplo 22 -

3. Intercambiar para poder vectorizar

En este ejemplo
1. El intercambio es legal, y 
2. Posibilita la vectorización del bucle interno

do i= 1, 64

A(i+1,1:64)= A(i,1:64) * B(i)

enddo

¿Como lo hemos sabido?
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6. Compilación 6.5 Vectorización
DIAGRAMA DE DEPENDENCIAS CON ANIDACIONES

EspIter  { j=1:64  i =1:64} ={11, 12, 13, ... 21, 22, 23, ... 31, ...} 

do j= 1, 64

do i= 1, 64

S: A(i+1,j)= A(i,j) * B(i)

enddo

enddo

i

j

11

12

13

21

22

23

31

<p
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6. Compilación 6.5 Vectorización
 Al recorrer EspIt en el orden de programa, camino a trazos, 
los accesos a memoria determinan las dependencias.
Cualquier otro orden que las respete, es legal 

¿Cómo representar las dependencias?

Es una recurrencia en (i), y por tanto no es vectorizable !!

i

j

A21=A11

A31=A21

A41=A31

A22=A12

A32=A22

A42=A32

A23=A13

A33=A23

A43=A33

<m: E(A21), L(A21), E(A31), L(A31), ...

dist j, dist ii
j

s

0,1
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6. Compilación 6.5 Vectorización
 Intercambiar los bucles es recorrer EspIt en otro orden: 

 El nuevo recorrido, respeta las dependencias ?

 SI  el intercambio es legal

 NO  no es legal

 Ahora el bucle interno (j) ejecuta los cálculos en otro orden.
En este nuevo orden NO hay dependencias entre cálculos consecutivos
Es posible vectorizar en (j) !! 

do i= 1, 64

A(i+1,1:64)= A(i,1:64) * B(i)

enddo

i

j

A21=A11

A31=A21

A41=A31

A22=A12

A32=A22

A42=A32

A23=A13

A33=A23

A43=A33

<m’: E(A21), E(A22), E(A23), ... L(A21), E(A31), L(A22), E(A32)...
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6. Compilación 6.5 Vectorización
RESUMEN DEL PROCEDIMIENTO MANUAL

1) Desplegar EspIt,
anotando referencias a memoria y dependencias

2) Grafo de dependencias

3) ¿Se puede vectorizar y paralelizar?

4) ¿Es legal el intercambio?
en caso afirmativo, repetir (3)

5) Escoger la opción mejor

do i= 2, 64

do j= 2, 32

S1: A(i,j)= B(i,j)

S2: B(i-1, j-1)= A(i-1,j)

enddo

enddo

- Ejemplo 23 -

Estudiar las posibilidades de codificación y valorar su rendimiento

i PAR

j SEC sí/no

i SEC

j VEC sí/no

i PAR

j VEC sí/no

j PAR

i SEC sí/no

j SEC

i VEC sí/no

j PAR

i VEC sí/no

PASO (3)
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6. Compilación 6.5 Vectorización
void calc_array (int** a)

{

for (i=1; i<N; ++i)

for (j=1; j<N; ++j)

a[i][j] = a[i-1][j] + a[i][j-1] 

)

- Ejemplo 24 -

Leer el texto y reflexionar

“This code shows a nested loop operating on a 2D array with cross-
iteration dependencies over both loops, making it appear serial. From the 
dependence graph it can be shown that iterations can be grouped into 
independent sets, allowing parallel execution if loop skewing and 
interchange are used. Techniques relying on dependence testing would 
overlook this parallelism. Furthermore, the 2D array in (a) is represented 
as an array of pointers to arrays, thwarting a parallelizing compiler’s 
attempt to statically analyze this section of code.”

Garcia, S.; Donghwan Jeon; Louie, C.; Taylor, M.B.; , "The Kremlin 
Oracle for Sequential Code Parallelization," IEEE Micro, vol.32, no.4, pp. 
42-53, July-Aug. 2012
IEEE Micro Special Issue on Parallelization of Sequential Code
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6. Compilación 6.5 Vectorización
Reducción

En este contexto reducir es una operación matemática que quita una 
dimensión a una estructura de datos:

matriz  vector, vector  escalar, ...

Es una operación frecuente en cálculo científico.
Los repertorios vectoriales tienen instrucciones para operadores de 
reducción asociativos:

 Máximo, mínimo, OR, AND, suma, producto

 Ojo con el problema asociatividad / precisión finita

Transformación:

 Detectar los autociclos de dependencias debidos al reuso de la 
variable escalar de reducción

 Sustituir el bucle de reducción por la instrucción apropiada 
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6. Compilación 6.5 Vectorización
 

s=0

p=1

DO i= 1, 128

S1: A(i)= B(i) + C(i)

S2: s = s + A(i)

S3: p = p * A(i)

ENDDO



- Ejemplo 25 -

- Vectorizar usando las instrucciones de lenguaje máquina apropiadas,
  y en este caso seccionar 

s= 0

p= 1

do i=1,2

S1: A(64(i-1)+1:64i)= B(64(i-1)+1:64i) + C(64(i-1)+1:64i)

S2: s = s + SUM(64(i-1)+1:64i)

S3: s = p * PROD(64(i-1)+1:64i)

enddo

S1

S2

S3

0

0

1 1 1

1 1 1
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6. Compilación 6.5 Vectorización
Bucles con condicionales: operaciones con 
máscara

Códigos con muchos saltos, por ejemplo, un bucle con una sentencia 
condicional en su cuerpo, pueden ser vectorizados usando máscaras 
vectoriales que bloquean las operaciones para las cuales la condición no es 
cierta

for (i = 0; i < MAX; i++)

if (cond(i))

c[i] = a[i] + b[i]
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6. Compilación 6.5 Vectorización
Punteros en C1

The following loop may not get vectorized because of a potential aliasing 
problem between pointers a, b and c 

If the  restrict  keyword is added to the parameters,
the compiler will trust you, that you will not access the memory in question 
with any other pointer and vectorize the code properly 

The downside of using restrict is that not all compilers support this 
keyword, so your source code may lose portability.

 restrict es un cualificador complicado, que puede ayudar al 
compilador a generar ejecutables mas rápidos en contextos no 
relacionados con vectorizar. Para mas información:
How to Use the restrict Qualifier in C, Douglas Walls, Sun ONE Tools 
Group, Sun Microsystems, July 2003 (revised March 2006)
http://web.archive.org/web/20120225055041/http://developers.sun.com/solaris/articles/

cc_restrict.html

1) http://software.intel.com/sites/products/documentation/studio/composer/en-us/2011Update/
compiler_c/optaps/common/optaps_vec_use.htm

void add (float *a, float *b, float *c) {

for (int i=0; i<SIZE; i++)

c[i] += a[i-1] + b[i];
}

void add (float * __restrict a,
 float * __restrict b, float * __restrict c) {

for (int i=0; i<SIZE; i++)

c[i] += a[i-1] + b[i];

}
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7. Ley de Amdhal
 Modelo matemático sencillo que calcula la mejora en rendimiento
al ejecutar parte de las operaciones de un programa en menos tiempo:

 un modo lento (escalar)

 un modo rápido (vectorial)

 Sea N el número de operaciones en coma flotante de un programa
y fv el porcentaje que puede realizarse en modo vectorial

 TPF(s,v): tiempo por FLOP en modo (escalar, vectorial)

 G = TPFs/TPFv 

Speed_up = Tescalar / Tvectorial = 

 Speed_up (fv1)   G

 G     Speed_up  1/fs


fs Speed_up 
"El modo lento va a limitar, aunque el modo rápido sea fantástico"

7. LEY DE AMDHAL

N TPFs
N fv TPFv  N 1 fv–  TPFs +
---------------------------------------------------------------------------------  =

1

fv

TPFv

TPFs
------------- 1 fv– +

----------------------------------------------=
1

1 fv–  fv
1
G
----+

------------------------------------- 1

fs fv G+
----------------------= =
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7. Ley de Amdhal
 Valor habitual de fv entre 0,4 y 0,75 para programas compilados


Un buen computador vectorial debe tener un buen procesador escalar

 Caso de estudio:

 Computador A: TPFs = 3,3ns ; TPFv = 1ns         (G= 3,3)

 Computador B: TPFs = 6,6ns ; TPFv = 0,5 ns      (G= 13,2)

 Computador C: TPFs = 6,6ns ; TPFv = 1 ns         (G= 6,6)

Permalink to this graph:

http://fooplot.com/plot/2hqbw5aoc7

Rv Rs Sup= Rs
1

fs fv G+
----------------------=

A
C

B

GFLOPS
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	Ciclos/FLOP


	d = 1
	d = 4
	Ciclos/ FLOP
	9
	4.5
	3


	1. Intro.
	1.2 Rendimiento de una Suma de Vectores en Procesadores Escalares
	Resumen
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	Instrucción compleja: ADDV @md, @mf1, @mf2
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	Ejemplos
	movi2s VLR,r2 ; VLR = r26:0 Î {0:64}
	lv V0,[r3] ; V0.i = mem [r3 + i*8]
	sv [r5],V4 ; mem [r5 + i*8] = V4.i
	addv V1,V2,V3 ; V1.i = V2.i + V3.i
	addsv + subsv V1,f0,V3 ; V1.i = f0 -V3.i
	subvs V1,V3,f5 ; V1.i = V3.i - f5

	VLR
	acción
	0
	NOP
	1
	i = 0:0
	i = 0:VLR-1
	2
	i = 0:1
	64
	i = 0:63
	65
	i = 0:63
	127
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	C(i) = A(i) + B(i)
	enddo
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	CDC Star 100 (72), TI ASC (72)
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	2.3. Organizacion
	2.3.1 Banco de Registros Vectorial
	BRV con 2 buses L, 1 bus E y Reg Vec de 1 puerto (1LÅ1E)


	2.3 Organizacion
	2.3.1 Banco de Registros Vectorial
	BRV con p buses L, q buses E y Reg Vec de 1 puerto
	1 flujo por registro
	O bien lectura desde un bus L (L1..Lp)
	O bien escritura desde un bus E (E1..Eq)

	Globalmente máx. 8 flujos
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	Dos operaciones de dos operandos, y
	Una operación de un operando
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	añadir puertos de lectura en cada Vi
	tener un BRV con p buses L y q buses E
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	Descripción temporal:
	Latencia (ciclos): tiempo desde que entran los operandos hasta que sale el resultado.
	Lat. iniciación (LI) = lat. finalización (ciclos/operación): nº min. ciclos entre entradas consecutivas de operandos

	Sumadores, Multiplicadores
	L = nº de etapas, LI = 1 ciclo/op
	División, Raíces, Exponenciación, Trigonométricas
	L > nº etapas, por reutilización
	LI > 1
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	2.3 Organizacion
	2.3.3 Memoria Multibanco
	Ejemplo de memoria:
	- 4 GiB con 1 puerto compartido de lec/escr
	- 4 bancos de 4 ciclos de latencia
	Queremos este comportamiento en lectura:
	¿Cómo?
	- Multibanco: nº bancos = latencia memoria
	- Entrelazado “por palabras”: “palabras consecutivas en bancos consecutivos”, asumimos números de 8 bytes alineados
	- L = 4 ciclos ® M = 4 bancos de 1GiB
	- Acceso síncrono o acceso desfasado


	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono
	@32bits ® nº banco = (@32bits/8) mod 4 ® {0, 1, 2, 3}
	Parte del control: - Cargar MAR_H cada cuatro ciclos (ojo primer acceso!) - Cargar todos los Di cada cuatro ciclos - Multiplexar Di en out cada ciclo


	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono. Ejemplo s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	MAR_H
	B0
	D0
	B1
	D1
	B2
	D2
	B3
	D3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	MAR_H
	B0
	D0
	B1
	D1
	B2
	D2
	B3
	D3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT


	2.3 Organizacion
	2.3.3 Memoria: Acceso Síncrono. Resuelto s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	MAR_H
	1
	2
	3
	B0
	D0
	e4
	e8
	B1
	D1
	e5
	e9
	B2
	D2
	e6
	e10
	B3
	D3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4
	e4
	e5
	e6
	e7
	e8
	e9
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	MAR_H
	1
	2
	3
	B0
	D0
	e4
	e8
	B1
	D1
	e5
	e9
	B2
	D2
	e6
	e10
	B3
	D3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4
	-
	-
	e6
	e7
	e8
	e9


	2.3 Organizacion
	2.3.3 Memoria: Síncrono vs. Desfasado
	Problemas con acceso Síncrono:
	lectura: latencia variable o irregular
	escritura
	- un registro MDRin para cada banco
	- es lenta: (1 1 1 1 4) ( 1 1 1 1 4) ...


	Una solución: acceso desfasado los bancos son más independientes
	un registro MAR para cada banco
	control más complejo
	resultado:

	Veamos cómo se implementa -->


	2.2 Organizacion
	2.3.3 Memoria: Acceso Desfasado
	Control ?:
	mar_h, mar_l, mar_h_mux, di, outmux, ? ? ?


	2.3 Organizacion
	Memoria: Acceso Desfasado. Ejemplo s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	MAR_1
	MAR_2
	MAR_3
	Actividad B0
	Actividad B1
	Actividad B2
	Actividad B3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	MAR_1
	MAR_2
	MAR_3
	Actividad B0
	Actividad B1
	Actividad B2
	Actividad B3
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT


	2.3 Organizacion
	2.3.3 Memoria: Acceso Desfasado. Resuelto s
	Ej1. @ = 32 ® fila 1, columna 0 (e4, e5, e6, ...)
	MAR
	mar_in
	1
	1
	1
	1
	2
	3
	MAR_H
	1
	1
	1
	1
	2
	3
	MAR_0
	1
	2
	3
	MAR_1
	1
	2
	MAR_2
	1
	2
	MAR_3
	1
	2
	Actividad B0
	e4
	e8
	Actividad B1
	e5
	e9
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 1 + 4
	e4
	e5
	e6
	e7
	e8
	e9


	2.3 Organizacion
	2.3.3 Síncrono vs. Desfasado: resumen
	Síncrono
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)
	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	Actividad B0
	e4
	e8
	Actividad B1
	e5
	e9
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 4 + ...
	...
	e6
	e7
	e8
	e9
	e10
	Desfasado
	Ej2. @ = 48 ® fila 1, columna 2 (e6, e7, e8, ...)

	MAR
	mar_in
	1
	2
	3
	MAR_H
	1
	2
	3
	MAR_0
	2
	3
	MAR_1
	2
	MAR_2
	1
	2
	MAR_3
	1
	2
	Actividad B0
	e8
	e12
	Actividad B1
	e9
	e13
	Actividad B2
	e6
	e10
	Actividad B3
	e7
	e11
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	ciclos
	OUT
	L = 1 + 4
	e6
	e7
	e8
	e9
	e10


	2.4 Cinco Procs.
	Procesador 1
	BRV con 2L + 1E (y reg. vec. mínimos)
	2 buses L: BRV ®{M Å ALU}
	1 bus E: {M Å ALU} ® BRV

	Memoria de 1 puerto {L Å E}. Sólo 1 UF
	Segmentación. Ejemplo.


	2.4 Cinco Procs.
	Procesador 2
	3 buses lectura: BRV ® {M, ALU}
	2 buses escritura: {M, ALU} ® BRV
	Instrucciones independientes y sin riesgos estructurales
	B
	D1
	R
	L
	WVLR
	B
	D1
	R
	L
	WVLR
	Instrucciones dependientes o con riesgos estructurales

	B
	D1
	R
	L
	WVLR
	B
	D1
	D2
	D3
	D4
	D5
	...
	...
	...
	...
	Dn
	R
	L
	Regla: último D = último W



	2.4 Cinco Procs.
	Procesador 3
	2 UFs
	ALU para sumar
	ALU para sumar/multiplicar

	3 buses de escritura y 5 de lectura


	2.4 Cinco Procs.
	Procesador 4 1 de 2
	Dos ALUs dedicadas
	Dos puertos de lectura y uno de escritura por reg. vectorial. La Unidad de Control permite dos flujos de lectura y uno de escritura en cada registro vectorial Encadenamiento general ® solapar dependencias datos
	¡¡Las antidependencias tampoco bloquean!!
	Temporización riesgos de datos productor-consumidor:


	2.4 Cinco Procs
	Procesador 4 2 de 2
	Instrucciones dependientes
	B
	D1
	R
	L
	WVLR
	B
	D1
	D2
	D3
	D4
	R
	L
	WVLR
	B
	B2
	B3
	B4
	D
	...
	Encadenamiento
	“Primera lectura de registros bajo primera producción”

	o bien,
	Regla: último D = último L
	Ejercicio. Para el siguiente código:
	Dibujar el diagrama de ciclos
	En el primer ciclo de encadenamiento - Dibujar flechas verticales de productor a consumidor - Determinar las posiciones de los punteros de escritura y lectura de los registros V1 y V4
	addv V1,V2,V3
	lv V4,(r1)
	addv V5,V4,V1


	Para casa: cambiar addv V5,V4,V1 por mulv V5,V4,V1




	2.4 Cinco Procs
	Procesador 5
	Replicar los caminos de proceso y memoria. Ejemplo: el Processador 4 con 2 parallel lanes
	El Banco de Registros Vectorial (BRV) y la memoria se particionan: pares en una partición e impares en la otra.
	Cada una de las dos ALUs (FP add, FP mul) se duplican.
	En el primer ciclo de ejecución entran en paralelo a las dos pistas los elementos (0, 1) de los registros vectoriales fuente. En el segundo ciclo entran los elementos (2, 3), y así sucesivamente ...
	Comparando con el Procesador 4 de una pista, el número de ciclos por elemento, Ce, se divide por el número de pistas.


	2.5 Rendimiento
	Rendimiento sin Seccionar 1 de 2
	lv V0,Ra
	mulv V1,V2,V3
	addv V4,V5,V6
	El rendimiento depende de n, el tamaño del vector supongamos n £ MVL
	Cn (n £ MVL) = Cfijos + n × Ce ciclos Cfijos = latencia UFs + penalizaciones penal. = riesgos estructurales y dependencias Ce = ciclos por elemento
	Tn (n £ MVL) = Cn × Tc

	R = velocidad en FLOPS; se aplican k FLOPs a cada elemento
	Rn (n £ MVL) = n × k / Tn = n × k × F / Cn R en GFLOPS ® Tc en ns o F en GHz



	2.5 Rendimiento
	Rendimiento sin Seccionar 2 de 2
	N1/2 longitud de vector que consigue Mitad del rendimiento máximo
	Da idea de la sobrecarga vectorial (latencias y penalizaciones)
	es independiente de Tc sólo depende de la arquitectura y del algoritmo

	Nv Longitud mínima de vector que consigue igual velocidad en las versiones escalar y vectorial
	mide la sobrecarga vectorial y la velocidad relativa entre los procesadores vectorial y escalar



	2.5 Rendimiento
	Comparar Rendimiento sin Seccionar 1 de 2
	Supongamos los siguientes parámetros para los cinco procesadores anteriores:
	Tc = 1 ns
	Lat { +, *, mem } = 6, 7, 12 ciclos
	LI = 1 ciclo
	Segmentación página 39:
	- aritméticas, loads: B, Dn, R, Lat, WVLR
	- stores: B, Dn, R, WVLR, Lat


	n = 1 si no hay riesgo estructural ni dependencia;
	n > 1 en caso contrario
	VLR = valor del registro VLR Î {0..64}
	Vamos a calcular Cn (n £ MVL) R64 (MVL = 64) R¥ (MVL ¥)
	Rpico


	2.5 Rendimiento
	Comparar Rendimiento sin Seccionar 2 de 2
	Cn se calcula con reg. vect de n elem.
	R64 con n = 64
	R¥ con n = ¥ ® R¥ (MVL ¥)
	Proc i (Rpico, GFLOPS)
	Código
	Cn ciclos
	R64 GFLOPS
	R¥ GFLOPS
	lv V0, Ra
	mulsv V1, F0,V0
	addv V2, V2,V1
	https://www.desmos.com/calculator/lcvokcya7s
	(página en blanco)

	2.6 ZV: Organización de un procesador vectorial segmentado con ALMa tipo DLXV
	aluV
	LV
	SV
	B
	búsqueda instrucción
	D1
	deco 1/ @dst salto
	lectura BRint
	D2
	deco 2
	cálculo @ base
	L
	¿riesgos en recursos?
	¿riesgos en registros?
	lanzamiento y
	reserva recursos
	lectura reg vectoriales
	nada
	lectura reg vectoriales
	X1
	red ida
	paso crossbar 1
	paso crossbar 1
	generación @
	alu/ mem
	operación o acceso a memoria
	op
	mem_rd
	mem_wr
	liberar recursos en último ciclo
	X2
	red vuelta
	paso crossbar 2
	W
	escritura
	escritura registro vectorial destino liberar recurso en último ciclo
	Ejemplo 1: ADDV, Lat_sum = 2, Tasa iniciación = 1

	B
	x
	D1
	x
	D2
	x
	L
	x
	x
	x
	x
	x
	x
	X1
	x
	x
	x
	x
	x
	x
	+
	x
	x
	x
	x
	x
	x
	x
	X2
	x
	x
	x
	x
	x
	x
	W
	Lat_sum
	x
	x
	x
	x
	x
	x
	resumen:
	B
	D1
	D2
	L
	X1
	+ 2c
	X2
	W 6c
	Ejemplo 2: LV, Lmem = 4, sin conflictos de banco

	B
	x
	D1
	x
	D2
	x
	L
	x
	X1
	x
	x
	x
	x
	x
	x
	mem
	x
	x
	x
	x
	x
	x
	x
	x
	x
	X2
	x
	x
	x
	x
	x
	x
	W
	Lat_mem
	x
	x
	x
	x
	x
	x
	resumen:
	B
	D1
	D2
	L
	X1
	mem 4c
	X2
	W 6c
	Ejemplo 3: SV, Lmem = 4, sin conflictos de banco

	B
	x
	D1
	x
	D2
	x
	L
	x
	x
	x
	x
	x
	x
	Lat_mem
	X1
	x
	x
	x
	x
	x
	x
	mem
	x
	x
	x
	x
	x
	x
	x
	x
	x
	X2
	W
	resumen:
	B
	D1
	D2
	L
	X1 6c
	mem 4c
	MVL
	64
	tamaño registros vectoriales
	+
	Lsum = 2c, TI = 1c
	latencia, tasa de iniciación
	*
	Lmul = 3c, TI = 1c
	mem
	8 bancos, Lmem = 4c
	sistema sobrado
	Tc (f)
	1ns (1000 Mhz = 1GHz)
	Coherencia
	entre Mcd y Mp asegurada por hardware (ya veremos)

	3. Dos Aspectos de Programación: vector length y vector stride
	3.1 Vector length
	Vectores de n elementos, pero Registros vectoriales de MVL elementos:
	Soluciones:
	n £ 64 se programa VLR con n (instr. DLXV movi2s)
	n > 64
	Técnica de Seccionado o Strip-Mining
	Módulo y división entera por MVL (potencia de dos): - Operaciones con máscara, desplazamientos - Soporte especial: p.e. repertorio de Convex




	3. Vector Length y Stride
	3.2 Generación de código “seccionado”
	Código AXPY (SAXPY o DAXPY: simple o doble precisión)
	DO i = 1, n
	y(i) = a × x(i) + y(i)
	ENDDO


	3. Vector Length y Stride
	3.3 Rendimiento con Seccionado
	Bucle ejecutado en modo vectorial (3 secciones y pico)
	Código AXPY seccionado con MVL = 64
	1 and Rmod, Rn, R3F
	2 srl Rent, Rn, #6
	3 movi2s VLR, Rmod
	buc: LV V0, Rx
	5 MULSV V1, Fa, V0
	6 LV V2, Ry
	7 ADDV V3, V2, V1
	8 SV Ry, V3
	9 movs2i Rn,VLR
	10 bz out, Rent
	11 nop
	12 sll Rsize, Rn, #3
	13 add Rx, Rx, Rsize
	14 add Ry, Ry, Rsize
	15 movi2s VLR, #64
	16 jmp buc
	out: dec Rent



	3. Vector Length y Stride
	3.3 Rendimiento con Seccionado
	Modelo de ejecución
	Cbase ciclos del prólogo y del epílogo:
	instr. escalares {1:3}
	tiempo desde último bloque n hasta final
	Cfij costes fijos (incluso con VLR = 1)
	Latencias + Penalizaciones
	Cbucle ciclos de control de bucle
	instr. escalares {9:17} en paralelo con las vectoriales anteriores
	ciclos desde que se lanza la última instr. vect. de una sección hasta que se lanza la primera de la sección siguiente.
	a veces, Cbucle = 0, porque la primera instr. vect. de la sección siguiente está detenida por recursos o dependencias.


	Cn = Cbase + én/MVLù×(Cfij + Cbucle) + n×Ce
	A partir de Cn, podemos derivar Rn, R64, R¥, ... N1/2, Nv



	3. Vector Length y Stride
	3.4 Recorridos con Stride
	Procesado de elementos no contiguos
	a separación constante (stride = paso)
	for (i=0; i<n; i++)
	for (j=0; j<n; j++)
	{ A[i][j] = 0.0;
	for (k=0; k<n; k++)
	A[i][j] = A[i][j] + B[i][k]*C[k][j];
	}

	B[i][k]*C[k][j] es vectorizable en k si cargamos
	C[0:n-1][j] en un reg. vectorial (si n>64 secc.)
	s = n*8 bytes = separación en un registro R
	Vectorización de la multiplicación de matrices en forma ijk:


	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 1 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV


	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 2 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV


	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 4 de 4
	permalink:
	http://fooplot.com/index.php?&type0=0&type1=0&type2=0&type3=0&type4=0&y0=2*x/%28ceil%28x/ 64%29*12%2B2*x%29&y1=0.914&y2=0.914/2&y3=2*x/%2829%20%2B%202*x%29&y4=2*x/%2817%2Bceil%28x/ 64%29*12%2B2*x%29&r0=&r1=&r2=&r3=&r4=&px0=&px1=&px2=&px3=&px4=&py0=&p...


	3. Vector Length y Stride
	3.3 Rendimiento y Seccionado: AXPY 3 de 4
	Ejecución detallada de AXPY de 220 elementos en ZV
	Ejercicio
	obtener fórmulas para N1/2 y Nv
	Hipótesis: son menores que MVL
	4.1 Introducción
	4.2 Sistemas Ajustados
	4.3 Sistemas Sobrados



	4.1 Introducción
	Memoria = carga y descarga de registros vectoriales
	Con un control elaborado:

	Almacenamiento
	Palabras consecutivos en bancos consecutivos
	“bancos entrelazados por palabras o entrelazado de menos peso”

	Suponemos:
	ancho banco = ancho BUS memoria/registros vect. = tamaño palabra

	Ejemplo: M = 8 bancos, S = 3
	Propiedad Fundamental
	Una secuencia de accesos con separación S bancos
	visita un subconjunto de P bancos del total de M
	M = 8
	S
	1
	2
	3
	4
	5
	8
	P
	8
	4

	4.2 Sistemas Ajustados: M = L
	Ejemplo: L = 4 ciclos y M = 4 bancos
	Acceso sin conflicto: S = 5 módulos
	Cada banco diferente visitado aporta 1 dato / L ciclos
	Visitamos P bancos Flujo = BW = P datos / L ciclos
	Cemem = Flujo-1 = L/P ciclos/dato = 1 cpe

	Acceso con conflicto: S = 4 módulos

	4.2 Sistemas Ajustados: M = L
	Strides IMPARES ® sin conflicto ® Cemem = 1 , con s impar

	DEMO, suponiendo nº de bancos es potencia de 2, M = 2m
	= mcd (2m, ) = 20 = 1
	Strides PARES ® con conflicto ® Cemem > 1 , con s impar y k³1

	DEMO (M = 2m)
	Conflicto ® Cemem > 1
	= mcd(,2m) = 2min(k,m)


	4.3 Sistemas Sobrados: M > L
	Ejemplo: M = 8, L = 4
	Acceso sin conflicto S = 2
	Flujo = BW =
	permitimos más strides libres de conflicto

	4.3 Sistemas Sobrados: M > L
	Suponemos L = 2l (irreal)
	Strides sin conflicto: IMPARES y algunos PARES , con s impar y 0 £ k £ m-l No hay conflicto con PARES si tienen “pocas” potencias de dos.

	DEMO (M = 2m > L = 2l)
	Sin conflicto ® P ³ L ®
	® ®
	Strides con conflicto: parte de los PARES , con s impar y k > m-l Ejemplo: Ce (sistema L, M, S) = Ce(8, 16, 30) =

	DEMO (M = 2m)
	Conflicto ® Cemem > 1 mcd (2m, S) > 1
	Repertorio completo de instrucciones


	DLXV - VMIPS: códigos de operación
	[HePa12] J. HENNESSY and D. PATTERSON, Computer Architecture: a quantitative approach. 5th Edition, Morgan Kaufmann, 2012.
	• Chapter 4 and Appendix G: Vector Processors in More Depth

	DLXV completo: diagrama de flujo de la ALMa
	LVI - SVI: gather - scatter
	6.1 Introducción. Fases en el back-end del compilador: extracción automática de paralelismo vectorial
	6.2 Transformaciones previas que simplifican el análisis de dependencias
	6.3 Análisis y grafo de dependencias. Tests aproximados
	6.4 Optimizaciones independientes de la arquitectura: renombrar, expansión escalar, copia de vectores
	6.5 Vectorización - Procedimiento básico - Vectorización parcial vs. total: distribución e intercambio de bucles - Reducción


	6.1 fases en el back-end del compilador
	Front-end: análisis léxico y sintáctico
	Programa escalar representado en lenguaje intermedio

	ß
	Transformaciones que simplifican el análisis de las dependencias
	• Propagación y evaluación de expres. constantes
	• Extracción de invariantes
	• Normalización de bucles

	ß
	Grafo y análisis de dependencias
	• Construcción del grafo
	• Tipos y distancia de las dependencias
	• Análisis de dependencias. Test MCD

	ß
	Optimizaciones independientes de la arquitectura vect/par
	• Eliminar antidependencias y dep. de salida - Renombrar - Expansión escalar - Copia de vectores

	ß
	Vectorización
	• Vectorización total y parcial - Distribución e intercambio de bucles
	• Reducción, punteros en C

	ß
	Generación de código. Optimización
	• Asignación de registros vectoriales
	• Selección de instrucciones vectoriales
	• Seccionado

	ß
	Programa vectorial optimizado
	EJEC(progr. escalar) = EJEC (prog. vectorial) + f estática vect ­­


	6.2 Transformaciones que simplifican el análisis de las dependencias
	Propagación y evaluación de expresiones constantes + Extracción de invariantes Otro ejemplo de invariantes
	Normalización de bucles : - Normalizar el paso de la variable de control - Eliminar variables de inducción, o sea, indexar vectores únicamente con las variables de control del bucle

	6.3 Análisis y grafo de dependencias
	Al vectorizar en compilación forzamos una reordenación masiva de accesos a memoria y operaciones
	Ejemplo de reordenación: C[2] <p B[3], pero B[3] <m C[2] !
	Es necesario analizar las dependencias con cuidado: que pasa si el store rojo escribe donde lee el load verde ? Þ C[i] = C[i-1] + ...
	Dependencias en memoria entre sentencias
	S y R son sentencias de asignación
	S depende de R si:
	R antes que S en orden de programa (R <p S)
	R y S referencian a la misma posición de memoria
	una referencia al menos es una escritura
	• Las dependencias establecen relaciones de orden parcial que cualquier ejecución “legal” debe respetar.


	Tres tipos
	R escribe y S lee
	Dependencia verdadera
	flow dependence, RAW hazard
	R d S
	R lee y S escribe
	Antidependencia
	antidependence, WAR hazard
	R d- S
	R y S escriben
	Dependencia de salida
	output dependence, WAW hazard
	R do S
	Si R y S están en un bucle, Ri y Si indican la ejecución de la iteración i-ésima
	- Ejemplo 1 -

	por inspección: S1i d S2i posición A(i) S1i d- S2i posición B(i)
	Pero ...

	S11
	S21
	¡Dependencias entre iteraciones!
	S2i d S2i+1 en pos B(i)
	loop carried dependence, LCD
	o sea, dependencias generadas por el bucle
	S12
	S22
	l = distancia de la dependencia:
	Ri d Sj ® l = j-i ³0
	número de iteraciones que separa el uso de las mismas posiciones de memoria
	Grafo de dependencias: grafo dirigido, anotado con distancias:
	• Vectorizable en parte
	- Ejemplo 2 -


	S11
	S21
	S12
	S22
	O sea: NO es vectorizable !
	- Ejemplo 3: AXPY -


	Autociclos de antidep. a distancia 0, pueden obviarse: Vectorizable
	- Ejemplo 4 -

	Autociclos dependencias verdaderas distancia > 0, No Vectorizable
	- Ejemplo 5 -

	S1
	S2
	S3
	S4
	S5
	Vectorizable: A(1:64)= A(4:67) + A(1:64)
	Vectorizable: A(1:64)= A(4:67) + A(1:64)
	- Ejemplo 6: escalado -
	- Ejemplo 7: progresión geométrica-
	- Ejemplo 8: escalado con desplazamiento a laizquierda -
	- Ejemplo 9 -
	• Escribir el código vectorial

	- Ejemplo 10 -

	Análisis de dependencias
	Caso bastante general:
	• conjunto de bucles anidados normalizados
	• código en el bucle mas interno y sin sentencias condicionales
	• espacio de iteraciones conocido en compilación

	En cada iteración del código S1 S2, las variables de control forman una k-tupla (i1, ...ik) diferente. La unión de todas ellas se llama Espacio de Iteraciones (EspIt). EspIt es el producto cartesiano de los k conjuntos de números naturales que re...
	Puede establecerse un orden de programa total entre k-tuplas (<p)
	Las funciones f y g son funciones de indexación. Calculan un índice a partir de los valores (i1, ...ik) de las variables de control


	PREGUNTAS ...
	$ P, Q Î EspIt ½ escr en S1P d lect en S2Q para P £p Q; ?
	$ T, Z Î EspIt ½ lect en S2T d- escr en S1Z para T <p Z; ?
	Caso sencillo:
	• K = 1 variable de control
	• m = 1 dimensión
	$ dependencia prod/cons a distancia l sii


	$ p, q Î EspIt ½ f(p) = g(q) para p £ q
	l = q - p
	$ antidependencia a distancia l sii

	$ t, z Î EspIt ½ g(t) = f(z) para t < z
	l = z - t
	- Ejemplo 11 - f y g son lineales

	i
	Eqn. dependencias prod/cons: S1 d S2
	1
	$ p, q Î [1..100] ½ f(p) = g(q) para p £ q
	2p+7 = 3q+1 (l = q - p)
	2
	Despejamos q y enumeramos p; q = 2p/3+2
	3
	4
	5
	6
	7
	Eqn. antidependencias: S2 d- S1
	8
	$ t, z Î [1..100] ½ g(t) = f(z) para t < z
	3t+1 = 2z+7 (l = z - t)
	9
	Despejamos z y enumeramos t; z = 3t/2-3
	10
	11
	12
	Este tipo de ecuación se llama ecuación Diofántica
	- Ejemplo 12 - f y g son lineales


	i
	Eqn. dependencias prod/cons: S2 d S1
	1
	2
	Despejamos q y enumeramos p;
	3
	4
	5
	6
	7
	Eqn. antidependencias: S1 d- S2
	8
	9
	Despejamos z y enumeramos t;
	10
	11
	12

	Tests aproximados
	Resolver las ecuaciones directamente es costoso en tiempo
	Los límites inferior y superior a veces no son constantes
	Tests aproximados, fáciles de calcular:
	• se cumple? ® no vectorizamos
	• muy conservador ...
	• se cumple ? ® vectorizamos
	• muy exigente

	Test MCD para funciones de indexación lineales (cond. necesaria)

	f ® a·i+b g ® c·i+d
	Asumimos posible ciclo de dependencias si mcd(a, c) divide (d-b)
	- ejemplos 11 y 12 -

	a = 3, b = 1
	c = 2, d = 7
	}
	mcd(3, 2) = 1 divide a (6) ® SI
	... pues asumimos dependencias cíclicas y no vectorizamos
	Ejercicios:



	Ejercicio E5
	En bucles con un solo nivel de anidación pueden aparecer varios tipos de dependencias.
	Los índices r y s son funciones lineales de i: r(i), s(i)
	En la tabla siguiente se resumen todas las posibilidades.
	var(r)
	{
	L
	ind
	ind
	E
	ind
	ind
	L
	E
	var(s)
	Por ejemplo:

	r y s son funciones lineales de i
	l Î N es la distancia de la dependencia
	Podemos formular las tres ecuaciones de dependencias:
	Ejercicio. Se pide lo siguiente:
	Repetir el análisis anterior para el caso “var(r) es Lectura y var(s) es Escritura”



	6.4 Optimizaciones no ligadas a la arquitectura
	ß
	Grafo y análisis de dependencias
	ß
	Optimizaciones independientes de la arquitectura vect/par
	• Eliminar antidependencias y dep. de salida - Renombrar - Expansión escalar - Copia de vectores

	ß
	Vectorización
	ß
	Renombrar
	Problema: reutilizar vectores o escalares para ahorrar memoria o variables
	Transformación:


	Þ
	no vect
	Transformación: - U(i) ® T(i) en S1 - propagar T(i) en S2
	Þ
	casi vect
	Expansión Escalar
	Problema: variables escalares que se utilizan en iteraciones sucesivas para almacenar valores diferentes
	Transformación:


	Þ
	no vect
	Transformación: - U ® U(i) en S1 - Propagar U(i) en S2
	Þ
	vect
	Copia de vectores
	Problema: pre-uso y post-definición de los elementos de un vector
	Transformación:


	Þ
	no vect
	Transformación: - A ® tmpA en S2’
	Þ
	vect

	6.5 Vectorización
	Optimizaciones independientes de la arquitectura vect/par
	ß
	Vectorización
	• Vectorización total y parcial - Distribución e intercambio de bucles
	• Reducción
	• Punteros en C

	ß
	Generación de código. Optimización
	Vectorización total
	No existen ciclos de dependencias
	Transformación:


	Þ
	- Algoritmo de “flotación”: peso proporcional al nº de arcos entrantes
	Þ
	Vectorización parcial, distribución de bucles
	Problema 1 de 2: existen ciclos de dependencias
	Transformación: extraer las sentencias sin ciclos de dependencias
	• Particionar el grafo en subgrafos nodo-disjuntos relacionados entre sí de forma acíclica (p bloques)
	• Reordenar con las dependencias hacia abajo
	• Distribuir/cortar en varios bucles



	Þ
	Þ
	Vectorización parcial, distribución de bucles
	Problema 2 de 2: dos niveles de anidación de bucles no perfectos
	Transformación:
	• Si es legal, distribuir el bucle mas externo
	• Vectorizar el bucle más interno, si es posible, aplicando lo anterior
	• Paralelizar el bucle más externo, si es posible



	Þ
	Transformación: - Distribuir el bucle exterior
	Þ
	Vectorización parcial/total: intercambio de bucles
	Problema:
	1. Una fracción vectorial elevada
	2. Un acceso eficiente a memoria
	3. Vectorización

	Transformación:


	Þ
	1. Intercambiar para aumentar la fracción vectorial
	Þ
	2. Intercambiar para mejorar el acceso a memoria
	3. No es necesario intercambiar para poder vectorizar
	En este ejemplo el bucle j genera ciclos de dependencias, pero el bucle i no, y por tanto la sentencia es vectorizable en i
	¿Cómo lo hemos sabido?
	El bucle i tiene una recurrencia a distancia 1 que impide vectorizar

	3. Intercambiar para poder vectorizar
	En este ejemplo
	1. El intercambio es legal, y
	2. Posibilita la vectorización del bucle interno
	¿Como lo hemos sabido?
	Diagrama de dependencias con anidaciones
	EspIter ® { j=1:64 ´ i =1:64} ={1 1, 1 2, 1 3, ... 2 1, 2 2, 2 3, ... 3 1, ...}
	Al recorrer EspIt en el orden de programa, camino a trazos, los accesos a memoria determinan las dependencias. Cualquier otro orden que las respete, es legal

	¿Cómo representar las dependencias?
	Es una recurrencia en (i), y por tanto no es vectorizable !!
	Intercambiar los bucles es recorrer EspIt en otro orden:
	El nuevo recorrido, respeta las dependencias ?
	Ahora el bucle interno (j) ejecuta los cálculos en otro orden. En este nuevo orden NO hay dependencias entre cálculos consecutivos Es posible vectorizar en (j) !!


	Resumen del procedimiento manual
	1) Desplegar EspIt, anotando referencias a memoria y dependencias
	2) Grafo de dependencias
	3) ¿Se puede vectorizar y paralelizar?
	4) ¿Es legal el intercambio? en caso afirmativo, repetir (3)
	5) Escoger la opción mejor


	Estudiar las posibilidades de codificación y valorar su rendimiento
	Leer el texto y reflexionar
	“This code shows a nested loop operating on a 2D array with cross- iteration dependencies over both loops, making it appear serial. From the dependence graph it can be shown that iterations can be grouped into independent sets, allowing parallel ex...
	Garcia, S.; Donghwan Jeon; Louie, C.; Taylor, M.B.; , "The Kremlin Oracle for Sequential Code Parallelization," IEEE Micro, vol.32, no.4, pp. 42-53, July-Aug. 2012
	IEEE Micro Special Issue on Parallelization of Sequential Code
	Reducción
	En este contexto reducir es una operación matemática que quita una dimensión a una estructura de datos:
	matriz ® vector, vector ® escalar, ...

	Es una operación frecuente en cálculo científico. Los repertorios vectoriales tienen instrucciones para operadores de reducción asociativos:
	Transformación:


	Þ
	- Vectorizar usando las instrucciones de lenguaje máquina apropiadas,
	y en este caso seccionar
	Bucles con condicionales: operaciones con máscara
	Códigos con muchos saltos, por ejemplo, un bucle con una sentencia condicional en su cuerpo, pueden ser vectorizados usando máscaras vectoriales que bloquean las operaciones para las cuales la condición no es cierta

	Punteros en C
	The following loop may not get vectorized because of a potential aliasing problem between pointers a, b and c


	}
	If the restrict keyword is added to the parameters, the compiler will trust you, that you will not access the memory in question with any other pointer and vectorize the code properly
	The downside of using restrict is that not all compilers support this keyword, so your source code may lose portability.
	restrict es un cualificador complicado, que puede ayudar al compilador a generar ejecutables mas rápidos en contextos no relacionados con vectorizar. Para mas información: How to Use the restrict Qualifier in C, Douglas Walls, Sun ONE Tools Group, ...
	Modelo matemático sencillo que calcula la mejora en rendimiento al ejecutar parte de las operaciones de un programa en menos tiempo:
	Sea N el número de operaciones en coma flotante de un programa y fv el porcentaje que puede realizarse en modo vectorial

	Speed_up = Tescalar / Tvectorial =
	fs ­­ Þ Speed_up ¯ ¯ "El modo lento va a limitar, aunque el modo rápido sea fantástico"
	Valor habitual de fv entre 0,4 y 0,75 para programas compilados

	Un buen computador vectorial debe tener un buen procesador escalar
	Caso de estudio:
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