
On-line Scheduling in Multiprocessor Systems based on continuous
control using Timed Continuous Petri Nets

G. Desirena-López 1, C.R. Vázquez2, J.L. Briz3, A. Ramı́rez-Treviño1, and D. Gómez-Gutiérrez1 .

Abstract— This work presents a fluid-time scheduler based
on a sliding mode controller where the sliding surface is related
to fluid task executions. The scheduler is applied to a model of
tasks and CPUs designed with Timed Continuous Petri Nets
(TCPN) under the infinite server semantics (ISS). Also, the
paper proposes an implementation of this fluid scheduler as a
feasible discrete scheduler where the number of task migrations
and preemptions is bounded.

Keywords: TCPN, Modeling, Control, Scheduling.

I. INTRODUCTION
Modern embedded systems are increasingly more demand-

ing, mostly due to the large number of tasks they must
execute in a very short period, subject to real time and energy
constraints. Real-time schedulers assure that all tasks meet
their period and deadlines. They must be correct, but also
feasible to implement, and optimal in terms of CPU usage.

A real-time scheduler ensures that a task’s instance acti-
vates according to a period and finishes before a deadline.
With this purpose, some schedulers order tasks according
to a fixed or dynamic priority. Rate Monotonic (RM) and
Deadline Monotonic (DM) analysis ensure that a schedule is
correct if the periodic instances (jobs) of each task are given
a fixed priority according to their period (RM) or deadline
(DM) [1]. Alternatively, dynamic priority schedulers such
as EDF (Earliest Dead Line First) and LLF (Least Laxity
First) dynamically compute a job’s priority according to the
current system state. RM guarantees valid schedules on
uniprocessor systems at the cost of wasting about 30% of
the CPU time whereas EDF and LLF are optimal [1],
[2], but this optimality does not hold on multiprocessors [3],
[4]. Fair scheduling algorithms try to follow as closely as
possible the fluid schedule, i.e., a schedule in which each
task is executed at constant rate, to guarantee an optimal
schedule in multiprocessor systems [5]. Fair schedulers allow
a better control over the progress of each job while honoring
periods and deadlines, but their implementation entails a
large number of task preemptions (context switches), which
hampers performance in practice. Proportionate Fairness (P-
Fair) schedulers [6] are based on the rationale of fluid
schedulers. In P-Fair all tasks’ jobs are executed at an

*This work is partially supported by grants TIN2013-46957-C2-1-P and
T48 RG (Aragon Gov. and ESF).

1G. Desirena-López, A. Ramı́rez-Treviño and D. Gómez-
Gutiérrez are with the CINVESTAV-IPN Unidad Guadalajara,
Av. del Bosque 1145, CP 45019, Zapopan, Jalisco, Mexico
{gdesirena},{art},{dgomez}@gdl.cinvestav.mx

2C.R. Vázquez is with ITESM, Av. Ramón Corona 2514, CP 45201,Za-
popan, Jalisco, Mexico cr.vazquez@itesm.mx

3J.L. Briz is with the DIIS/I3A Univ. de Zaragoza, Marı́a de Luna 1 -
50018 Zaragoza, España. briz@unizar.es

approximately uniform rate by splitting them into sub-tasks
which run for a time quantum. Other scheduling algorithms
have emerged from this notion of proportionate fairness, like
PD [7], PD2 [8], DP − Fair [5] and BFair [9]. As all
fair schedulers, they are optimal in multiprocessor systems
but suffer from a large number of task preemptions and
migrations. Hence, while these algorithms are theoretically
optimal or high-performing, they are not feasible in real
applications. Moreover, they cannot easily incorporate some
continuous requirements demanded by modern embedded
systems such as power consumption or thermal issues.

The main contribution of this paper is to propose an
on-line fluid scheduler based on a sliding mode control
technique [10], capable of integrating the CPU thermal
models presented in [11]. We first propose a methodology
to model the period, deadline and CPU cycles of each task,
along with a set of CPUs, by means of a Timed Continuous
Petri Net (TCPN). Based on this model, we build the on-
line fluid scheduler. Through a Lyapunov stability analysis,
the fluid scheduling is guaranteed, so it is optimal. We also
introduce an algorithm to implement this fluid schedule as a
discrete scheduler, where the number of task migrations and
preemptions is bounded. We leverage the TCPN instanta-
neous marking to define priority firing rules and determine
how tasks are allocated to processors. We prove that the size
of the TCPN models increase linearly with the number
of tasks and the complexity of the proposed algorithm is
polynomial.

The paper is organized as follows. Section II provides
basic definitions. Section III explains the model of periodic
real-time tasks. Section IV introduces the CPU model, the
allocation of tasks to CPUs and the global model. The fluid
scheduler based on a sliding mode controller is presented in
Section V. Section VI presents a discretization of the fluid
scheduler. Section VII shows an illustrative example of a
multiprocessor system. Finally, Section VIII concludes the
paper.

II. FUNDAMENTALS

This section introduces basic definitions concerning Petri
nets and continuous Petri nets. An interested reader may also
consult [12], [13] to get a deeper insight in the field. In
the sequel, given a matrix A and sets of indices (or nodes)
I = {i1, ..., in} and J = {j1, ..., jm}, it will be denoted as
A[I, J] the matrix built with the elements in the rows related
to I and the columns related to J . The same notation will
be used with vectors. Furthermore, aj will be used to denote
the j-th element of vector a.

A. Timed continuous Petri nets

Definition 2.1: A (discrete) Petri net structure (PN) is a
graph described by a 4-tuple N = (P, T,Pre,Post) where
P and T are finite disjoint sets of places and transitions,
respectively. Pre and Post are |P | × |T | Pre− and
Post− incidence matrices, where Pre[i, j] > 0 (resp.
Post[i, j] > 0) if there is an arc going from pi to tj (resp.
going from tj to pi), Pre[i, j] = 0 (resp. Post[i, j] = 0)
otherwise.

Definition 2.2: A (discrete) Petri net system is the pair
Q = (N,M) where N is a Petri net and M : P → N∪ {0}
is the marking function assigning zero or a natural number
to each place. The value M [pi] is named the tokens residing
into pi. M0 is named the initial marking.

Definition 2.3: A timed continuous Petri net (TCPN) is a
time-driven continuous-state system described by the tuple
(N,λ,m0) where N is a PN structure and the vector λ ∈
{R+ ∪ 0}|T | represents the transitions rates determining the
temporal evolution of the system. Transitions fire according
to certain speed, which generally is a function of the tran-
sition rates and the current marking. Such function depends
on the semantics associated to the transitions. Under infinite
server semantics, the flow (the transitions firing speed, de-
noted as f(m)) through a transition tωi is defined as the
product of the rate, λi, and enab(ti,m), the instantaneous
enabling of the transition, i.e., fi(m) = λi enab(ti,m) =
λiminpj∈•ti(m[pj]/Pre[pj , ti]).
The firing rate matrix is defined by Λ = diag(λ1, ..., λ|T |).
For the flow to be well defined, every continuous transition
must have at least one input place, hence in the following we
will assume ∀t ∈ T, |•t| ≥ 1. The “min” in the above defini-
tion leads to the concept of configuration. A configuration of
a TCPN at m is a set of (p, t) arcs describing the effective
flow of each transition, in that case we say that pi constrains
tj for each arc (pi, tj) in the configuration. A configuration
matrix is defined for each configuration as follows:

Π(m) =

{ 1
Pre[i,j] if pi is constraining tj

0 otherwise
(1)

The flow through the transitions can be written in a
vectorial form as f(m) = ΛΠ(m)m. We can apply a
control action to the dynamical behavior of a PN system by
adding a term u to every transition ti such that 0 ≤ ui ≤ fi,
indicating that its flow can be reduced. Thus, the controlled
flow of transition ti becomes wi = fi − ui and the forced
state equation is

•
m = C[f − u] = Cw

0 ≤ ui ≤ fi
(2)

III. MODELING TASKS

In this work we consider that a) Tasks are periodic,
and their time periods are fixed and known; b) Tasks are
independent, meaning that there is no precedence in their
execution and that they do not share resources or interact
to each other; c) Each task’s execution time, given in CPU

cycles, is known and fixed; d) Each task has an associated
deadline. Since tasks are periodic, this deadline is relative to
the starting of the corresponding period. We formalise these
assumptions by considering a set of independent periodic
real-time tasks T = {τ1, ..., τn}, where each task τi =
(cci, di, ωi) consists of an infinite sequence of jobs that
are released according to a period ωi. The k − th job of
τi, denoted as τki , runs during cci CPU cycles, becoming
enabled at time (k − 1) · ωi. The job must be completed
before its deadline (k−1) ·ωi+di (k− th relative deadline).
We assume that there exists m identical processors and n
tasks. We also assume that all task parameters, including
task period and execution time are integers and that any task
can be preempted at any time. We define the hyper-period
as the period equal to the least common multiple of periods
H = lcm(ω1, ω2, . . . , ωn) of the n periodic tasks. A feasible
schedule can be repeated every hyper-period [1].

The proposed modeling methodology models each task as
the TCPN module of Fig. 1(a), which is explained below.

1) Modeling task execution: The period ωi of task τi
implies that, in average, 1

ωi
jobs arrive per second (i.e.,

arriving frequency). This is captured in the TCPN module
of Fig. 1(a) as the firing rate λωi = 1

ωi
of transition tωi .

2) Modeling task deadline: The relative deadline di of
task τi is represented in the model of Fig. 1(a) by the marking
di at place pdi .

3) Modeling duration of a task: The duration of a task
is represented in the TCPN model of Fig. 1(a) by the arc
going from transition tωi , representing the jobs arrival, to the
place pcci , representing the jobs that have arrived. The weight
cci of the arc is included so the marking at pcci represents the
jobs that have arrived (to be executed) in CPU cycle units.

(a)

...

(b)

Fig. 1. (a) TCPN module for task τi. (b) TCPN module for CPUj .

IV. MODELING TASK ALLOCATION CPU AND GLOBAL
MODEL

We assume in this paper that all CPUs have the same
capabilities, although this modeling methodology can be
applied to heterogeneous cores. Thus, any task in the
set T can be allocated to any CPU in the set P =
{CPU1, . . . , CPUm}. We also cling to the common assump-
tion that task migration and preemption have no cost and
every task’s job must execute sequentially on at most one
processor at any given instant in time.

A. Modeling task allocation to CPU

A single CPUj is modelled by the TCPN module of
Fig. 1(b), consisting of places pbusyj , pidlej and transitions
texecj , talloc1,j , ... , tallocn,j . The marking at place pidlej models
the number of available CPUj cycles per second (throughput
capacity). The initial marking at pidlej is the maximum
throughput µj of CPUj . Place pbusyj represents the busy
state of the processor, the marking at this place represents
the number of CPUj cycles per second reserved for tasks
execution (throughput being used). Transition texecj models
the CPUj execution rate. Transitions talloc1,j , ... , tallocn,j model
the allocation of tasks τ1 , ..., τn, respectively, to processor
CPUj .

...

...

Fig. 2. TCPN module allocation of n tasks to a single CPUj .

1) Building the global model: The global model is ob-
tained by merging the tasks models (Fig. 1(a)) and the
allocation CPUs models (Fig. 1(b)). The global model for a
single processor CPUj is depicted in Fig. 2. The arcs from
places pcci to transitions talloci,j represent that jobs of τi are
being allocated to processor CPUj . To merge the models,
we add places palloci and arcs going from talloci,j to palloci . The
marking of place palloci stands for the total amount of jobs
of τi that has been allocated to CPUj from the initial time.

The global model, encompassing n tasks and m CPUs,
is depicted in Fig 3. Note that the resulting global model is
a deadlock-free Petri net.

B. Fundamental equation of the global model

This equation dictates the dynamic evolution of the global
TCPN model (Fig. 3), and is given by:

•
m = CΛΠ(m)m− Ĉu

0 ≤ u ≤ (ΛΠ(m)m)[T alloc]
(3)

where Ĉ has the columns of C corresponding to transitions
talloci,j (denoted as T alloc) in Fig. 3. The flow through these
transitions controls the rate at which an scheduler allocates
jobs to each CPUj . The control vector u represents the
speed reductions (from the autonomous evolution) for the
allocation of jobs to CPUs, i.e., if u = 0 then tasks are
allocated according to the available jobs and CPUs (given

...... ...

...

Fig. 3. Global TCPN model of n tasks allocated on m CPUs.

by (ΛΠ(m)m)[T alloc]) but if u = (ΛΠ(m)m)[T alloc]
then no job is allocated.

V. FLUID SCHEDULING OF A SET OF REAL-TIME TASKS

Since the obtained global TCPN is modeled by dif-
ferential state equations, different control techniques may
be applied. This section proposes a fluid schedule based
on a sliding mode control technique [10]. From now on,
ζ represents the current time. The control approach herein
reported starts by computing the task fluid-schedule function:

FSCτi(ζ) =
cci
ωi
ζ (4)

According to the fluid algorithms [6] [9], this function
represents the optimal fluid execution of task τi. Through this
work, we will say that this function represents the execution
percentage of task τi at time ζ.

The execution error of task τi (denoted Eτi(ζ)) is the
difference between the marking of places palloci (total amount
of jobs of τi allocated) in the global TCPN model and the
optimal fluid execution.

Eτi(ζ) = malloc
i (ζ)− FSCτi(ζ) (5)

Thus, if Eτi(ζ) = 0, ∀ζ > ζa, then the marking in places
palloci is equal to the optimal fluid schedule; hence the firing
of transitions talloci,j represents the optimal task allocation to
CPU ′s. In order to bring the error to zero, for each task τi
and CPUj , the following continuous sliding-mode control
law is used [10]:

ualloci,j (ζ) =
[
1
2 + 1

2sign(Eτi(ζ))
]
falloci,j (ζ) (6)

where
sign(x) =

{
1 if x ≥ 0
−1 if x < 0

and
falloci,j (ζ) = λalloci,j min(mcc

i (ζ),midle
j (ζ))

When this control law is applied to the system (3), for each
task τi and CPUj , then each Eτi(ζ) becomes zero and the
fluid schedule meets the time constraints. This is formalized
in the following proposition.

Proposition 5.1: Let T and P be the sets of n tasks and
m processors, respectively, where the fluid execution tasks
FSCτi(ζ) and execution errors Eτi(ζ) are defined.

If the control law given by (6) is applied to the system
(3), for each task τi and CPUj , then the execution errors
converge to zero asymptotically.

Proof: In order to proof that each Eτi converges to zero
asymptotically, the following assumptions are made: first,
since the fluid schedule can allocate all the jobs in such a
way that they are executed in time by all the processors, the
model assumes that there are enough CPU cycles available
in each place pidlej , so these places do not restrict the flows
falloci,j , consequently falloci,j = λalloci,j mcc

i for each τi and
CPUj . Second, places pbusyj and pidlej do not affect the
control. Therefore, the global model will be analysed in
the sequel without considering these places. The controlled
flow of a transition talloci,j is walloci,j = falloci,j − ualloci,j , where
ualloci,j is the control action as defined in (6). Note that when
walloci,j = falloci,j −ualloci,j > 0, transition talloci,j is fired, i.e., jobs
of τi are being allocated to CPUj . Therefore, the evolution
of task τi is described by the following state variables:

•
m
ω

i = 0
•
m
cc

i = ci
ωi
−

m∑
j=1

walloci,j

•
m
alloc

i =
m∑
j=1

walloci,j

(7)

We have to drive the variables Eτi to zero by means of
the control actions ualloci,1 , . . . , ualloci,m . In order to prove the
asymptotic stability of (5), a Lyapunov function (see, for
instance, [14]) can be defined, satisfying V (0) = 0, V (x) >

0 and
•
V (x) < 0 ∀x 6= 0. The candidate Lyapunov function

V considered here is

V (Eτ1 , . . . , Eτn) = 1
2E

2
τ1 + . . .+ 1

2E
2
τn (8)

Note that V = 0 iff each Eτi = 0. Furthermore, V > 0
if any Eτi 6= 0. Thus, V can be considered a Lyapunov

function (and thus (5) is asymptotic stable) iff
•
V < 0 for

any Eτi 6= 0. To prove this, the derivative of V is computed
as:

•
V =

n∑
i=1

Eτi
•
Eτi

=
n∑
i=1

(
m∑
j=1

[
1
2Eτif

alloc
i,j − 1

2 |Eτi |f
alloc
i,j

]
− Eτi cciωi

)
(9)

Now, two cases are analyzed for each term of the first sum
(corresponding to each task):

m∑
j=1

[
1

2
Eτif

alloc
i,j − 1

2
|Eτi |falloci,j

]
− Eτi

cci
ωi

(10)

a) When Eτi is positive. The term (10) for the task τi
becomes −Eτi cciωi

. Note that 0 < cci/ωi, then the term
is negative.

b) When Eτi is negative. The term (10) for the task τi

becomes |Eτi |(cciωi
−

m∑
j=1

falloci,j).

Now, the flow falloci,j through each transition talloci,j

is computed as falloci,j = λalloci,j mcc
i . Thus, the term

above is negative iff cci
ωi
− λalloci mcc

i < 0. where
m∑
j=1

λalloci,j = λalloci . In order to prove this inequality,

it is required to compute a lower bound for mcc
i . For

this, the dynamic of mcc
i is represented as

•
m
cc

i = cci
ωi
−

m∑
j=1

(
falloci,j − ualloci,j

)
. Since Eτi < 0, then each control

action ui,j = 0. Thus,
•
mcc
i = cci/ωi − λalloci mcc

i . The
solution of this differential equation leads to

mcc
i (ζ) = cci

ωiλalloc
i

+
(
mcc
i (0)− cci

ωiλalloc
i

)
e−λ

alloc
i ζ

Therefore, mcc
i (ζ) is bounded, in fact mcc

i (ζ) >
min(mcc

i (0), cci/(ωiλ
alloc
i)). Assume that ωiλalloci >

1, i.e., the total allocation rate λalloci (not execution rate)
for task τi is larger than its arrival frequency 1/ωi. Thus,
since mcc

i (0) = cci then mcc
i (0) > cci/(ωiλ

alloc
i).

The bound for mcc
i (ζ) is then given by mcc

i (ζ) >
cci/(ωiλ

alloc
i), which implies cci/ωi − λalloci mcc

i < 0,
consequently (10) is negative.

Finally, since each term in the sum in (9) is negative then
•
V < 0.

A negative task error Eτi(ζ) reveals the existence of
unattended jobs, so the control (6) turns on transitions talloci,j

in order to allocate jobs to the processors. Otherwise, if
Eτi(ζ) is positive or zero, it means that the processors
are executing jobs on time, and the control turns off the
transitions talloci,j , i.e. stops allocating jobs. The complexity
of the fluid scheduler depends on the numerical method used
to solve the differential equation (3) (for instance, Runge-
Kutta, Euler’s Method, etc). All these methods and (3) are
solved in polynomial time at every integration step.

VI. ON-LINE DISCRETIZATION OF A FLUID SCHEDULE

We have proved that the fluid scheduler proposed in the
previous section is theoretically feasible (i.e, the execution
error converges to zero and tasks meet the time constraints).
As all fluid schedulers, it triggers an unfeasible number of
task preemptions and migrations. To deal with this issue we
provide a discrete implementation described by Algorithm 1.

Due to the periodicity of the schedule, we can limit the
schedule of the tasks up to the hyper-period (from time 0
to time H) [6]. As mentioned before, a job τki must be
completed before its k − th deadline sdki = (k − 1)ωi + di,
in absolute time. We define SDi = {sd1i , sd2i , ...} as the
set of all deadlines for all task’s jobs between zero and
H . By defining SD = SD1 ∪ ... ∪ SD|T |, the elements
of SD are renamed in ascendant order, according to their
value, as SD = {sd0, ..., sdr}. Algorithm 1 requires a time
period (quantum) Q, which is defined as the greatest common

divisor of the elements sdi ∈ SD and the values of the
function FSCτi evaluated at sdi .

Algorithm 1 On-line discretization of a fluid schedule
1: Input The TCPN and discrete PN of the set of tasks T , the ordered

set SD where any sdk ∈ SD is lower or equal than H . The quantum
Q. The task fluid-schedule functions FSCτi .

2: Output A feasible discrete schedule.
3: Initialize i = 1, sd = sdi, ζ = 0
4: while ζ ≤ H do
5: All tasks are preempted from the processors
6: Compute remaining jobs: REτi (ζ) = FSCτi (sd)−Mτi (ζ)
7: Compute the set of transitions tτi to be fired in the discrete model:

ET (ζ) = {tτi |REτi (ζ) > 0}
8: Compute the priority for every transition tτi in ET :

PRτi (ζ) = malloci (ζ)−Mτi (ζ)
9: for j = 1 to m do

10: Select tτa with the highest priority value PRτa in ET
11: Fire tτa in the discrete PN , assign task τa to processor j from

ζ to ζ +Q
12: Remove tτa from ET
13: end for
14: SIMULATE the global TCPN model from ζ to ζ +Q
15: Update time: ζ = ζ +Q
16: if ζ == sd then
17: i = i+ 1, sd = sdi
18: end if
19: end while

Algorithm 1 computes a discrete schedule from the fluid
schedule introduced in Section V. It requires of a new
discrete Petri net where this PN has one source transition tτi
and one sink place pτi per task τi. The firing of a transition
tτi , determined by the algorithm, means that Q CPU cycles
of task τi are allocated. The marking of a place pτi , denoted
Mτi , represents the total amount of CPU cycles of task τi
that has been allocated from the initial time, and it constitutes
the analogue of place palloci in the fluid model of Fig. 3. The
discrete schedule resulting from Algorithm 1 equals the fluid
schedule at every deadline time sdk ∈ SD, i.e. it ensures that
the discrete schedule meets all deadlines of all tasks.

If at any time ζ, sdi < ζ < sdi+1, it holds that
FSC(sdk) > Mτi(ζ) (the required fluid schedule at the end
of the interval is bigger than the current discrete schedule),
then τi must be allocated in a CPU . Thus the m tasks
with the current positive greatest remaining jobs execution
(REτi(ζ) = FSC(sdk)−Mτi(ζ)) and task priority function
PRτi(ζ) = malloc

i (ζ)−Mτi(ζ) must be allocated to a CPU .
In this paper, the value of malloc

i (ζ) can be replaced
by FSC(ζ) since they have the same value. However, we
use it here because in our target systems we will include
thermal characteristics, making these values no longer be
equal because we will have to balance thermal and temporal
trade-offs. Note that the algorithm executes I = H

Q times,
where H is the hyper-period, thus the loop in step 4 of
the algorithm runs I times. The instruction inside this loop
runs in polynomial time in the size of the transitions of the
TCPN . As mentioned in previous section, the execution
on the TCPN is polynomial and therefore the algorithm is
polynomial too.

Proposition 6.1: If a feasible fluid schedule is given as
input to Algorithm 1, then the resulting discrete schedule
has the following properties.

1) It meets task time constraints at every scheduling point
sdk ∈ SD.

2) The number of task migrations and preemptions is
bounded.

Proof: Part 1) Sentence 1.
From the definition of quantum, we know that the time

interval [sdk, sdk+1] is divided by the quantum into Dk+1
k =

(sdk+1−sdk)/Q time sub-intervals. From [6] we know that
the fluid schedule meets the task time constraints at every
time, which is specially true at the sdk points. Moreover,
since the fluid schedule is feasible then, at time sdk, the
CPU ′s are capable to execute the required percentage
FSCτa(sdk) of any task τa. Assuming that there exist m
processors and n tasks, and since the m processors are
capable to execute the fluid schedule, then:

m ·Dk+1
k ≥

n∑
i=1

(FSCτi(sdk+1)− FSCτi(sdk)) (11)

At time zero, both the fluid schedule and discrete schedule
have executed zero percentage of each task, thus the discrete
schedule meets task time constraints at sd0.

Now, we will show that if the discrete schedule meets the
fluid schedule at any sdk then it meets the fluid schedule at
any sdk+1 as well.

Proceeding by contradiction, assume that the discrete
schedule does not meet the fluid schedule at sdk+1. Then the
remaining jobs functions are positive for some tasks (i.e. the
discrete PN has executed these tasks in a lower percentage
than the fluid one). For the sake of explanation, suppose
that there exists only one task τa such that REτa(sdk+1) =
Na > 0. Since (11) holds, then the processors have the
capability to execute the required percentage of tasks at time
sdk+1. However, since τa was not allocated in the required
percentage (FSCτa(sdk+1)), then τa had some remaining
jobs at time ζ = sdk+1 − Q. Therefore, two cases are
possible:

Case 1: If Na = αQ, where α = 1 (i.e., PRτa = Q)
In this case two possibilities arise:
a) τa was fired at time ζ, then τa finishes the required

percentage of execution, i.e., REτa(sdk+1) = 0, which is a
contradiction.

b) τa was not allocated at time ζ. Thus, according to step
6 of the algorithm, m tasks, different from τa, were found
having priority larger or equal than that of τa, thus they were
allocated.

If the behavior of the algorithm is analyzed at time ζ−Q
(a previous time step), it will result that m tasks were found,
different than τa, having larger or equal priorities than that of
τa (otherwise, task τa would be allocated and thus finished
its execution). By repeating this analysis, going back in time
until sdk, it will be obtained that REτa(sdk) = Na > 0,
i.e., the discrete schedule does not meet the fluid schedule
at sdk, a contradiction.

Case 2: If Na = αQ,α > 1, then at time ζ, PRτa(ζ) >
PRτi(ζ), for some task τi 6= τa. Thus τa was allocated at
time ζ and α = α−1. Let ζ = ζ−Q. If sdk is reached then

REτa(sdk) = Na > 0, i.e., the discrete schedule does not
meet the fluid schedule at sdk, a contradiction, otherwise if
α− 1 == 1 then go to Case 1.

Part 2) Sentence 2.
Since the hyper-period H is divided into I = H

Q subinter-
vals and task migrations and preemptions occur at the end
of this subintervals then the number of task migrations and
preemptions is bounded by I .

VII. EXAMPLE

There exists a set of tasks: T = {τ1, τ2, τ3}, where
τ1 = (9, 10, 10), τ2 = (9, 10, 10), τ3 = (8, 40, 40)
running on two processors are considered. Fig. 2 shows the
TCPN global model for three tasks and two processors.
The hyper-period is H = 40. Applying the fluid controller,
the fluid schedule, marking in malloc

i (ζ), is obtained. Fig. 4
shows the fluid schedule and that the errors Eτi converge to
zero, therefore the fluid schedule based on the sliding-mode
control meets the time constraints.

0 10 20 30 40
0
9

18
27
36
45

time (sec)

FSCτ
1 m

1
alloc

0 20 40
−0.1

0

0.1

time (sec)

 Eτ
1

0 10 20 30 40
0
9

18
27
36
45

time (sec)

FSCτ
2 m

2
alloc

0 20 40
−0.1

0

0.1

time (sec)

 Eτ
2

0 10 20 30 40
0
2
4
6
8

10

time (sec)

FSCτ
3 m

3
alloc

0 20 40
−0.1

0

0.1

time (sec)

 Eτ
3

Fig. 4. A feasible fluid schedule. The execution error Eτi converges to
zero due the control action.

0 5 10 15 20 25 30 35 40
0

1

time (sec)

CPU
2

τ
1

τ
2

τ
3

0 5 10 15 20 25 30 35 40
0

1

time (sec)

CPU
1

τ
1

τ
2

τ
3

Fig. 5. Discretization of the fluid schedule for CPU1 and CPU2.

In Algorithm 1 SD = {10, 20, 30, 40} and Q = 1. The
computed discrete schedule is depicted in Fig. 5. Note that at
every sd ∈ SD the accumulated tokens in malloc

i (sd) meets
the fluid schedule requirements. For instance at sd = 10, the
fluid schedule indicates that task τ1 requires 9 time units.
Analyzing Fig. 5, τ1 is executed 1 time units in CPU1 from
ζ = 0 to ζ = 1 and 3 time units in CPU2 from ζ = 1
to ζ = 4 and finally 5 time units in CPU1 from ζ = 5 to
ζ = 10, thus τ1 is executed 9 time units at sd = 10.

VIII. CONCLUSIONS
We propose a fluid scheduler based on a sliding mode

control technique, designed to easily integrate thermal re-
strictions in the near future. The scheduler is derived from a
TCPN model of tasks and CPUs, which constitutes itself
a modeling methodology for fluid schedulers in real-time
systems. Moreover, we present a discrete implementation of
the fluid scheduler, which allows reducing task switching and
migration. The scheduler here presented shares with P-fair
algorithms their ability to exploit CPU time. Furthermore,
the scheduler keeps the number of context switches and
migrations reasonably low, by solving the control equation
only upon the jobs’ deadlines, profiting from the qualities
of deadline partitioning algorithms. Future work will address
the design of fine thermal-aware schedulers using this model.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
no. 1, pp. 46–61, 1973.

[2] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, 2004.

[3] S. K. Dhall and C. Liu, “On a real-time scheduling problem,”
Operations research, vol. 26, no. 1, pp. 127–140, 1978.

[4] M. L. Dertouzos and A. K.-L. Mok, “Multiprocessor online scheduling
of hard-real-time tasks,” Software Engineering, IEEE Transactions on,
vol. 15, no. 12, pp. 1497–1506, 1989.

[5] A. Chandra, M. Adler, and P. Shenoy, “Deadline fair scheduling:
bridging the theory and practice of proportionate pair scheduling in
multiprocessor systems,” in Real-Time Technology and Applications
Symposium, 2001. Proceedings Seventh IEEE, 2001, pp. 3–14.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[7] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton, “Fast scheduling of
periodic tasks on multiple resources,” in ipps. IEEE, 1995, p. 280.

[8] J. H. Anderson and A. Srinivasan, “Mixed pfair/erfair scheduling of
asynchronous periodic tasks,” in Real-Time Systems, 13th Euromicro
Conference on, 2001. IEEE, 2001, pp. 76–85.

[9] D. Zhu, D. Mossé, and R. Melhem, “Multiple-resource periodic
scheduling problem: how much fairness is necessary?” in Real-Time
Systems Symposium, 2003. RTSS 2003. 24th IEEE, 2003, pp. 142–151.

[10] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-
mechanical systems. CRC press, 2009, vol. 34.

[11] G. Desirena-Lopez, C. R. Vázquez, A. Ramı́rez-Treviño, and
D. Gómez-Gutiérrez, “Thermal modelling for temperature control in
MPSoC’s using fluid Petri nets,” in IEEE Conference on Control
Applications part of Multi-conference on Systems and Control, 2014.

[12] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge Tracts
in Theoretical Computer Science 40, 1995.

[13] M. Silva and L. Recalde, “Redes de Petri continuas: Expresividad,
análisis y control de una clase de sistemas lineales conmutados,”
Revista Iberoamericana de Automática e informática Industrial, julio
2007.

[14] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New
Jersey, 1996, vol. 3.

