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Abstract:
This work leverages TCPNs to design an energy-efficient, thermal-aware real-time scheduler for
a multiprocessor system that normally runs in a low state energy at maximum system utilization
but its capable of increasing the clock frequency to serve aperiodic tasks, optimizing energy, and
honoring temporal and thermal constraints. An off-line stage computes the minimum frequency
required to run the periodic tasks at maximum CPU utilization, the proportion of each task’s
job to be run on each CPU, the maximum clock frequency that keeps temperature under a limit,
and the available cycles (slack) with respect to the system with minimum frequency. Then, a
Zero-Laxity online scheduler dispatches the periodic tasks according to the offline calculation.
Upon the arrival of aperiodic tasks, it increases clock frequency in such a way that all periodic
and aperiodic tasks are properly executed. Thermal and temporal requirements are always
guaranteed, and energy consumption is minimized.

Keywords: Real-Time scheduling, Timed Continuous Petri Nets, Modelling.

1. INTRODUCTION

There is a great interest in using multicore processors in
embedded real-time systems. Multicores reduce the Size,
Weight and Power (SWaP) requirements in avionics, have
evident advantages in automotive electronics and satellite
systems, and are already common in consumer devices.
Limited power, battery lifespan and thermal restrictions
require careful energy management, for which real-time
schedulers can leverage power management mechanisms
provided by current MPSoCs, such as dynamic voltage
and frequency scaling (DVFS). Many DVFS schedulers,
thermal-aware schedulers and schedulers that minimize
energy consumption have been proposed over the past few
years (Kong et al. (2014), Schor et al. (2012), Ahmed et al.
(2016), Hettiarachchi et al. (2014)).

In this work we present a minimal energy, thermal-aware
real-time scheduler for a multiprocessor system. We con-
sider a set of periodic independent tasks subject to tempo-
ral, thermal and energy restrictions, modeled by means of
a Timed Continuos Petri Net (TCPN). Aperiodic tasks ar-
rive asynchronously, and should only be served when every
periodic task is guaranteed to meet its deadline. An off-line
stage first computes the minimum frequency required to
run the periodic task set at maximum CPU utilization. By
means of a Linear Programming Problem (LPP) it finds
a maximum frequency (F+) at which the system can run
subject to temporal and thermal constraints. The final off-
line step leverages a deadline partitioning approach (Funk
et al. (2011)) to compute a schedule by calculating the
proportion of each task that must be executed on each
CPU during the interval. In this way, the execution of this

schedule consumes minimum energy and meets temporal
and thermal constrain. In a second on-line stage, a Zero
Laxity scheduler (Davis and Burns (2011b)) performs the
schedule computed off-line for the periodic task set. Upon
arrival, aperiodic tasks are serviced if a controller can
increase the CPU clock frequency to achieve the proper
slack, or are rejected otherwise. The frequency is always
kept as low as possible to meet the temporal constraints
and minimize energy consumption. As far as we know,
this is the first solution based on TCPNs to accommodate
aperiodic real-time tasks while preserving temporal and
thermal constraints, minimizing energy. Our preliminary
results, leveraging a deadline partitioning scheme, yield a
good compromise in terms of optimal utilization of CPU,
context switches and migrations.

Section 2 provides basic definitions and concepts on Timed
Continuous Petri Nets (TCPN), the formal model used in
this work to represent tasks, CPUs, energy consumption
and temporal and thermal behavior. Section 3 formulates
the scheduling problem. Section 4 explains the system
model. The off-line schedule calculation is explained in
Section 5, whereas Section 6 presents the the on-line
scheduler. Section 7 shows the procedure to deal with
aperiodic aperiodic tasks. Section 8 shows some examples,
and Section 9 summarizes conclusions and further work.

2. PERI NETS BACKGROUND

This section provides basic definitions and concepts on
Timed Continuous Petri Nets (TCPN), the formal model
used in this work to represent tasks, CPUs, energy con-
sumption, temporal and thermal behavior. For a deeper



insight on Petri Nets see Silva and Recalde (2007), David
and Alla (2008), Silva et al. (2011).

Definition 2.1. A Petri net (PN) is a 4-tuple N =
(P, T,Pre,Post) where P = {p1, ..., p|P |} and T =
{t1, ..., t|T |} are finite disjoint sets of places and transitions.
Pre and Post are |P | × |T | Pre− and Post− incidence
matrices, where Pre[i, j] > 0 (resp. Post[i, j] > 0) if
there is an arc going from pi to tj (or going from tj to pi),
Pre[i, j] = 0 (or Post[i, j] = 0) otherwise.

Definition 2.2. A continuous Petri net (ContPN ) is a pair
ContPN = (N,m0) where N = (P, T,Pre,Post) is a
PN (PN ) and m0 ∈ {R+ ∪ 0}|P | is the initial marking.

A transition ti is enabled at m if ∀ pj ∈• ti,m[pj ] >
0; and its enabling degree is defined as enab(ti,m) =

min
pj∈•ti

m[pj ]
Pre[pj ,ti]

. Firing ti in a certain amount α ≤

enab(ti,m) yields a marking m′ = m+ αC[P, ti], where
C = Post− Pre. If m is reachable from m0 by fir-
ing the finite sequence σ of enabled transitions, then
m = m0 + C−→σ is named the fundamental equation
where −→σ ∈ {R+ ∪ 0}|T | is the firing count vector, i.e −→σ [j]
is the cumulative amount of firings of tj in the sequence
σ.

Definition 2.3. A timed continuous PN (TCPN ) is a
time-driven continuous-state system described by the tu-
ple (N,λ,m0) where (N,m0) is a continuous PN and
the vector λ ∈ {R+ ∪ 0}|T | represents the transitions
rates determining the temporal evolution of the system.
Transitions fire according to a certain speed, which is
generally a function of the transition rates and the current
marking. Such function depends on the semantics associ-
ated to the transitions. Under infinite server semantics,
the flow through a transition t (or t firing speed, denoted
as f(m)) is the product of the rate, λi, and enab(ti,m),
the instantaneous enabling of the transition, i.e., fi(m) =
λi enab(ti,m).

The firing rate matrix is defined by Λ = diag(λ1, ..., λ|T |).
For the flow to be well defined, every continuous transition
must have at least one input place, so we assume ∀t ∈
T, |•t| ≥ 1. The “min” in the above definition leads to the
concept of configuration. A configuration of a TCPN at
m is a set of (p, t) arcs describing the effective flow of each
transition, and say that pi constrains tj for each arc (pi, tj)
in the configuration. A configuration matrix is defined for
each configuration as follows:

Πj,i(m) =


1

Pre[i, j]
if pi is constraining tj

0 otherwise
(1)

f(m) = ΛΠ(m)m is the vectorial form of the flow of a
transition. The following fundamental equation describes
the dynamic behaviour of a PN system:

•
m = Cf(m) = CΛΠ(m)m (2)

A control action can be applied to (2) by adding a term
u to every transition ti such that 0 ≤ ui ≤ fi, indicating
that its flow can be reduced. Thus, the controlled flow of
transition ti becomes wi = fi − ui and the forced state

equation is:
•
m = C[f − u] = Cw.

3. PROBLEM DEFINITION

Definition 3.1. Let T = {τ1, ..., τn} be a set of n inde-
pendent periodic tasks. Each task is identified by the
3 − tuple τi = (cci, di, ωi), where cci is the worst-case
execution in CPU cycles, ωi the period and di is the
relative implicit deadline (di = ωi) (Baruah et al. (2015)).
Let P = {CPU1, . . . , CPUm} be a set of m identical
processors with an homogeneous clock frequency F ∈ F =
[F1, ..., Fmax]. We assume that all task parameters, includ-
ing task period and CPU cycles are integers and that any
task can be preempted at any time. The hyper-period is
defined as the period equal to the least common multiple of
periods H = lcm(ω1, ω2, . . . , ωn) of the n periodic tasks. A
task τi executed on a processor at its maximum frequency
Fmax, requires ci = cci

Fmax
processor time at every ωi

interval. The system utilization is defined as the fraction
of time during which the processor is busy running the
task set i.e., U =

∑n
i=1

ci
ωi

. The CPU utilization must be
computed and should be less or equal to the number of
processors i.e., U ≤ m (Baruah et al. (1996)).

Problem 3.1. Minimum Energy Thermal Aware Real
Time Scheduler (METARTS). Given the sets of tasks
T and CPUs P, the METARTS problem consists in
designing an algorithm to allocate within the hyperperiod
H the tasks in T to the m identical CPUs in such a way
that the deadlines for T are always satisfied and the CPU
temperatures are kept always below a given temperature
bound Tmax and the consumed energy is minimum.

In addition to previous problem, aperiodic tasks, that must
be allocated to CPUs arrive to the system.

Definition 3.2. Aperiodic Task. Let T a = {τa1 , . . . , τaz }
be an independent aperiodic task set. Each τai is defined
as a 3-tuple (ccai , d

a
i , r

a
i ) where ccai (required CPU cycles),

dai (its deadline) are known a priory, and rai is the arrival
time, which is unknown.

4. SYSTEM MODEL

The CPU thermal activity and the tasks fluid allocation
to CPUs happens in a continuous space and honor a set of
differential equations. The use of a TCPN allows modelling
this continuous activity while providing data about the
system’s state at any moment. This section summarizes
the TCPN model of the system (CPUs, tasks, thermal
behavior, energy). For details on the thermal model we
refer to Desirena-Lopez et al. (2014). The task model is
based on Desirena-Lopez et al. (2016). Fig. 1 details a
part of the model corresponding to a one task (τ1) and
one CPU (CPU1).

Task and CPU Model.- The places pωi , pcci and tωi ,
together with their arcs, model the i − th task. The

places pbusy1,j , ..., pbusyn,j , pexec1,j , ..., pexecn,j , pidlej , and transitions

talloc1,j , ..., tallocn,j and texec1,j , ..., texecn,j together with their arcs,
model the j − th CPU. The weighted arc cci corresponds
to the duration of τi (in CPU cycles). The CPU cycles
required to run a task’s job are stored in place pcci . The
transitions texeci,j represent the execution on the CPUj .
The current marking of places pexeci,j (mexec

i,j ) represents
the CPU worst-case execution time of task τi currently
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Fig. 1. Equivalent TCPN model for a multiprocessor
system.

executed at a frequency F . Places pidlej and pbusyi,j represent
the idle state and the busy state of the processor. The
marking of place pidlej models the available CPU cycles

(throughput capacity). The initial marking at pidlej is set
to 1, indicating that CPUj is idle. The arcs going from
transitions texec1,j , ... , texecn,j to place pidlej and from place pidlej

to transitions talloc1,j , ... , tallocn,j are weighted by a constant

value η, to ensure that the flow in transitions talloc1,j , ... ,

tallocn,j is limited by the throughput CPU capacity modeled

by place pidlej .

Thermal model.- The execution of cycles of τi in CPUj
is modeled by firing transitions texeci,j (Fig. 1), which adds

tokens to places p
comj
i , activating the thermal model

for CPUj (whose temperature will increase because of
the activity). The rest of transitions and places in this
thermal model represent heat transport by conduction and
convection, for a deeper explanation see Desirena-Lopez
et al. (2014).

Task and thermal model evolution.- The dynamic behav-
ior of the global model (Fig. 1) is provided by the following
equations:

ṁT =CT ΛT ΠT (m)mT + CaΛaΠa(m)ma

+Cexec
P fexec (3a)

ṁa =0 (3b)

ṁT =CT ΛTΠT (m)mT − Calloc
T walloc (3c)

ṁP =CPΛPΠP(m)mP + Calloc
P walloc (3d)

ṁexec =Cexec
P fexec (3e)

Cx, Λx, and Πx(m) are the incidence matrix, the firing
rate transitions and the configuration matrix respectively

(x = {T, a, T ,P} ) of the thermal, task and processors sub-
net. Calloc

T , Calloc
T and Calloc

P stand for the connections

of transitions talloci,j from (to) places in the thermal model,
task and CPU throughput model, respectively. Matrix
Cexec
P holds the columns of the transitions texeci,j of the

incidence matrixCP .walloc is the controlled flow of the al-
location transitions (i.e. the task allocation rate to CPUs).
Eq. (3a) represents the system’s temperature evolution.
Eq. (3b) indicates that the environmental temperature
keeps constant at all times (its derivative is neglected).
Eq. (3c) describes the arrival of periodic tasks to the
system. Eq. (3d) models the CPUs cycles that are assigned
to tasks. Finally, Eq. (3e) models task execution.

5. OFF-LINE STAGE

In our approach, prior to considering the aperiodic tasks,
we need to find the minimum and maximum frequencies
to execute the periodic task set subject to temporal and
thermal constraints. This requires first to study the sys-
tem thermal behavior. Later, we will compute a schedule
applying a deadline partitioning approach.

Steady state Thermal Analysis.- Task execution gener-
ates a thermal activity given by Eq. (3a), where Cexec

P =

F 3C
′exec
P . This can be rewritten as a space state equation:

ṁT = AmT +B′ma + F 3Bfexec and YT = SmT

(the CPUs temperature), where A = CT ΛT ΠT (m),

B = C
′exec
P and B′ = CaΛaΠa(m). Since the schedule

is periodic, the temperature is a non-decreasing func-
tion reaching a steady state temperature (mTss), i.e.
ṁT = 0 when time tends to infinite. Hence mTss =
−A−1(F 3Bwalloc +B′ma).

Since SmTss ≤ Tmax then:

−SA−1F 3Bwalloc ≤ Tmax + SA−1B′ma

(4)

This equation provides the thermal constraints that the
allocation of tasks to the processors (walloc) must fulfill.

Energy consumed by a schedule.- If the CPUj clock
frequency is F during the time interval (ζ1, ζ2], then the
average energy consumed during this interval by the tasks
running on CPUj is defined as:

Ej =

∫ ζ2

ζ1

PCPUj (F )dζ (5)

PCPUj (F ) is the power consumed by a CPUj . It depends
on Pdyn(F ), the dynamic power due to computational
activities of tasks, and Pleak, the static power due to
leakage. It is computed as: PCPUj (F ) = Pdynj (F ) +

Pleakj = λexeci,j mbusy
i,j (ζ)F 3 + Pleakj . Where Pleakj can be

modeled as a linear function of temperature (Ahmed et al.
(2016)): Pleak = δT +ρ, where T is the CPUs temperature
and δ and ρ are modeling constants. The consumed energy
is minimized iff the clock frequency F is minimized, but F
must be high enough to ensure that temporal constraints
are met. Next, we compute this frequency.



Minimum frequency Modern CPUs vary their clock
frequency according to a number of preset values, i.e.
F = [F1, ..., Fmax]. We normalize this set as φ = [φmin =
F1

Fmax
, ...., 1]. The next proposition obtains the minimum

clock frequency that fulfills temporal constraints.

Proposition 5.1. Assuming that the task utilization is less
than the number of processors in the METARTS problem,
the normalized clock frequency that minimizes the total
energy consumption while meeting temporal constraints is
constant:

Φ∗ = max{φmin,
1

m

n∑
i=1

cci
ωiFmax

} (6)

Proof 5.1. According to Eq. (5), the energy has a min-
imum iff the consumer power is minimum. This occurs
when φ3 is minimum and fulfills that

∑n
i=1

cci
φwiFmax

= m,

and φ ≥ φmin. Using Lagrange multipliers, the Lagrangian
function is L = φ3 + µ1( 1

φ

∑n
i=1

cci
wiFmax

−m) + µ2(φmin −
φ). The solution yields four cases: a) Both multipliers
are inactive (µ1,2 = 0); b) Both multipliers are active
(µ1,2 ≥ 0); c) µ1 = 0 and µ2 ≥ 0; and d) µ1 ≥ 0
and µ2 = 0. The first case is unfeasible, because φ
cannot be zero. In the second case, the only solution is
φ = φmin = 1

m

∑n
i=1

cci
wiFmax

. Finally, if one multiplier is
active while the other one is inactive there are two possible
solutions: φ = φmin or φ = 1

m

∑n
i=1

cci
wiFmax

. Consequently,
in order to fulfill both constraints, the normalized clock
frequency that minimize the total energy consumption

becomes Φ∗ = max{φmin, 1
m

n∑
i=1

cci
ωiFmax

}. 2

The normalized frequency Φ∗ meets the temporal con-
straints. To guarantee that the thermal constraints are
also fulfilled, we must compute walloc and solve Eq. (4).
At frequency Φ∗ the total system utilization is U =∑n
i=1

cci
ωiφ∗Fmax

= m and the processor frequency is F ∗ =

min{F ∈ F|F ≥ Φ∗Fmax}, given the nature of the dis-
crete set of frequencies. Since we have a fully utilized
system, the distribution of the CPU cycles required to
execute all tasks must be homogeneous, i.e., walloc =
[ 1
m

∑n
i=1

cci
ωiF∗ , . . . ,

1
m

∑n
i=1

cci
ωiF∗ ]T . Moreover, if walloc

satisfies Eq. (4), then the thermal constraints are also
satisfied. Otherwise, the METARTS problem does not
have a solution. If it has a solution (Φ∗ is feasible), then
we can compute the maximum CPU cycles available for
aperiodic tasks, and the maximum clock frequency that
can be used subject to thermal constraints.

Maximum CPU cycles and clock frequency The max-
imum thermal frequency F+ is the greatest frequency at
which all CPUs operate at 100% of utilization and the tem-
perature never exceeds the maximum thermal constraints.
F+ can be computed by using the next programming prob-
lem. The first constraint is thermal. CCj represents the
cycles that CPUj must execute per hyperperiod. Since all
CPUs must work at their maximum capacity, the second
constraint implies that the CPU utilization is 100%. The
last constraint bounds F+ to the actual clock frequency
range in the MPSoC.

max F+

s.t.

−SA−1F+3
B

[
CC1

F+H
, . . . ,

CCm

F+H

]T
≤ Tmax + SA−1B′ma

CCj

F+H
= 1 ∀j = 1, . . . ,m

F ∗ ≤ F+ ≤ Fmax
(7)

The solution for F+ has to be in the set F of discrete
frequencies. Thus the processor frequency is updated as
F+ = max{F ∈ F|F ≤ F+}.

5.1 Deadline partitioning

We consider the ordered set of all tasks’ jobs deadlines
to define scheduling intervals, as in deadline partitioning
(Funk et al. (2011)). Each task τi must be executed
ni = H

ωi
times within the hyperperiod H. Thus every

q ∗ ωi, where q = 1, ..., ni is a deadline that must be
considered in the analysis. These deadlines can be ordered
and joined in the set SDi = {sd1i , ..., sd

ni
i }. A general

set of deadlines is defined as SD = SD0 ∪ ... ∪ SD|T |
where SD0 = {0}. The elements of SD can be arranged
in ascendant order and renamed as SD = {sd0, ..., sdα},
where α is the last deadline. The scheduling interval IkSD =
[sdk−1, sdk] is defined and |IkSD| = sdk − sdk−1 represents
the scheduling interval duration. The proposed deadline
partitioning problems assumes a 100% utilization on every
CPU, but recalling that F ∗ = min{F ∈ F|F ≥ Φ∗Fmax},
in most cases F ∗ 6= Φ∗Fmax consequently idle cycles
appear. To solve this problem we introduce a dummy task
with period H and utilization m −

∑n
i=1

ci
F∗ωi

. Then the

cycles that each task must execute in the IkSD , i.e xki , can
be computed as follows.

Let cc∗i = ωi ∗ F ∗ − cci be the cycles that task τi can be
idle. Thus, the total amount of cycles (sdk ∗ F ∗ ) in sdk
can be rewritten as sdk ∗ F ∗ = q ∗ ωi ∗ F ∗ + ri, where
0 ≤ ri < ωi ∗ F ∗ and q ∈ Z, where q represents the
occurrences of a task (the task’s jobs) in the system. If
ri = 0, it means that τi has its deadline in the scheduling
interval. Then the following LPP can be posed to compute
xki .

min

n∑
i=1

xki ∀k = 1, . . . , α

s.t

∀k
n∑
i=1

xki = m ∗ |IkSD| ∗ F
∗

if ri = 0

k∑
γ=1

xγi = q ∗ cci

if ri 6= 0

k∑
γ=1

xγi ≥ −q ∗ cc
∗
i +max{0,

k∑
γ=1

|IγSD| ∗ F
∗ − cc∗i }

∀i xki ≤ |I
γ
SD| ∗ F

∗

(8)

The first constraint implies that the CPU utilization is
100%. It is required since Φ∗ indicates that CPU uti-
lization is 100%. The second constraint guarantees that



those tasks that must complete execution in this interval
actually end. The last constraint guarantees deadline ful-
fillment. The following proposition guarantees that if the
former LLPs are orderly solved according to the k − th
interval, then the computed amount of time that each task
must run per interval yields a feasible schedule.

Proposition 5.2. Given a task set T presented in Defini-
tion 3.1, where the task utilization at F ∗ is equal to the
number of CPUs, the solution of the linear programming
problems in Eq. (8) is always integer and if each task τi is
executed exactly xki cycles during the k− th interval, then
a feasible schedule is obtained.

Proof 5.2. Let T k = T k1 ∪ T k2 be a task set partition,
where T k1 = {τ1, ..., τv} is the set of tasks that have their
deadlines at sdk and T k2 = {τv+1, ..., τn} = T − T k1 . Some
slack variables hi are added to form a set of constraints
that can be represented as My = b where y = [x h]T (i.e.,
equality constraints are obtained). Notice that vector b
is always integer. By construction, the restriction matrix

M has the form: M =

[
L(v+1)×n ∅
Q(2n−v)×n I(2n−v)

]
, and L has

the form: L(v+1)×n =

[
1 · · · 1

Iv×v | ∅

]
. It is easily seen that

rank(L) = v + 1 and rank(M) = rank(L) + rank(I) =
2n + 1, i.e M is a full row rank. The solution is always
integer if M is unimodular, i.e., the determinant of every
square submatrix (Msi) of M is either 0,+1 or -1. All Msi

are obtained deleting columns, and there are three possible
scenarios: first, if any of the first v columns is removed,
Msi loses rank, hence det(Msi) = 0. Second, if any deleted
column contains a nonzero entrie where its corresponding
row has a nonzero element among the first v columns, Msi

loses rank since the resulting row is duplicated among the
first v rows. Thus, det(Msi) = 0. Finally, when any other
column not listed before is deleted, the resulting matrix

always can be arranged as Msi =

[
A ∅
B I

]
, where matrix

A is always TUM, according to Theorem 3.4 reported
in Sierksma (2001), thus det(A) = 0,±1. Therefore,
det(Msi) = det(A) · det(I) = 0,±1. 2

6. ON-LINE STAGE: SCHEDULER

The previous section computed the CPU clock frequency
F ∗, maximum clock frequency F+ and task execution time
per scheduling interval. The on-line scheduler uses these
data to implement a Fixed Priority Zero-Laxity (FPZL)
algorithm (Davis and Burns (2011a)). It allocates tasks’
jobs during their respective scheduling interval upon the
occurrence of three possible events: a zero-laxity event (a
job must immediately execute lest it misses its deadline),
job completion or the arrival of an aperiodic task. During
the IkSD interval task τki must execute xki cycles at a given
Fn clock frequency.

Priority Levels Whenever an event occurs, the task pri-
ority is updated as follows. Jobs reaching their zero-laxity
time are given the maximum priority (= 1). Jobs being
executed and with laxity different from zero receive pri-
ority equal to 2. The remaining jobs receive priority level
equal to 3 (the lowest one). Thus, zero laxity tasks have
the highest priority and must be executed immediately.

Algorithm 1 On-line schedule

1: Input IkSD – Schedulinng intervals; Xk – tasks CPU cycles per
interval; exki – execution CPU cycles per interval

2: Output A feasible schedule;
k = 0, ζ = 0

3: Compute the ordered set of laxities as:
SL = {li|li = sdk+1 − (Fn ∗ xki − ex

k
i )− ζ}

4: while ζ ≤ H do
5: while ζ ≤ sdk+1 do
6: Compute task priorities using Priority Levels
7: Execute the m tasks with higher priority until an event

occurs (An event occurs if a task reaches its zero laxity,
task ends or aperiodic task arrives.)

8: Compute the ordered set of laxities as:
SL = {li|li = sdk+1 − (Fn ∗ xki − exec

k
i )− ζ}

9: ζ = ζ+ current time
10: end while
11: k = k + 1
12: end while

Execution of m tasks with the highest priority In Alg. 1
step 8, m tasks must be executed (i.e. allocated to a CPU).
In order to reduce the number of migrations, tasks that
are executed during two consecutive events are allocated
to the same CPU.

7. APERIODIC TASKS

Aperiodic tasks arrive asynchronously to the system. The
system determines if these tasks can be executed with-
out compromising the hard real-time constraints of the
periodic task set. If so, a new CPU clock frequency is
computed to allow the execution of the aperiodic task. This
frequency must be in the range Fs = {F ∗ . . . F+} (every
frequency in this range meets the thermal constraints), and
it is kept as low as possible to guarantee a minimum energy
consumption while meeting the temporal constraints.

Fig. 2 shows the scheme to schedule aperiodic tasks with-
out compromising the hard real-time constraints of the
periodic task set. The off-line stage computes the optimal
and maximum allowed frequencies F ∗, F+, the scheduling
intervals IkSD and the periodic task CPU cycles that must
be executed per scheduling interval X = {X1, ..., Xα},
where Xk = {xk1 , . . . , xkn} represents the set of CPU cycles
xki that must be executed during the k − th scheduling
interval of task τi. Job execution is tracked during the
k−th interval by the system and passed as the input to the
adaptive scheduler (AS). AS is activated at the arrival or
ending time of an aperiodic task τai . At this time, the task’s
CPU cycles ccai and its relative deadline dai are sent to
AS. This information together with the outputs of the off-
line stage are used to compute the new frequency and the
CPU cycles (xkτa

i
) required to execute τai per scheduling

interval, such that Xk = Xk ∪ {xkτa
i
}. When τai finishes

its execution, the frequency is recalculated and the CPU
cycles demanded by τai are discarded.

Complexity The complexity of the On-line stage depends
on two algorithms. The priority level and the computation
of laxity in Alg. 1 is linear in the number of tasks. At most
n = |T | tasks will end its execution xki in the k−th interval
(there at most n tasks). Also at most n tasks will reach
their zero laxity. If q aperiodic tasks arrive in the k − th
interval, then the nested while loop ends in (n+ n+ q)×



Fig. 2. Minimum Energy Thermal Aware scheme for peri-
odic and aperiodic tasks.

(n + n) (number of events × number of operations).
Considering that the outer loop runs α = |ISD| times,
then the number of steps of this algorithm is polynomial
in the order of tasks. Alg. 2 runs on the arrival of an
aperiodic task and is polynomial in the order of tasks and
independent of the number of CPUs. Thus the proposed
algorithm is polynomial in the order of tasks.

Algorithm 2 Adaptive Scheduler (AS)

1: Input ccai , d
a
i – Aperiodic tasks parameters; exki – Cycles exe-

cuted in the system for all active tasks.
2: Output New Frequency Fn ∈ Fs = {F ∗, . . . , F+}, task CPU

cycles per IkSD, xkτai
Per-interval CPU cycles for execution of

the aperiodic task.
3: Initialize n = |T |, m = |P|, Fn = F ∗, q the aperiodic tasks

currently being attended.
BEGIN

4: if aperiodic task arrives then
5: Let rai = current time when τai arrives;
6: Compute required CPU cycles for active tasks from rai to

rai + dai ;

Cu =
|Xk|∑
i=1

(xki − ex
k
i ) +

Γ∑
γ=k+1

|Xγ |∑
i=1

xγi ;

where k is the current scheduling interval at rai and and Γ is
the scheduling interval at rai + dai ;

7: Cfree = m∗dai ∗F
+−Cu; the free CPU cycles in the interval

[rai , r
a
i + dai ];

8: if Cfree ≥ ccai then
9: Accept task τai ;

10: Fn = minimum F ∈ Fs such that F ≥ Cu+ccai
m∗da

i
;

ccr = ccai ;

xkτa
i

= min

{
m(|IkSD| − r

a
i )Fn −

|Xk|∑
i=1

(xki − ex
k
i ), ccr

}
;

in the k − th interval;
for γ = k + 1 to Γ do - in other intervals
ccr = ccr − xγ−1

τa
i

;

xγ
τa
i

= min

{
m(|IγSD|)Fn −

|Xγ |∑
i=1

xγi , ccr

}
;

end for
11: else
12: Reject task;
13: end if
14: end if
15: if an aperiodic task finishes then

Discard the CPU cycles associated to the aperodic task
Recalculate the new frequency;

end if
END

8. SIMULATIONS RESULTS

In order to show how to use the proposed scheme, a proof
of concept is presented. It consists of a set of sporadic
periodic tasks T = {τ1, τ2, τ3}, where τ1 = (2000, 4), τ2 =
(5000, 8), τ3 = (6000, 12), the hyperperiod is H = 24.
These tasks run on two homogeneous microprocessors
where the isotropic thermal properties and dimensions
of the materials are taken from Desirena-Lopez et al.
(2014). The processor supports four operating frequency
levels F = {0.5, 0.85, 0.95, 1}KHz. The temperature of
the surrounding air is set to 45oC and it is constant. The
maximum operating temperature level is set to Tmax1,2

=
50oC. The simulations herein presented consider CPUs
with caches and speculative mechanisms non-existent or
turned off. First, the minimum frequency for the periodic
task set is off-line computed according to Eq. (6), obtaining
Φ∗ = 0.8125, hence the selected frequency is F ∗ =
0.85kHz. Eq. (7) provides the maximum clock frequency
(F+ = 1kHz), so that the METARTS problem has a
solution. We assume that shceduling and context switch
overheads are included in the tasks’ WCET . Then, solving
the LPP in Eq. (8) for F ∗ yields the CPU cycles of
each task to be executed at each interval (xki ). Fig. 3
provides the schedule and temperature evolution produced
by the algorithm without considering aperiodic tasks.
Fig. 4 depicts the outcome of the algorithm and the
evolution of the temperature when an aperiodic task τa1 =
(2000, 10) arrives at ζ = 2, during the I1SD interval, thus
τa1 has an absolute deadline at ζ = 12. Since Cfree ≥ cca1 ,
the AS accepts the aperiodic task, and computes Fn =
950kHz ∈ Fs as the frequency at which the processors
must execute during interval [2, 12]. Fig. 4 shows that
temperature increases during this interval because of the
execution of the tasks at frequency Fn, and then it
decreases after ζ = 12 because a new (lower) frequency has
been calculated for the next interval. In both experiments,
with and without the aperiodic tasks, CPU1 achieves full
utilization, whereas CPU2 shows a slack (idle time) at
about ζ = 18, which translates into a temperature valley.
This slack appears because the exact optimal frequency
calculated in Eq. (6) is ceiled to a frequency belonging the
discrete set of frequencies available in the microprocessor
(Fn ∈ Fs).

9. CONCLUSIONS

This work shows that the TCPN formalism is a suitable
way to model real-time task scheduling problems consid-
ering thermal, temporal and energy restrictions. Upon a
TCPN model, we build a two-stage thermal-aware real-
time system in which a periodic task set executes at
minimum clock frequency to save energy and achieve max-
imum CPU utilization while honoring thermal constraints.
Aperiodic tasks are also dynamically accepted as long as
increasing the clock frequency allows to obtain a suitable
slack. Time and thermal constraints are preserved in all
cases. We have assumed that the aperiodic task (τai )
fits in the slack inside the hyperperiod (rai + dai ≤ H).
Immediate further work includes to relax that condition,
and to improve our slack reclaiming approach to decrease
context switching when accepting aperiodic tasks. Also,
the fact that our underlying TCPN model allows modeling
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Fig. 3. Temperature evolution (upper plot) for the periodic
schedule (lower plot) at CPU1 (above) and CPU2

(below). The maximum temperature produced by this
schedule is TCPU1,2

= 46.5oC
.
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Fig. 4. Temperature evolution (upper plot) for the periodic
schedule (lower plot) at CPU1 (above) and CPU2

(below) upon acceptance of the aperiodic task τa1 . The
maximum temperature produced by this schedule is
TCPU1,2 = 47.06oC

resource sharing, a tough problem in multicore real-time
scheduling, opens up a promising venue. Last, we still have
to measure how much energy we can save with respect to
other scheduling techniques for aperiodic tasks.
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