
Garantía y Seguridad (30242)

 4º curso, Grado en Ingeniería Informática

especialidad en

 Ingeniería de Computadores

J. Alastruey, P. Ibáñez, V. Viñals

Área de Arquitectura y Tecnología de Computadores (ATC)

Tema 4: Servicio web

Servicio web

Guión del tema

 Introducción

 Protocolo HTTP

 Web dinámica

 Cache web

 Bibliografía

2

Servicio web

1. Servicio web

 El servicio más extendido de Internet

 World Wide Web -Tim Berners Lee (CERN)

 1990: Primer cliente (navegador-editor) y servidor web

 1991: URI, HTML, HTTP

 1993: Mosaic

 Espacio de comunicación común

 Compartir información

 Otros usos: distribución de información

 Intranets

 Documentación

 Acceso datos aplicaciones

Aprovechan interfaz web y navegadores

3

Servicio web

1. Servicio web

 Hipertexto, hipermedia

 Arquitectura cliente-servidor

 HTTP

 Protocolo intercambio de mensajes entre clientes y servidores

 Formato de mensajes

 HTML define

 Formato y visualización de páginas web

 Contenido respuestas HTTP

4

Protocolo HTTP

Protocolo

Versiones

Formato mensajes

Peticiones

Respuestas

HTTPS

Servicio web

2. HTTP

 Protocolo de Transferencia de Hipertexto

 RFCs 1945, 2817

 Entrega recursos identificados por URI

 Simplifica y toma ideas de SMTP, NNTP, FTP, Gopher

 Métodos: órdenes de petición o envío de recursos

 Cliente a servidor

 Recursos: ficheros (HTML, imágenes, resultados de consultas,
salida CGI...)

 Protocolo sin estado

 Cada orden HTTP se ejecuta independientemente de las anteriores

 Dificultad sitios web “inteligentes”

 Java, JavaScript, cookies, ActiveX ...

 Formato de mensajes: usa MIME

6

Servicio web

2. Identificación de recursos: URIs

 Recursos especificados por
Uniform Resource Identifiers (URIs)

 http://www.unizar.es/index.html

 RFC 1630

 URL encoding

 RFC 1738

 “Octets must be encoded if they have no corresponding graphic
character within the US-ASCII coded character set, if the use of the
corresponding character is unsafe, or if the corresponding character is
reserved for some other interpretation within the particular URL
scheme”

7

URL: Universal Resource Locator

URN: Universal Resource Name

Computer Architecture, A Quantitative Approach.pdf

Computer%20Architecture%2C%20A%20Quantitative%20Approach.pdf

Servicio web

2. HTTP

 Paradigma cliente-servidor

 Comunicación
 Directa

 Proxy

8

Servicio web

2. Proxy HTTP

 Intermediario entre cliente y servidor

 Funciona como cliente y servidor

 Cortafuegos, caches LAN, ...

 Cliente con proxy: peticiones a éste en lugar de al servidor

 El proxy sabe dónde tiene que redirigir la petición

 Tipos

 Transparente: el cliente no es consciente del proxy

 No transparente

9

Servicio web

2. HTTP. Versiones

 HTTP/0.9

 httpd CERN, Mosaic

 Sencillo, sólo transmisión de datos

 GET

 HTTP/1.0 (RFC 1945)

 MIME

 Metainfo datos: descripción contenido del mensaje

 Envío datos de cliente a servidor

 Cada petición conexión

 3-way-handshake + slow-start reducen velocidad

10

Servicio web

2. HTTP. Versiones

 HTTP/1.1 (RFC 2616)

 Superconjunto v1.0

 Conexiones persistentes: varias peticiones/conexión

 20% más prestaciones

 Servicio de múltiples dominios desde una sola @IP (virtual hosting)

 Nuevos métodos petición: PUT, DELETE, OPTIONS, TRACE

 Peticiones condicionales

 Mayor soporte caches: latencia y BW

 Autentificación digest: MD5 ...

 Codificación por trozos –chunked-

 Mayor rapidez en servicio de páginas dinámicas

 ...

11

Servicio web

2. HTTP. Versiones

 HTTP/2 (RFC 7540)

 Compresión de cabeceras

12

Servicio web

2. Transacción HTTP

 Esquema

13 Figura: Data Center Fundamentals. Cisco Press.

Servicio web

2. Transacción HTTP

 HTTP/1.1 connection pipelining

14 Figura: Data Center Fundamentals. Cisco Press.

Servicio web

2. Virtual Hosting

 Gestión de múltiples dominios por parte de un único servidor
HTTP en una máquina

 www.dominio1.com

 www.dominio2.com

 Implementación

 Múltiples direcciones IP: IP-based virtual web hosting

 Múltiples puertos: port-based virtual hosting

 Cabecera HTTP Host: name-based virtual hosting

 Apache

 Los procesos hijos del demonio http escuchan múltiples sockets, cuando
una nueva conexión llega, solamente uno la gestiona

15

Servicio web

2. Formato mensajes HTTP

 Mensaje genérico RFC 822

<línea inicial, distinta para peticiones y respuestas>

Cabecera1: valor1 (opcionales)

Cabecera2: valor2

Cabecera3: valor3

Cabecera4: valor4

 // línea en blanco (CRLF)

<cuerpo del mensaje (opcional), por ejemplo

contenido de un fichero o datos de consultas;

pueden ser líneas de texto o datos binarios

$&*%@!^$@>

16

generales, petición

respuesta, entidad

Servicio web

2. Tipos de cabeceras HTTP

 General: conexión
 Connection, Date, Pragma, Cache-Control, Transfer-Encoding

 Petición: info sobre el recurso solicitado o el cliente
 If-Modified-Since, Accept-Language, User-Agent

 Respuesta: info sobre el recurso, su ubicación real o el servidor
 Location, Server

 Entidad: descripción atributos cuerpo del mensaje
 Content-Length, Content-Type

 HTTP 1.0: 16 cabeceras
 Opcionales

 HTTP 1.1: 46
 Host requerida en las peticiones

17

Servicio web

2. Cuerpo mensaje HTTP

 Petición

 Datos del usuario, ficheros enviados a un servidor

 Anunciado por cabecera Content-Length o Transfer-Encoding

 Respuesta

 Recurso enviado al cliente

 Texto explicatorio error

 Descrito en las cabeceras

 Content-Length: número de bytes en el cuerpo

 Content-Type: tipo de datos MIME en el cuerpo

 text/html, image/gif, ...

18

Servicio web

2. Peticiones HTTP

 Método petición, URI, versión protocolo

 Cabecera general

 Cabecera petición

 Cabecera entidad

 [Cuerpo mensaje]

 Ejemplo

 GET /pub/WWW/TheProject.html HTTP/1.1

 Host: www.w3.org

19

Servicio web

2. Métodos peticiones HTTP

 OPTIONS: pregunta funcionalidades
 Servidor

C: OPTIONS * HTTP/1.1

S: 200 Ok

S: Allow: OPTIONS, GET, HEAD, POST, PUT

S: Accept-Ranges: bytes

S: Accept-Encoding: gzip

 Recurso

C: OPTIONS /cgi-bin/order HTTP/1.1

S: 200 Ok

S: Allow: POST

S: Accept-Encoding:

20

Servicio web

2. Métodos peticiones HTTP

 GET: petición recurso especificado por URI
 Implementación obligatoria

C: GET /index.html HTTP/1.1

S: (fichero index.html)

C: GET /index.html HTTP/1.1

 If-Modified-Since: Wed, 5 Sep 1996 09:45:23 GMT

S: (fichero index.html)

C: GET /index.html HTTP/1.1

 If-Modified-Since: Tue, 1 Oct 1996 14:09:34 GMT

S: A 304 not modified (no se envía cuerpo)

C: GET /cgi/busca?nom=jesus&pass=j2s5s HTTP/1.1

S: Salida recurso busca con parámetros pasados

21

Servicio web

2. HTTP 1.0

C: GET /path/fichero.html HTTP/1.0
 From: someuser@jmarshall.com
 User-Agent: HTTPTool/1.0
 [línea en blanco]

S: HTTP/1.0 200 OK
 Date: Mon, 14 May 2001 11:05:25 GMT
 Content-Type: text/html
 Content-Length: 1354

 <html>
 <body>
 <h1>Hola troncos!</h1>
 (más contenidos del fichero)
 .
 </body>
 </html>

22

Servicio web

2. Métodos peticiones HTTP

 HEAD: petición cabeceras de URI
 Implementación obligatoria

C: HEAD /index.html HTTP/1.1

S: (cabeceras respuesta index.html)

23

Servicio web

2. Métodos peticiones HTTP

 POST: envío datos al servidor en el cuerpo del mensaje

 URI: programa procesado datos enviados (Perl, C ...)

 Datos codificados URL

 Fichero o formulario

 Salida del programa: respuesta HTTP

24

Obligatorio

C: POST /cgi-bin/submit HTTP/1.1

 Content-Length: 3819

 [3819 bytes de datos]

S: [Salida del proceso submit]

Servicio web

2. GET vs.POST: Formulario

 Ejercicio

25 Referencia: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

<FORM METHOD="POST" ACTION="http://www.w3.org/sample">

<P>Your name: <INPUT NAME="name" size="48">

<P>Male <INPUT NAME="gender" TYPE=RADIO VALUE="male">

<P>Female <INPUT NAME="gender" TYPE=RADIO VALUE="female">

<P>Number in family: <INPUT NAME="family" TYPE=text>

<P>Cities in which you maintain a residence:

Kent <INPUT NAME="city" TYPE=checkbox VALUE="kent">

Miami <INPUT NAME="city" TYPE=checkbox VALUE="miami">

Other <TEXTAREA NAME="other" cols=48 rows=4></textarea>

Nickname: <INPUT NAME="nickname" SIZE="42">

<P>Thank you for responding to this questionnaire.

<P><INPUT TYPE=SUBMIT> <INPUT TYPE=RESET>

name=John+Doe&gender=male&family=5&

city=kent&city=miami&

other=Cadrete%0D%0AChibluco&nickname=J%26D

Servicio web

2. GET vs.POST

 Escenario 1: página web fabricante, búsqueda de modelo de
producto

 Escenario 2: página para acceso a información bancaria

 GET

 Interacción tipo lectura, consulta datos (“idempotente”)

 Permite compartir URLs

 POST

 Interacción tipo orden, almacenamiento o actualización de datos

 Interacción cambia el estado del recurso (por ejemplo, suscripción a un
servicio)

 Permite cifrar los datos enviados

27 Referencia: http://www.w3.org/2001/tag/doc/whenToUseGet.html

Servicio web

2. Métodos peticiones HTTP

 PUT: almacena cuerpo petición en el URI indicado

C: PUT /users/phethmon/welcome.html HTTP/1.1

 Content-Type: text/html

 Content-Length: 3109

 [CR + 3109 bytes de datos]

S: HTTP/1.1 204 No Content

 Server: 3wd/1.1

C: PUT /catalog/sect1/pg34.html HTTP/1.1

 Content-Type: text/html

 Content-Length: 4526

 Content-Encoding: gzip

 [CR + 4526 bytes de datos]

S: HTTP/1.1 501 Not Implemented

 Server: 3wd/1.1

28

Servicio web

2. Métodos peticiones HTTP

 DELETE: elimina URI indicado
 Seguridad, autentificación

C: DELETE /catalog/sales/oct96.html HTTP/1.1

S: HTTP/1.1 204 No Content

C: DELETE /company/about.html HTTP/1.1

S: HTTP/1.1 202 Accepted Pending Approval

29

Servicio web

2. Métodos peticiones HTTP

 TRACE: petición cabeceras recibidas por el servidor

C: TRACE / HTTP/1.1

 Host: www.unizar.es

 Connection: close

S: HTTP/1.1 200 OK

 Date: Mon, 24 May 2010, 09:23:20 GMT

 Server: Apache

 Connection: close

 TRACE / HTTP/1.1

 Host: www.unizar.es

 Connection: close

 Vulnerabilidad

 http://www.kb.cert.org/vuls/id/867593

 http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf

30

Servicio web

2. Respuestas HTTP

Versión protocolo + código éxito/error + descripc.

Cabeceras general|respuesta|entidad

[Cuerpo mensaje]

 Ejemplos

HTTP/1.1 200 OK HTTP/1.0 404 Not Found

Server: 3wd/1.1

Content-Type: text/html

Content-Length: 200

[200 bytes de datos]

31

Servicio web

2. Respuestas HTTP

 Códigos respuesta definidos en RFC 2616

 1xx: informativo

 2xx: éxito

 3xx: redirección cliente a otro URL

 4xx: error del cliente

 5xx: error del servidor

32

Servicio web

2. HTTP 1.1. Clientes

 Cabecera Host
 www.kk1.com y www.kk2.com pueden estar en el mismo servidor

 Hay que especificar destinatario petición:

 GET /ruta/fichero.html HTTP/1.1

 Host: www.kk1.com:80

 [Línea en blanco]

 Codificación por trozos
 Servidor envía la respuesta sin saber su longitud

 Cabecera Transfer-Encoding: chunked

 Varios trozos seguidos por una línea con un “0” y cabeceras

 Cada parte

 Tamaño de los datos –hexa- (+ “;” + info no estándar)+ CRLF

 Datos

 http://developers.sun.com/mobility/midp/questions/chunking/

33

Servicio web

2. HTTP 1.1. Clientes

 Ejemplo codificación por trozos

 HTTP/1.1 200 OK

 Date: Mon, 14 May 2001 11:40:40 GMT

 Content-Type: text/plain

Transfer-Encoding: chunked Content-Length: 42

 Cabecera: valor

1a; ignorar-lo-que-haya-aquí Cabecera2: valor2

abcdefghijklmnopqrstuvwxyz

10 abcdefghijk...def

1234567890abcdef [línea en blanco]

0

Cabecera: valor

Cabecera2: valor2

[línea en blanco]

34

Servicio web

2. HTTP 1.1. Clientes

 Conexiones persistentes y cabecera Connection: close
 HTTP 1.0: una conexión/recurso CPU, BW, memoria, ...

 HTTP 1.1: conexión persistente por defecto

 Connection: close

 Respuesta 100 Continue
 Para enlaces lentos

 Capacidad para manejar esta respuesta del servidor

35

Servicio web

2. HTTP 1.1. Servidores

 Requerir la cabecera Host
 Petición HTTP 1.1 sin cabecera Host 400 Bad Request

 Aceptar URLs absolutos

 Cabecera Host ñapa temporal

 Futuras versiones HTTP URL aboluto

GET http://www.maquina.com/ruta/fichero.html HTTP/1.2

 Aceptar codificación por trozos

 Conexiones persistentes
 Respuestas en el mismo orden que peticiones de una misma conexión

 Temporizador cierre conexiones inactivas (~10 segs)

 Connection: close

36

Servicio web

2. HTTP 1.1. Servidores

 Cabecera Date
 Caches

 Respuestas del servidor con sello de tiempo GMT

Date: Mon, 14 May 2001 11:40:40 GMT

 Peticiones con cabeceras If-Modified-Since /
 If-Unmodified-Since

 Envío sólo si ha habido /o no cambio desde la fecha indicada

 GET / todos métodos

 Recurso - 304 Not Modified / Recurso – 412 Precondition Failed

 Respuesta 100 Continue

37

Servicio web

2. HTTP

 Navegación con telnet

% telnet apollo.cps.unizar.es 80

Trying 155.210.152.13...

Connected to apollo.cps.unizar.es.

Escape character is '^]'.

GET /

<contenidos del fichero index.html>

Connection closed by foreign host.

38

Servicio web

2. HTTP

 Descarga de documentos con wget

hendrix:~> wget diis.unizar.es

--13:03:15-- http://diis.unizar.es:80/

 => `index.html.1'

Connecting to diis.unizar.es:80... connected!

HTTP request sent, fetching headers... 1 2 3 4 5 6 7 8 9 done.

Length: 1,085 [text/html]

 0K -> .

13:03:15 (529.79K/s) - `index.html.1' saved [1085/1085]

39

Servicio web

2. HTTPS

 HTTPS = HTTP sobre SSL (Secure Socket Layer)

 Extensión segura de HTTP

 Cifrado y autentificación extremo a extremo
 Tráfico no puede ser leído por intermediarios (ISPs …)

 Puerto TCP 443

40

Servicio web

2. HTTPS: autentificación

 Verificación de identidad
 Servidor

 Cliente (menos habitual)

 Basada en certificado digital
 Documento electrónico que asocia una clave pública con la identidad de

su propietario

 Autofirmado (ventana emergente que provoca molestia, desconfianza,
riesgo seguridad) o
emitido por autoridad de certificación (CA, Certificate Authority)

 VeriSign, Dirección General Policía, FNMT, Banesto, Telefónica, RedIris

41

Servicio web

2. HTTPS: certificados de servidor

 Servicio de Certificados de Servidor (SCS) de RedIris
 Proporciona certificados a servidores

 Ventajas de este certificado:
 CA reconocida por los principales clientes (web, correo)

 NO hay que instalar ningún certificado en los clientes

 Procedimiento simple para obtener los certificados

 Gratuito para toda la comunidad de RedIRIS

 Enlaces
 https://www.rediris.es/tcs/

 https://sicuz.unizar.es/comunicaciones/certificados-
servidor/certificados-de-servidor-inicio

42

https://www.rediris.es/tcs/
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio
https://sicuz.unizar.es/comunicaciones/certificados-servidor/certificados-de-servidor-inicio

Web dinámica

Programación en el lado del cliente

Programación en el lado del servidor

Servicio web

3. Web dinámica

 Programación en el lado del cliente
 client-side

44

Cliente

Servidor

Cliente

Servidor

GET /index.html

GET /index.php

 Programación en el lado del servidor
 server-side

Servicio web

3. Programación en el lado del cliente

 client-side programming

 Ejecución de código en el cliente

 navegador [+extensiones]

 Interacción con página web

 Pros

 Respuesta rápida (con el código descargado)

 Servicio relativamente seguro (no hay envío de info al servidor)

 Contras

 Variabilidad sistema (navegadores, extensiones, SO)

 Limitación a interacción sencilla (por ej. validación)

45

Servicio web

3. Programación en el lado del servidor

 server-side programming

 Ejecución de código en el servidor

 Procesado de info recibida del cliente

 Pros

 Ejecución eficiente de procesos complejos

 El cliente no tiene que descargar y ejecutar código y datos

 Independencia de configuración del cliente (navegador, SO ...)

 Contras

 Seguridad

 Sobrecarga servidor

46

Servicio web

3. Alternativas

 Programación en el lado del cliente
 JavaScript: ejec. en navegador

 Applets Java: ejec. en JVM

 ActiveX

 Programación en
el lado del servidor
 CGI

 Shell script, C, Perl

 PHP, ASP, .NET

 Java Server Pages (JSP)

 Django

 ColdFusion

 Cliente + servidor
 AJAX

47

Servicio web

3. Ejemplos

 Servlet
 Componente web basado en tecnología Java

 Gestionado por container o servlet engine

 Genera contenido dinámico

 Clases Java independientes plataforma

 bytecodes

 Servlet container
 Ejecuta servlets

 Se ejecuta en un servidor de aplicaciones o dentro de un servidor web

 Ejemplos: Tomcat, WebSphere

48

Servicio web

3. Ejemplos

49

 Java Servlet specification 2.4, servlet-2_4-fr-spec.pdf

1. Cliente realiza petición HTTP a un servidor web (WS)

2. La petición es recibida por el WS y enviada para su procesamiento
al servlet container
 en la misma máquina o en otra distinta del WS

3. El servlet container determina a qué servlet debe invocar

4. El servlet se ejecuta, genera datos según los parámetros POST que
han podido ser enviados en la petición y los envía al cliente

5. El servlet container devuelve el control al WS

Seguimiento de Sesión HTTP

Contexto y Terminología

Seguimiento de Sesión por parte del servidor: técnicas

Servicio web

4. Contexto y terminología

 Contexto
 Cliente accede a aplicación web en un servidor a través de HTTP

 Correo electrónico

 Tienda

 Sesión
 Conexión + secuencia de transacciones HTTP + desconexión

 Seguimiento de sesión por parte del servidor
 Identificación de clientes

 Mantenimiento de información asociada a cada cliente

 Pero … HTTP es un protocolo sin estado
 Una petición HTTP no puede asociarse a otra previa

51

Servicio web

4. Seguimiento de sesión por parte del servidor

 Acciones
 Generar identificador de sesión

 Gestionar peticiones del cliente

 Al cierre de sesión, eliminar datos asociados

 Distintas técnicas
 Campos ocultos de formulario

 Reescritura de URL

 Cookies

 Combinación de métodos

52

Servicio web

4. Campos ocultos de formularios

 Campos ocultos en formularios HTML

53

<FORM METHOD="POST"

ACTION="http://www.example.com/cgi-bin/selection.pl">

<INPUT NAME="username" TYPE="text" >

<INPUT TYPE="hidden" NAME="userid" VALUE="123">

<INPUT TYPE="submit" VALUE="click to submit">

</FORM>

Cliente

Servidor

HTTP POST www.example.com/cgi-bin/selection.pl

[…]

Username=chus&userid=123

Servicio web

4. Reescritura de URL

 El servidor cambia la URL en el código HTML para incluir el
identificador de sesión

54

Books

DVDs

Cliente

Servidor

HTTP GET /books/catalog.jsp;jsession=123

Books

DVDs

Reescritura de URL

 Apache: mod_rewrite
 http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html

Servicio web

4. Cookies

 Historia
 Netscape cookies (1994, Lou Montulli)

 http://curl.haxx.se/rfc/cookie_spec.html

 HTTP State Management Mechanism

 RFC 2109 (1997), RFC 2609 (2000), RFC 6265 (2011)

 Cookie
 Texto que el servidor manda al cliente en una cabecera HTTP

 Parejas nombre-valor y metadatos asociados

 Fichero almacenado por el navegador

 Tamaño máximo recomendado: 4096 bytes

 http://browsercookielimits.squawky.net/

55

Set-Cookie: SID=31d4d96e407aad42

 Cookie: SID=31d4d96e407aad42 Cliente

Servidor

Servicio web

4. Formato de cookies

 Set-Cookie: nombre=valor; atributos

 Atributos
 Domain

 Amplía o acota dominio
de uso de cookie

• eina.unizar.es

 Path

 Acota ruta de uso

 Expire

 Sin expires, la cookie
caduca con la sesión

 Secure

 Sólo si HTTPS

56

Servicio web

4. Cookies de sesión y cookies persistentes

 Sesión o temporal
 Asociadas a sesión entre cliente y servidor

 Webmail, tienda

57

Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Cliente

Servidor

Cookie: lang=en-US

 Persistente
 Almacenamiento de preferencias

Set-Cookie: SID=31d4d96e407aad42

 Cookie: SID=31d4d96e407aad42
Cliente

Servidor

Servicio web

4. Cookies

 Dos formas de uso
 Almacenar la información del cliente en la cookie

 Generalmente desaconsejado por pesado para el navegador y por seguridad

58

Set-Cookie: lang=en-US; interest = sport

Cliente

Servidor

Cookie: lang=en-US; interest = sport

 Almacenar la información en el servidor, cookie: puntero

 El método más habitual

Set-Cookie: SID=31d4d96e407aad42

 Cookie: SID=31d4d96e407aad42
Cliente

Servidor

Servicio web

4. Combinación de métodos

 Combinación típica: cookies + reescritura de URLs
 Por defecto cookies

 Reescritura de URLs si el cliente tiene desactivadas cookies

59

Books

DVDs

Cliente

Servidor

HTTP GET /books/catalog.jsp;jsession=123

Books

DVDs

Set-Cookie +

Reescritura de URL

Set-Cookie: SID=31d4d96e407aad42

Cache web

Proxy cache

Proxy cache inverso

Redes de distribución de contenidos

Agrupación de caches

Control de caches

Squid

Servicio web

5. Cache web

 Almacena contenidos web accedidos
 Docs HTML, imágenes, ficheros

 Si se repite petición a un contenido, sirve copia local

 Ventajas
 Menor consumo de ancho de banda

 Menos peticiones y respuestas al exterior

 Reducción de la carga de los servidores

 Menos peticiones que gestionar

 Reducción latencia

 Respuestas más rápidas (más cerca)

62

Servicio web

5. Cache web

 Funcionamiento

63

Usuario 2

Usuario 1

Proxy Cache

Servidores

 web

Servicio web

5. Tipos de cache web

 Cache navegador cliente
 Comprobación datos actualizados

 Info varios servidores, un usuario

64

Usuario 1

Servidores

 web

Servicio web

5. Tipos de cache web

 Proxy cache, forward proxy
 Entre cliente y servidor: discontinuidad de redes

 ISPs, grandes entidades, cortafuegos

 Info varios servidores, varios usuarios

 Acierto: 50-80%

 Jerarquía para cooperación

 Pasivos, activos

 Otras funciones: autenticación, filtrado de contenido

65

Usuario 1

Proxy Cache Servidores

 web

Usuario 2

Internet

Servicio web

5. Tipos de cache web

 Proxy cache inverso (reverse proxy, gateway)
 Entrega de contenidos más rápida (estáticos)

 Disminución carga servidores

 Respaldo de un servidor

 Un servidor, varios usuarios

66

Usuario 1

Cache inverso Servidor

 web

Usuario 2

Internet

Servicio web

5. Proxy cache inverso

 Ejemplo de instalación

 Content Networking: Architecture, Protocols, and Practice. Markus Hofmann and Leland
Beaumont. Morgan Kaufmann

67

Servicio web

5. Redes de distribución de contenidos

 CDN: Content Delivery Network

 Agrupación de proxys cache inversos

 Replicación de contenidos del servidor original en servidores
repartidos por todo el mundo

68

Servicio web

5. Redes de distribución de contenidos

 Actores

 Suministradores de contenidos

 anuncios por Internet, data centers, ISPs, …

 Suministradores de CDN

 Speedera Networks, Akamai, Limelight Networks, CDNetworks

 Usuarios finales

69

Servicio web

5. Redes de distribución de contenidos

 Infraestructura CDN

 Entrega de contenido

 De los servidores finales a los usuarios

 Encaminamiento petición

 Del servidor original al servidor más adecuado

 Distribución y gestión de contenidos

 De servidor original a servidores finales

 Registro: para cobrar por servicio CDN

70

Servicio web

5. Redes de distribución de contenidos

 Encaminamiento de la petición

 Servidor más próximo, con menos carga …

71

Servicio web

5. Redes de distribución de contenidos

 Encaminamiento de la petición

 Global Server Load Balancing (GSLB)

 Cada servidor conoce el estado del resto

 DNS-based request routing - Redirección HTTP

 Info sobre servidores réplica en cabeceras HTTP

 Reescritura URL

 En el servidor

 Anycast – RFC 1546

 Una misma IP es asignada a varias máquinas

 Los routers tienen el camino a la más cercana

 CDN peering

 Modelo P2P aplicado a servidores en CDNs

 Algunas en RFC 3568

72

Servicio web

5. Redes de distribución de contenidos

 Distribución de contenidos: protocolos de comunicación

 entre elementos del CDN

 Network Element Control Protocol (NECP)

 Web Cache Control Protocol (WCCP)

 SOCKS

 entre caches

 Cache Array Routing Protocol (CARP)

 Internet Cache Protocol (ICP)

 Hypertext Caching Protocol (HTCP)

 Cache Digest

 Internet Content Adaptation Protocol (ICAP), RFC 3507

73

Servicio web

5. Redes de distribución de contenidos

 Ejemplo: Akamai

74

Servicio web

5. Agrupación de caches web

 Comunicación entre caches próximas

 Configuración típica:

 Jerarquía con cache principal en el límite de una red grande, antes del
enlace con otra red más lenta o saturada

 Gestiona todos los accesos fuera de la red

 Conexión con cache principal al otro lado de la red

 Cache principal Secundarias Usuarios

 Relaciones: padre-hijo y hermanos

 Cache-padre: recibe petición y la devuelve (local o red)

 Proveedor con clientes

 Cache-hermana: recibe petición y devuelve contenido o negativa

 Entre proveedores distintos

75

Servicio web

5. Agrupación de caches web

 Comunicación entre caches
 ICP: Internet Cache Protocol - RFC2186

 Cache pregunta a otra/s si tienen un recurso

 Cache-Digest

 Intercambio periódico de tablas entre caches

 Configuración de respaldo mutuo
 Continuación de servicio en caso de caída de máquina

76

Servicio web

5. Agrupación de caches web

 Mapa caches RedIRIS

77

Servicio web

5. Agrupación de caches web

 Configuración caches RedIris

78

Servicio web

5. Opera

 Móvil pide contenido web a proxy de Opera

 Proxy pide contenido, lo reformatea, comprime y envía a móvil
(OBML, Opera Bynary Markup Language)

 CPDs en Noruega e Islandia
 http://my.opera.com/portalnews/blog/2010/11/01/20-million-opera-mini-users-move-to-iceland

79

Linux

Servicio web

5. Cache web

 Tecnología incomprendida
 Pérdida control sitio web

 Servicio de contenidos obsoletos

 Punto de fallo

 Estadísticas de acceso poco precisas

 Recursos adicionales

 Realidad
 Infraestructura caches

80

Servicio web

5. Control caches

 HTML Meta Tags
 Descripción atributos de página web, en la sección <HEAD>

 No son efectivas: proxy caches no leen HTML, ¿por qué?

 http://www.w3.org/TR/REC-html40/struct/global.html#h-7.4.4.2

 Cabeceras HTTP
 Navegador, proxy, servidor

 HTTP 1.0

 cabecera Expires

 HTTP 1.1

 directivas Cache-Control

81

<META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">
<META HTTP-EQUIV="CACHE-CONTROL" CONTENT="NO-CACHE">
<META HTTP-EQUIV="Expires" CONTENT="-1">

HTTP/1.1 200 OK
Date: Tue, 04 Jun 2013 08:08:11 GMT
Server: Apache
Etag: "1370332615-0"
Content-Language: es
Cache-Control: public, max-age=600
Last-Modified: Tue, 04 Jun 2013
07:56:55
Expires: Sun, 19 Nov 1978 05:00:00 GMT

http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/TR/REC-html40/struct/global.html
http://www.w3.org/TR/REC-html40/struct/global.html

Servicio web

5. Control caches

 Cabeceras HTTP

82

HTTP/1.1 200 OK
Date: Fri, 30 Oct 1998 13:19:41 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate
Expires: Fri, 30 Oct 1998 14:19:41 GMT
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
ETag: "3e86-410-3596fbbc"
Content-Length: 1040
Content-Type: text/html

Servicio web

5. Cache web

 ¿Qué objetos no deben almacenarse en una cache?

83

 Respuestas a peticiones

 POST

 PUT

 DELETE

 OPTIONS

 TRACE

 Cabecera Authorization

• Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 Almacenar respuestas a GET, HEAD

 hay excepciones ...

 Cabecera no-cache, ausencia validador

Servicio web

5. Políticas de reemplazo

 Políticas combinadas

84

Política de

reemplazo

Objeto reemplazado cache se llena con

los objetos

Least Recently Used

(LRU)

más tiempo sin ser

requerido

con peticiones más

recientes

First In, First Out

(FIFO)

primero que se

almacenó

más recientemente

almacenados

Least Frequently

Used (LFU)

menos frecuentemente

requerido

más frecuentemente

requeridos

Next To Expire (NTE) primero en caducar más infrecuentemente

cambiados

Largest File First

(LFF)

más grande más pequeños

Servicio web

5. Reglas cache web

1. Objeto web está en cache navegador
 Servir si una vez por sesión

2. Objeto web en proxy
 No obsoleto: servir

 Fecha expiración OK

 Reciente y modificado hace mucho tiempo

 Obsoleto: petición al servidor origen para validarlo

 No ha cambiado: servir de cache

 Cambio: pedir al origen

3. Objeto web no en proxy
 Pedir objeto al origen

85

Servicio web

5. Control caches

 Cabecera HTTP Expires

 Respuestas HTTP 1.0

 Fecha objeto obsoleto

 Pasada fecha: comprobación de cambios con origen

 Indicación fecha

 Fecha HTTP (GMT)

 Tiempo absoluto, tiempo último acceso, tiempo último cambio

 Empleo

 Imágenes estáticas (barras y botones de navegación): t

 Cambios periódicos: hora expiración = hora actualización

 Ejemplo

 Expires: Fri, 30 Oct 1998 14:19:41 GMT

86

Servicio web

5. Control caches

 Cabeceras Cache-control

 HTTP 1.1

 Tratamiento de los objetos por parte de las caches

 Qué puede ser almacenado en la cache

 Modificaciones del mecanismo de expiración

 Controles de validación y recarga

 Control sobre la transformación de entidades

 Ej: cambio formato de imagen

 Extensiones al sistema de cache

87

Servicio web

5. Control caches

 Peticiones Cache-control

 no-cache: cache debe validar

 no-store: proxy no debe almacenar

 max-age=[segundos]: máxima edad

 max-stale=[segundos]: se aceptan objetos [segundos] caducados

 min-fresh=[segundos]: debe quedar para caducar [segundos]

 no-transform

 only-if-cached: enviar sólo si está en cache

 cache-extension

 Más info en el draft HTTP 1.1

88

Servicio web

5. Control caches

 Respuestas Cache-control

 public: fuerza una respuesta almacenable (autentificaciones tb)

 private: la respuesta no debe ser guardada

 no-cache: fuerza caches a validar antes de servir copia

 no-store: proxy no debe almacener

 no-transform: no transformar cuerpo mensaje (ej: TIFF-JPEG)

 must-revalidate: validar recurso obsoleto en cada petición

 proxy-revalidate: ídem sin aplicar a caches privadas

 max-age=[segundos]: fecha expiración objeto

 s-maxage=[segundos]:

 cache-extension

Cache-Control: max-age=3600, must-revalidate

89

Servicio web

5. Control caches

 Ejemplo: Apache 1.3, fichero .htaccess

 ### activate mod_expires

 ExpiresActive On

 ### Expire .gif's 1 month from when they're accessed

 ExpiresByType image/gif A2592000

 ### Expire everything else 1 day from when it's last
modified

 ### (this uses the Alternative syntax)

 ExpiresDefault "modification plus 1 day"

 ### Apply a Cache-Control header to index.html

 <Files index.html>

 Header append Cache-Control "public, must-revalidate"

 </Files>

90

Servicio web

5. Control caches

 Validación: verificación de cambio en un objeto

 cache-cache, cache-origen

 Validadores

 Ausencia No cacheo

 Last-Modified: último cambio

 Validación con peticiones

• If-Modified-Since, If-Unmodified-Since

 E-Tags (1.1): identificadores únicos generados por el servidor

 Cambian con el objeto

 Validación con petición If-None-Match

 Contenidos

 Estáticos: servidor genera Last-Modified y E-Tags automáticamente

 Dinámicos: no genera validadores

91

Servicio web

5. Control caches

 Ejemplo 1

 Agente cache tiene copia del recurso solicitado

 Servidor origen no ha indicado restricciones almacenamiento

 Cache ha calculado la edad y expiración del recurso: actual

age-value = 100

freshness-lifetime = 300

P: GET /resource HTTP/1.1

R: La cache sirve la copia almacenada

P: GET /resource HTTP/1.1

 Cache-Control: min-fresh=250

R: La cache debe validar el recurso

92

Servicio web

5. Control caches

 Ejemplo 1

P: GET /resource HTTP/1.1

 Cache-Control: no-cache

R: La cache debe validar el recurso

P: GET /resource HTTP/1.1

 Cache-Control: max-age=0

R: La cache debe validar el recurso

P: GET /resource HTTP/1.1

 Cache-Control: max-age=500

R: La cache utiliza la copia almacenada

93

Servicio web

5. Control caches

 Ejemplo 2: política cache RedIRIS

 Documento con fecha de expiración

 Sin alcanzar: se sirve de cache

 Alcanzada: comprobación If-Modified-Since (IMS)

 Imágenes, sonido, animaciones

 Durante un día no IMS

 Resto

 IMS si factor tiempo en cache respecto tiempo última modificación supera
un %

 50%: un objeto que al meterlo en cache llevaba 6 días sin modificarse se
tomará como vigente (No IMS) durante 3 días

94

Servicio web

5. Control caches

 Cabeceras Expires y Last-Modified

 Pueden verse en Page-Info (Netscape), extensión LiveHTTPHeaders (Firefox)

Caching Tutorial for Web Authors and Webmasters has the following structure:
http://www.mnot.net/cache_docs/

Location: http://www.mnot.net/cache_docs/

File MIME Type: text/html

Source: Currently in disk cache

Local cache file: M0N0T7UL

Last Modified: martes 20 de junio de 2000 4:08:25 Local time

Last Modified: martes 20 de junio de 2000 2:08:25 GMT

Content Length: 44297

Expires: lunes 21 de mayo de 2001 8:02:43

Charset: iso-8859-1

Security: This is an insecure document that is not encrypted and
offers no security protection.

95

Servicio web

5. Control caches

 Todas cabeceras

 Conexión telnet servidor web

telnet www.cps.unizar.es 80

GET /index.html HTTP/1.1 ;HEAD

Host: www.cps.unizar.es

HTTP/1.1 200 OK

Date: Sun, 20 May 2001 21:48:34 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Wed, 11 Apr 2001 19:05:42 GMT

ETag: "804-270-3ad4ab06"

Accept-Ranges: bytes

Content-Length: 624

Content-Type: text/html

<HTML>

...

96

Servicio web

5. Cache web: trucos sitio web

 Utilizar servidores web que soporten peticiones GET IMS

 Consistencia enla referencia de objetos

 Mismos URLs para mismos objetos

 Biblioteca común de imágenes

 Forzar cache de imágenes y contenidos estáticos

 Expires largo

 Caches reconozcan contenidos actualizados regularmente

 Tiempo expiración

 Si un recurso cambia, cambiar su nombre

 Podrá fijarse t de expiración mayor

97

Servicio web

5. Cache web: trucos sitio web

 No cambiar ficheros innecesariamente
 Actualización selectiva

 Usar cookies sólo donde sea necesario
 Difíciles de cachear

 Sólo en páginas dinámicas

 Minimizar el uso de SSL
 No se cachean

 Pocas imágenes

 Scripts
 Cachear los que dependan sólo del URL

 CGIs cacheables con GET en lugar de POST

98

Servicio web

5. Cache web

 Herramientas cacheabilidad

 http://www.ircache.net/cgi-bin/cacheability.py

 www.unizar.es

Expires -

Cache-Control -

Last-Modified 2 hr 26 min ago (Wed, 08 May 2002 07:28:16 GMT) validated

Etag -

Content-Length 8.5K (8707)

Server Netscape-Enterprise/3.5.1

 This object doesn't have any explicit freshness information set, so a cache may
use Last-Modified to determine how fresh it is with an adaptive TTL (at this
time, it could be, depending on the adaptive percent used, considered fresh for:
29 min 19 sec (20%), 1 hr 13 min (50%), 2 hr 26 min (100%)). It can be validated
with Last-Modified.

99

Servicio web

5. Instalación de proxy-cache

 Máquinas exclusivas
 NetCache, Cisco, Inktomi, Novell, DynaCache

 Software máquinas propósito general
 Cooperante, escalable, caídas elegantes

 Squid: evolución de libre distribución de Harvest.

 NetApp evolución comercial de Harvest, corre tanto en Unix como en
Windows NT.

 Netscape

 Microsoft

 Apache: módulo de proxy-cache

100

Servicio web

5. Squid

 Libre distribución

 Gratuito + código fuente

 Rendimiento

 ICP (jerarquía)

 Cache-Digest: intercambio de URLs (cada hora)

 Módulos adicionales

 Estadísticas, administración web ...

 Utilizado por agrupaciones mundiales de caches (NLANR)

 Unix

101

Servicio web

Bibliografía

 RFC 2616

 Illustrated Guide to HTTP, P. Hethmon

 Taxonomía de CDNs

 http://www.gridbus.org/reports/CDN-Taxonomy.pdf

 Tutorial sobre caches para autores web y webmasters

 http://www.mnot.net/cache_docs

102

Arquitectura del servidor web

Gestión de conexiones entrantes

Servicio web

5. Arquitectura del servidor web

 Servidor web: proceso escuchando en un puerto (nivel 4)

 Gestión conexiones entrantes: nuevo proceso generado por

 un proceso que escucha varios puertos (inetd en Unix)

 propio servidor web (standalone)

 Servidores

 Forking

 Threaded

104

unix$ ps –ef | grep httpd

…

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 23858/sshd

udp 0 0 0.0.0.0:53 0.0.0.0:* 30016/named

…

Servicio web 105

Bibliografía

 Introducción

 Historia web: Tim Berners-Lee

 <http://www.w3.org/People/Berners-Lee/>

 HTTP

 http://www.w3.org/Protocols/

 V1.0: RFC1945, V1.1: RFC2616

 Illustrated Guide to HTTP, P. Hethmon

 Tutorial HTTP

 <http://www.jmarshall.com/easy/http/>

 Web dinámica

 http://tomcat.apache.org/

