Convolutional Sparse Coding for High Dynamic Range Imaging

Ana Serrano1 Felix Heide2 Diego Gutierrez1 Gordon Wetzstein2 Belen Masia1,3

1 Universidad de Zaragoza 2 Stanford University 3 MPI Informatik

Abstract

Current HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) modifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single image with spatially-varying pixel exposures. In this paper, we propose a novel algorithm to recover high-quality HDRI images from a single, coded exposure. The proposed reconstruction method builds on recently-introduced ideas of convolutional sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed algorithm achieves higher-quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze algorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI coding with a custom hardware platform.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture—

1. Introduction

One of the fundamental characteristics of a sensor is its dynamic range: the interplay of full-well capacity, noise, and analog to digital conversion. The ability to simultaneously record and distinguish very low signals alongside extremely bright scene parts is critical for many applications in scientific imaging, microscopy, and also consumer photography. Unfortunately, the hardware capabilities of available image sensors are insufficient to capture the wide range of intensities observed in natural scenes. This has motivated researchers to develop computational imaging techniques to overcome the dynamic range constraints of sensor hardware by...
co-designing image capture mechanisms and post-processing algorithms.

Today, high dynamic range (HDR) photography is well-established and usually done via one of three general approaches: sequentially capturing and subsequently fusing multiple different exposures (e.g., [MP95, DM97]), capturing different exposures simultaneously with multiple sensors (e.g., [TKTS11]), or coding per-pixel or per-scanline exposures within a single image with appropriate reconstruction algorithms [NM00, NN02, GHMN10, WH110, KGBK13, HST∗14, ZSF∗15]. Whereas sequential image capture is easily afforded by existing cameras, this method makes it challenging to capture dynamic scenes and usually requires additional motion stabilization and de-ghosting techniques. Multi-sensor solutions are elegant, but more expensive and they require precise calibration. In this paper, we advocate for coded pixel exposure techniques and propose a new reconstruction algorithm for this class of computational cameras. Our approach builds on recent advances in convolutional sparse coding and reconstruction techniques. We show that a naive application of traditional, patch-based (i.e. non-convolutional) sparse reconstruction techniques [LBRN07, CENR10] struggles to deliver high image quality for high contrast scenes. We make the key observation that convolutional sparse coding (CSC) (e.g., [KSIB∗10]), is particularly well-suited for the type of high-contrast signals present in HDR images. Therefore, we pose the HDR recovery problem as convolutional sparse coding problem and derive necessary formulations to solve it efficiently. We make the following contributions:

- We introduce convolutional sparse coding (CSC) for high dynamic range image reconstruction.
- We propose forward and inverse methods that are tailored to recovering a high-contrast (HDR) image from a single, coded exposure photograph.
- We demonstrate improved image quality over other existing approaches and over a naive application of sparse reconstruction techniques to HDRI. We also evaluate algorithmic parameters, analyze different exposure coding schemes, and interpret HDR image features.
- We build a prototype coded exposure camera and demonstrate the utility of our algorithm using data captured with this prototype.

2. Related Work

One of the most common techniques to compute HDR images is exposure bracketing. This technique, also known as multi-bracketing, merges several LDR images of the scene taken with different bracketing exposures, into the final HDR image [MP95, DM97]. One of the main drawbacks of this technique is that, if either the camera or some scene elements move during the extended capture process, ghosting artifacts appear. There have been many algorithms designed to remove these artifacts by means of alignment and de-ghosting [SS12]. Some recent works include the use of optical flow [ZBW11], patch-based reconstruction [GGC∗09, SKY∗12], or modeling the noise distribution of color values [GKT13]. The problem is further aggravated for HDR video (e.g., [KSB∗13, MG11]): on the one hand, optical flow solutions fail in the presence of complex motion, on the other hand patch-based methods lack built-in temporal coherence. In contrast, the proposed convolutional sparse coding approach can produce an HDR image from a single shot, thus removing the need for alignment, motion estimation or, in general, any de-ghosting strategy.

Other works rely on multiple cameras [SBB14, BRG∗14], enhanced sensor control electronics performed in simulation [PZ13], or otherwise highly modified hardware designs [MRK∗13, ZSF∗15]. For instance, Tocci et al. [TKTS11] and Kronander et al. [KGBK13] achieve single-shot HDR by acquiring several LDR images with different sensors using a beam splitter. Our method uses an off-the-shelf camera with a simple mask on the sensor or using a per-pixel coding exposure, which greatly reduces complexity, size and overall cost.

Previously proposed single-shot approaches rely on exposures that vary per image scanline, for example implemented with coded electronic shutters [CKL14], or sensors which allow different gain settings simultaneously for alternating pixel rows [GHMN10, HKU14, HST∗14]. In all of these cases, an image is reconstructed using sophisticated interpolation methods, and often relies on additional image priors. These methods present a trade-off between the dynamic range that can be recovered with only two different exposures, and the quality of the final reconstruction, determined by how far apart the exposures are chosen. Other spatially-varying gain methods aim at capturing increased dynamic range from a single image, using a per-pixel coded exposures. Nayar and colleagues [NM00, NN02] place a mask of spatially varying neutral density filters on the sensor, effectively coding different exposures for adjacent pixels according to the optical pattern of the mask. However, this method is limited by interpolation artifacts and aliasing resulting from the regular pattern of the mask. The work by Aguerrebee and colleagues [AAD∗14] leverages recent advances in solving inverse problems [YSM12] together with a spatially-varying mask, but still relies on a complex MAP Expectation-Maximization optimization framework which can lead to artifacts in scenes of high dynamic range.

In this paper, we propose a sparse reconstruction framework that takes advantage of the compressibility of visual information to reconstruct a high dynamic range image from a single shot with pixel-coded exposure. Sparse reconstruction has been used before in the context of rendering [SD11], and image reconstruction and acquisition [SD09b, MUK15], including high-speed video [LGH∗13, SGM15], dual photography [SCG∗05, SD09a] and light transport acquisition [PML∗09], light field capture [MWBR13], hyperspectral imaging [LLWD14, JCK16], or even extended dynamic range imaging using a Fourier basis [SBN∗12, SKZ∗13]. However, we do not rely on a conventional, patch-based learning and reconstruction method as most of these works do because it has certain limitations for the recovery of HDR images. Instead, we propose a novel formulation based on convolutional sparse coding (CSC). CSC has been used for learning hierarchical image representations [KSIB∗10, ZTF11, CPS∗13] and to solve transient imaging problems [HXL∗14, HDL∗14]. We build on the basic idea of convolutional sparse coding and make it practically coded for single-shot HDR image acquisition.
3. CSC framework for HDR reconstruction

In this section, we offer a brief review of sparse coding techniques and introduce a new formulation of convolutional sparse coding tailored to the problem of high dynamic image reconstruction from a single image with spatially-varying pixel exposures.

3.1. Review of sparse coding and reconstruction

The traditional problem faced in sparse reconstruction is that of solving an underdetermined system of linear equations \(y = \Phi \alpha \) in which \(\alpha \in \mathbb{R}^n \) is the signal we are interested in, \(y \in \mathbb{R}^m \) is the signal we actually can measure, and \(\Phi \in \mathbb{R}^{m \times n} \) is the sensing matrix, such that \(m < n \).

Solving the sparse reconstruction problem relies on the assumption that the signal is sufficiently compressible in some basis or dictionary \(\Lambda \in \mathbb{R}^{n \times f} \). This implies that \(\alpha = A s \), with most coefficients of \(s \in \mathbb{R}^f \) being zero or close to zero. This dictionary is often learned from a training set representative of the images of interest\(^\dagger\) [AEB06, MBPS09]. We can then recover \(\alpha \) under certain conditions by solving the following minimization problem [Ela10]:

\[
\min_s \|s\|_1 \quad \text{subject to} \quad \|y - \Phi A s\|_2 \leq \epsilon
\]

(1)

where \(\epsilon \) represents uncertainties in the measurements, such as sensor noise. This minimization is solved in a patch-based manner, that is the image is divided into a series of overlapping patches and each patch is reconstructed individually using Eq. 1. All the reconstructed patches are subsequently merged, for example by computing a per-pixel average, to yield the final result.

A drawback of dictionary-based sparse coding approaches is that important spatial structures of the signal of interest can be lost due to the subdivision into mutually-independent patches. Further, patches (atoms) of the dictionaries learned with this approach are often redundant and contain shifted versions of the same features. This can be seen in Figure 2 (left), which shows sample atoms of a dictionary learned from HDR images. Moreover, as we show in Section 4.2 and Figure 5, due to the nature of the mathematical formulation (a linear combination of learned patches), these patch-based approaches can fail to adequately represent high-frequency, high-contrast image features, which are particularly important in HDR images.

An alternative to patch-based approaches is CSC, which instead is based on an image decomposition into spatially-invariant convolutional features, as explained in the following. Compared to the atoms of a dictionary, the learned filters of our CSC scheme (Figure 2 (right)) show a much richer variance (e.g., they span a larger range of orientations), which leads to better reconstructions.

Convolutional sparse coding models the signal of interest \(\alpha \in \mathbb{R}^n \) as a sum of sparsely-distributed convolutional features [HHW15], that is \(\alpha \) is modeled as:

\[
\alpha = \sum_{k=1}^{K} d_k * z_k,
\]

(2)

\(^\dagger\) Alternatively, well-explored sparsity bases, such as the DCT or wavelets, could be used.

In this case, the dictionary is a convolutional filter bank formed by filters \(d_k \) of fixed spatial support \(\sqrt{p} \times \sqrt{p} \), while \(z_k \) are sparse feature maps of size \(\sqrt{n} \times \sqrt{n} \).

Consequently, the signal recovery can be performed by solving

\[
\argmin_{d, z} \frac{1}{2} \|x - \sum_{k=1}^{K} d_k * z_k \|_2^2 + \beta \sum_{k=1}^{K} \|z_k\|_1
\]

subject to \(\|d_k\|_2^2 \leq 1 \quad \forall k \in \{1, \ldots, K\} \).

(3)

Heide and colleagues [HHW15] generalized this formulation to be able to handle incomplete data, as modeled by the general linear operator \(M \):

\[
\argmin_{d, z} \frac{1}{2} \|x - M \sum_{k=1}^{K} d_k * z_k \|_2^2 + \beta \sum_{k=1}^{K} \|z_k\|_1
\]

subject to \(\|d_k\|_2^2 \leq 1 \quad \forall k \in \{1, \ldots, K\} \).

(4)

They also proposed a technique for efficiently solving this problem via splitting of the objective function.

3.2. HDR image formation model

Based on the film reciprocity equation [DM97], we can describe the image formation model at the sensor as:

\[
y = f(p * \Delta t \cdot L)
\]

(5)

where \(y \in \mathbb{R}^n \) is the vectorized image captured at the sensor, \(\Delta t \) is the exposure time, \(L \in \mathbb{R}^{p \times p} \) represents radiance values, and the function \(f \) models the camera response. The convolution by \(p \) is modeling the effect of the point spread function (PSF) of the optical system, which can also be expressed as a multiplication by a convolution matrix \(P \). Note that we use radiance \(L \) instead of irradiance since almost all modern cameras provide a nearly constant mapping between both magnitudes, compensating for angular effects [DM97, KMH95]. We optically modulate the light arriving at each pixel by placing a coded transmissivity mask \(\Omega \) on the sensor or by applying a spatially-coded exposure readout. This can be formulated as

\[
y = f(\Omega P \Delta t \cdot L)
\]

(6)

where \(\Omega \in \mathbb{R}^{n \times n} \) is a diagonal matrix containing the modulation code of the mask. For RAW images, we can assume a linear response of the digital sensor with respect to irradiance for all non-saturated pixels [LMS\(^\dagger\)13]. Thus, we can rewrite Equation 6 as

...
\[y = \zeta \Omega p \]
where \(\zeta \) is a scale factor modeling the linear response of the sensor and the influence of exposure time \(\Delta t \). This scaling factor (and thus absolute radiance values) could be recovered by imaging a calibrated light source and scaling all radiance values accordingly. In our context, we aim at obtaining relative radiance values, therefore we can remove \(\zeta \) and rewrite Equation 7 in normalized form as:

\[y = \Omega p \]
(7)

where \(\Omega \) represents relative radiance values. The mask \(\Omega \) will ensure that pixels are sampled with effectively different exposure values, so that in all image regions at least some of the pixels properly sample the dynamic range. The sparse reconstruction step described next will be in charge of obtaining the radiance values from these differently sampled pixels.

3.3. Convolutional sparse HDRI coding

Equation 4 allows for the recovery of contrast-normalized images in which part of the data is missing or unreliable, as given by matrix \(M \). In the case of HDR reconstruction, however, our captured image \(y \)—as given by Eq. 7—does not only have missing or unreliable data, but also differently exposed pixels due to matrix \(\Omega \). In the case of HDR imaging the unreliable data \(M \) corresponds to both saturated and noisy pixels. Incorporating the varying exposures \(\Omega \) we pose the convolutional reconstruction of radiance values as:

\[
\argmin_{z} \frac{1}{2} \| y - \Omega M \sum_{k=1}^{K} d_k \ast z_k \|^2_2 + \beta \sum_{k=1}^{K} \| z_k \|_1
\]
(8)

where \(\beta \) controls the relative weight of the sparsity term. Note that, in contrast to Eqs. 3 and 4, we optimize only for \(z \), since we assume that we already learned a dictionary of filters \(d \).

The dictionary of filters \(d \) is learned using Eq. 4, and some of the learned filters are shown in Figure 2 (right). We learn the filters from a set of LDR images, after performing a local contrast normalization on these images. This amounts to learning from whitened data, but also differently exposed pixels due to matrix \(\Omega \). We learn the filters corresponding to both saturated and noisy pixels. Incorporating the varying exposures \(\Omega \) we pose the convolutional reconstruction of radiance values as:

\[
\argmin_{z} \frac{1}{2} \| y - \Omega M \sum_{k=1}^{K} d_k \ast z_k \|^2_2 + \beta \sum_{k=1}^{K} \| z_k \|_1
\]
(9)

For more details on this transformation please refer to [HHW15, Sec. 2.1 and 2.2]. Once this is done, the modified ADMM algorithm to solve for \(z \) in our case is shown in Algorithm 1. The update in line 2 of the algorithm is solved in the spectral domain, and thus the additional smooth constraint does not increase the computational cost significantly w.r.t. the original formulation [HHW15]. Also, the filter size does not matter in our case, since we are performing the filter inversion in the frequency domain. This would not be computationally efficient with traditional CSC methods such as that of Szlam et al. [SKL10]. Finally, \text{prox}_{f_k} \) refers to the proximal operator of a function \(f \) as described in Parikh and Boyd’s work [PB14].

Algorithm 1 ADMM for HDR recovery

1. for \(k = 1 \) to \(V \) do
2. \[
y^{k+1} = \argmin_{y} \| y - Ky + \lambda y \|^2_2 + \lambda_{d} \| \nabla z_{K+1} \|^2_2
\]
3. \[
z^{k+1} = \text{prox}_{f_k} \left(K y^{k+1} + \lambda x^{k+1} \right)
\]
4. \[
\lambda^{k+1} = \lambda^{k} + \left(K y^{k+1} - y^{k+1} \right)
\]
5. end for

4. Analyzing convolutional sparse HDRI coding

In this section, we provide an analysis of the proposed framework, including choice of coded exposure patterns and algorithmic parameters. We also show advantages of this formulation over traditional, patch-based sparse reconstruction for HDR capture.
4.1. Design of coded exposure patterns

There are several factors to take into account when designing the optical mask \(\Omega \). First, it needs to have a high light throughput, to avoid noise and reduce required exposure time; second, its per-pixel transmissivity values \(e_i \) should cover a wide range of exposures (that is, \(e_{max}/e_{min} \) should be large); and third, it should facilitate practical implementation. We tested several configurations for the mask over a set of seven different images; in particular, these configurations were: binary, Gaussian, uniform, uniform with four fixed exposures, fixed pattern with four exposures, and interleaved exposure. In the following we detail the formulation for each mask, the motivation behind its testing, and its performance.

We initially tested and compared the performance three optical masks: a binary mask, a mask where exposure values are drawn from a Gaussian distribution \(\Omega_{G} = \{e_i ; e_i \sim N(0.6, 0.1)\} \), and a mask obtained by drawing values from a uniform distribution \(\Omega_{U} = \{e_i ; e_i \sim U(0, 1)\} \) . The reconstruction results are shown in Figure 3. The binary mask is limited when modulating the incoming light, and, as a result, is very limited in terms of the recovered dynamic range; large saturated areas, for instance, will be impossible to recover since all the pixels will be degraded due to the binary sampling. Both the uniform and the Gaussian masks yield good results, and choosing between them represents a trade-off between transmissivity and dynamic range. The Gaussian mask offers better light throughput, but a more limited recoverable dynamic range: most of the values of the Gaussian distribution will be close to the mean, with very low values. As a result, large bright areas (such as in Figure 3, around the sun) may still remain saturated. A uniform mask allows recovery of a larger dynamic range because it more uniformly samples the range of exposures, minimizing the risk of large under- or over-exposed areas even in scenes of very high dynamic ranges.

While a uniform mask works well in practice, for a practical hardware implementation having a low number of discrete exposure values is beneficial. We therefore compare the uniform mask \(\Omega_{U} \) with a uniform 4-exposure mask \(\Omega_{F} \), that is one in which each pixel randomly takes one of four exposure values \(\{e_1, e_2\} \). We choose the exposure values such that the ratio \(e_{max}/e_{min} \) covers 6 f-stops, i.e., \(e_2/e_1 = 2^6 \), this, with the dynamic range of 1000:1 that a standard CMOS sensor has [EG02], allows us to recover up to 16 stops in dynamic range. Figure 4 shows the quality of the resulting reconstruction for \(\Omega_{U} \) and \(\Omega_{F} \), which can be seen to be very similar in both. Thus, \(\Omega_{F} \) allows us to recover a very similar range to the uniform one, without artifacts, and has an easier implementation. Consequently, in the remainder of the paper, we opt for a uniform, 4-exposure pattern (\(\Omega = \Omega_F \)), since it offers the best trade-off between quality of the results—in terms of recovered dynamic range and absence of artifacts—and, ease of implementation in hardware. The exception to this is our hardware prototype (Section 5.1): since it exhibits significant light loss (mainly due to the LCoS and the beamsplitter) we do use a Gaussian mask to minimize the impact of the reduced light throughput. However, future chip designs with built-in per-pixel exposure will overcome this prototype’s limitations; taking this into account the best option among the configurations we tested is \(\Omega_F \).

Additionally, to highlight the versatility of our reconstruction framework, we tested two additional exposure patterns which have been used before in the context of HDR imaging. Their results are also shown in Figure 4 (in the two rightmost images). In particular, we show a reconstruction result for a fixed pattern \(\Omega_F \), using four exposures (that is, the mask shows a repeating, fixed \(2 \times 2 \) pattern), and a result for an interleaved exposure pattern. The former has been proposed before for HDR imaging, but with the reconstruction done by means of interpolation [NM00], which can lead to aliasing effects. The latter is inspired by the Magic Lantern software package, which offers a firmware upgrade to capture an interleaved exposure consisting of alternating rows with two different exposures \(\Omega_F \) for some off-the-shelf cameras. Our framework allows for a plausible result even with these exposure patterns.

4.2. Advantage of CSC HDRI over patch-based approaches

Patch-based sparse reconstruction approaches have been widely used in computational imaging problems [LGH13, MWBR13, LLWD14]. In this section, we illustrate and explain how directly applying such approaches to the problem of HDR reconstruction
4.3. Optimization parameters

As explained in Section 3.3, \(\beta \) controls the relative weight of the sparsity term with respect to the data term (see Equation 11). Increasing the value of \(\beta \) will therefore result in a degradation of the high frequencies in the reconstructed scene, since the feature maps \(z \) will be too sparse to represent fine details. Decreasing \(\beta \), on the contrary, will lead to an excessive relative weight of the data term, which can result in artifacts due to approximations of non-linearities of the process (such as the quantization). Figure 6 shows this behavior. We choose an intermediate value of \(\beta \), \(\beta_{\text{chosen}} = 1.5 \cdot 10^{-5} \), which we use in all the reconstructions shown in this work.

The other relevant parameter in the optimization is the relative weight of the quadratic smoothness term, \(\lambda_\alpha \) in Equation 11; we choose \(\lambda_\alpha = 0.5 \cdot 10^{-5} \). In this case, it is important that a good estimate of the offset term \(z_{K+1} \) is given as initial value to the optimization. We provide a blurred version of the captured LDR image divided by the optical mask, which yields good results and fast convergence.

5. Results

We show here reconstruction results using both existing HDR images\(^\dagger\), and data captured with our prototype camera. All results shown have been reconstructed using our single-shot method described in this paper, with the same optical mask \(\Omega_\Omega \) described in Section 4.1, consisting of four randomly sampled exposure values divided by the optical mask, which yields good results and fast convergence.

\(\dagger \) We use images from the HDR Photographic Survey (http://ritmcsrl.org/fairchild/HDR.html), and the EMPA HDR Image Database (http://www.empamedia.ethz.ch/hdrdatabase/index.php).

\(\ast \) Small numbers indicate a smaller relative weight of the quadratic smoothness term, \(\lambda_\alpha \), while large numbers indicate a smaller relative weight of the sparsity term, \(\lambda_\beta \).

\(\dagger \) We use images from the HDR Photographic Survey (http://ritmcsrl.org/fairchild/HDR.html), and the EMPA HDR Image Database (http://www.empamedia.ethz.ch/hdrdatabase/index.php).

\(\ast \) Small numbers indicate a smaller relative weight of the quadratic smoothness term, \(\lambda_\alpha \), while large numbers indicate a smaller relative weight of the sparsity term, \(\lambda_\beta \).
Figure 7: Top row: Recovered HDR images from a single-shot coded image (tone mapped using [MDK08]), and PSNR values. The insets show the squared, per-pixel difference with respect to the ground truth luminance. Bottom row: False color (split) images depicting luminance of the original scene, and of our reconstructed scene; we use a base-2 logarithm to properly display the extremely large dynamic range.

Figure 8: Additional results obtained by our technique for two HDR scenes. Top row: tonemapped HDR image (using [MDK08]). Middle row: Normalized luminance plots for the corresponding marked scanlines for our recovered image (green curve) and the ground truth image (blue curve). Bottom row: Close-up of two exposures of the corresponding highlighted regions, displaying very high-contrast edges.

\[\frac{c}{c}\] 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.
method is able to recover scenes with very high dynamic range, faithfully reproducing contrast in the original scene. More reconstructed scenes can be found in Figure 8, in which we show our reconstructed HDR image (top row), normalized luminance of sample scanlines, both recovered and ground truth (middle row), and two exposures of the reconstructed scene to better show the quality of the reconstruction across the dynamic range, including the challenging case of high-contrast sharp edges (bottom row).

Different from other common spatially varying exposure methods, our approach does not rely on interpolation of the captured samples to reconstruct the image. Instead, it exploits information of the structure of natural images through the learned convolutional filter bank, which greatly minimizes the presence of visible artifacts in areas of high contrast or very fine detail. We show this by explicitly comparing our results against the spatially varying exposure methods of Nayar et al. [NM00] and Hajisharif et al. [HKU14], which makes use of the Magic Lantern software to capture interlaced, dual-ISO images. Our method preserves edges better, minimizing the aliasing artifacts that arise from the trade-off between spatial resolution and dynamic range in Nayar’s method, while Hajisharif’s method has difficulties recovering thin structures, such as the small branches of the tree (Figure 9).

Our technique can be applied to the reconstruction of HDR animated scenes as well, using the same optical code for each frame. Our reconstruction framework yields a very faithful recovery of the original signal, naturally leading to temporal coherence, without the need for explicit enforcement. We show this in Figure 10, using an existing HDR video from the LiU HDR video repository, and also include this video in the supplementary material. The HDR video recovering is performed frame by frame from LDR capture simulations from the aforementioned HDR video.

Finally, our framework can also be used for compression of HDR images. Traditional techniques used for compression of images can fail when applied to HDR images, due to the high-contrast sharp edges that can be present in them. Consequently, techniques have been developed to compress this type of content [MKMS04]. Our framework allows for compression of HDR images, since we can represent them with a set of sparse feature maps. We have shown in Figure 5 how for HDR content we avoid artifacts that appear when codification and reconstruction with patch-based schemes is used. Note that DCT was also proven to not work well by Mantuik et al. [MKMS04], requiring more complex processing for compression.

5.1. Hardware prototype implementation

Per-pixel exposure cameras are not commercially available yet, although a per-pixel exposure patent has already been filed by Sony Corporation [Jo14]. We have built a prototype that simulates this feature to demonstrate our method with real scenes. To this end, we have implemented a capture system based on a liquid crystal on silicon (LCoS) display (Figure 11, left). This device, together with a beamsplitter and relay optics, simulates a Gaussian attenuation mask placed before the sensor. In this setup, the SLR camera lens (Canon EF-S 60 mm f/2.8 Macro USM) is focused on the LCoS, virtually placing the mask at the sensor. Our imaging lens is a Canon EF 50 mm f/1.8 II, focused at 50 cm; scenes are placed at 80 - 100 cm. The f-number of the system is f/2.8, the maximum of both lenses. Since a single pixel of the LCoS cannot be well-resolved with this setup, we treat LCoS pixels in blocks of 8 × 8 pixels, resulting in a mask with a resolution of 240 × 135. Figure 11 (right) shows results with real scenes captured with our prototype optical setup. The figure includes a close-up of the LDR coded image captured at the sensor, the final tone mapped HDR reconstruction, and several details with varying exposure levels. Our lab prototype is not artifact-free, although it demonstrates the viability of our approach. The LCoS displays some birefringence, decreased light throughput, and a severe loss of contrast, all of which degrade the LDR captured signal. Future chip designs such as the Sony patent could overcome these limitations. Nevertheless, our reconstruction does not introduce additional degradation in the results, as Figures 7 and 8 show.

Additionally, we have applied our technique to an image captured using an interlaced exposure with dual ISO 100/800 on a Canon EOS 500D camera with the Magic Lantern software. The result is shown in Figure 12.

6. Discussion and conclusion

Limitations In some cases, it is possible that the image captured with the optical mask contains large saturated areas despite the presence of the mask; the low transmissivity...
Figure 11: Left: Our prototype hardware implementation. Our optical system is made up of an imaging lens, a beamsplitter, an LCoS, and an SLR camera. Objects are placed for illustration purposes only; when photographing the scene, they are placed at a distance of 80 - 100 cm from the imaging lens. Middle and right: Two reconstructions of real scenes. For each scene we show the tonemapped HDR reconstruction (top), two different exposures of the highlighted areas revealing the dynamic range (bottom), as well as a partial detail of the LDR coded image captured at the sensor (inset).

Figure 12: Reconstruction of an HDR image captured with dual ISO 100/800 with a Canon EOS 500D: original scene (left), and close-ups of coded and reconstructed regions, the latter tonemapped using [MDK08] (right).

pixels of the mask typically prevent this, but in images with extremely large dynamic range it can happen. In these cases when no information at all is captured, the recovery may have some artifacts. An example of this is shown in the inset figure with a light bulb. This light bulb is a close-up region of the scene in Figure 8 (right column). This scene has a very large dynamic range (over 17 stops), since it captures both the very dark inside of the room and the bright light bulb outside. Therefore, if the inside is to be recovered, there is a saturated area in the captured image \(y \). Nevertheless, as we show in the paper, we are able to faithfully reconstruct scenes of very large dynamic range.

Benefits We have presented a framework for convolutional sparse coding of HDR images. From a single, optically coded image, we reconstruct dynamic range using a trained convolutional filter bank. Our approach follows a current trend in computational photography, leveraging the joint design of optical elements and processing algorithms. Once trained, the obtained filter bank can be used to reconstruct a wide variety of HDR images greatly differing from the training set. Since our reconstruction is based on a convolutional approach, it does not rely on the linear combination of patches common in sparse reconstruction methods; this greatly reduces reconstruction artifacts, in particular in high-contrast sharp edges present in HDR images. We are not limited to a restricted number of captured exposures, nor do we face the implicit trade-off between captured dynamic range and interpolation quality that other methods based on spatially-varying exposures face. In comparison to other CSC approaches, the algorithm we base our formulation on has demonstrated (see [HHW15, Sec. 3]) that it has a lower complexity and better convergence than previously proposed methods for CSC [ZKTF10, BEL13, BL14], benefits which directly carry over to our method.

As an additional advantage, our framework naturally accounts for the optical PSF of the system, since we incorporate it in our model (\(P \) in Equation 10). Moreover, it can be easily extended to perform demosaicking, by properly designing matrix \(M \) in Equation 10, which models missing pixels. Last, we have not only built a physical prototype, but have also shown how our approach can yield good results with off-the-shelf consumer hardware that captures interleaved exposures using the Magic Lantern software.

Future work The development of patents like Sony’s per-pixel, double-exposure method will progressively introduce varying exposure and optically modulated systems, thus allowing for increased capabilities of commercial cameras. Our optimization could incorporate explicit modeling of image noise to perform denoising in particularly noisy images. Finally, an exciting avenue of future work lies at the convergence between acquisition and display...
technologies, for the full plenoptic function and taking perceptual considerations into account [MWDG13]; compressive sensing and sparse coding techniques may be able to handle the high dimensionality of this challenging problem.

7. Acknowledgements

The authors would like to thank Karol Myszkowski, as well as Jose Echevarria and Adrian Jarabo, for fruitful insights and discussion. We would also like to thank Saggi Hajisharif and Jonas Unger, for sharing their results and for their assistance with them; Nicolas Landa for preliminary testing of traditional compressive sensing on HDR; and Maria Angeles Losada and the Photonic Technologies Group at Universidad de Zaragoza for their optical instrumentation. Ana Serrano was supported by an FPI grant from the Spanish Ministry of Economy and Competitiveness (project Lightslice). Felix Heide was supported by a Four-year Fellowship from the University of British Columbia. Diego Gutierrez would like to acknowledge support from the BBVA Foundation and project Lightslice. Gordon Wetzstein was supported by a Terman Faculty Fellowship and by the Intel Strategic Research Alliance on Compressive Sensing. Belen Masia was partially supported by the Max Planck Center on Visual Computing and Communication.

References

