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Figure 1: Reconstruction of a high speed video sequence from a single, temporally-coded image using compressive sensing and
an overcomplete learned dictionary. The sequence shows a lighter igniting. Left: Coded image, from which 20 individual frames
will be reconstructed; inset shows a close-up of the coded temporal information. Right: Six of the 20 reconstructed frames.

Abstract
Traditional video capture is limited by the trade-off between spatial and temporal resolution. When capturing
videos of high temporal resolution, the spatial resolutions decreases due to bandwidth limitations in the capture
system. Achieving both high spatial and temporal resolution is only possible with highly specialized and very
expensive hardware; although the bandwidth is higher, the same basic trade-off remains. In this paper, we make use
of a single-shot, high-speed video capture system, in order to overcome this limitation. It is based on compressive
sensing, and relies on dictionary learning for sparse video representation. This allows capturing a video sequence
by coding the temporal information in a single frame, and then reconstructing the full video sequence from this
single coded image. We perform an in-depth analysis of the parameters of influence in the system, providing
insights for future developments of similar systems.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Computer Graphics]: Digitization and Image
Capture—Sampling

1. Introduction

During the last years, high speed video capture technologies
have been growing due to the neccessity of capturing infor-
mation at temporal and spatial high resolution in scientific
imaging, or industrial processes, among other areas. How-
ever, traditional cameras face a trade-off between these two
resolutions, making it very difficult to capture high speed

video at high spatial resolutions. This trade-off is deter-
mined by hardware restrictions, such as readout and analog-
to-digital conversion times of the sensors; despite recent im-
provements in capture devices, this trade-off still represents
a drawback.

Recent work tries to overcome these hardware limitations
either with hardware-based approaches such as the camera
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array prototype proposed by Willburn et al. [?], or with
software-based approaches, like the work of Gupta et al. [?],
where they propose to achieve high resolution videos with a
combination of low resolution videos and a few key frames
at high resolution. Recently, Liu et al. [?,?] presented a novel
approach based on the emerging field of compressive sens-
ing. This technique allows to fully recover a signal even
when sampled at rates lower than the Nyquist-Shannon the-
orem, provided the signal is sufficiently sparse in a certain
domain. They rely on this technique to selectively sample
pixels at different time instants, thus coding the temporal in-
formation of a frame sequence in a single image. They then
recover the full frame sequence from that image. Their key
assumption is that the time varying appearance of scenes can
be represented as a sparse linear combination of elements of
an overcomplete basis.

In this paper we build on this work, extending their sim-
ulation results and performing an in-depth analysis of sev-
eral parameters of influence in their framework, providing
insights on design choices for improved performance of the
framework. We further explore the existence of a good pre-
dictor of the quality of the reconstructed video. In particular,
we make the following contributions:

• We introduce the Lars/lasso algorithm for the training and
reconstruction, and show how it improves the quality of
the results
• We present a novel algorithm for choosing the training

blocks, which improves performance as well as recon-
struction time
• We show a novel analysis of the input videos, which iden-

tifies which characteristics of the input videos will penal-
ize performance, and provides insights about how to mod-
ify the framework accordingly

2. Related Work

The theory of compressive sensing has raised interest in the
research community since its formalization in the seminal
works of Candes et al. [?] and Donoho [?]. Numerous works
in recent years have been devoted to applying this theory
to several fields. One of these fields of application is im-
age and video acquisition, being one of the most significant
works the Single Pixel Camera of Wakin et al. [?], where
they propose a camera prototype with only one pixel that
allows the reconstruction of complete images acquired with
several captures under different exposition patterns. Other
examples in imaging include the work of Marwah et al. [?],
in which they achieve light field acquisition from a single
coded image; or the capture of hyperspectral high resolution
images proposed by Lin et al. [?], again coding the hyper-
spectral information within a single image by using com-
pressive sensing.

High temporal and spatial resolution video acquisition has
been attempted with several approaches. Gupta et al. [?] pro-
pose a method to recover high spatial resolution videos from

low resolution sequences and a few key frames captured at
a higher resolution but in order to do this they need two se-
quences, one with high spatial resolution and low temporal
resolution and vice versa. Wilburn et al. [?] propose in their
work a hardware-based approach with a dense camera array
prototype. They set different time windows for every camera
of the array and then align all the different views, however
this approach is limited by the size and the complexity of the
hardware.

On the other hand, coded exposures have been not only
used in compressive sensing, but also widely as a way to
improve some aspects of image and video acquisition in the
field of computational photography. The objective is to code
the light before it reaches the sensor either with coded aper-
tures or shutter functions. Raskar et al. [?] propose the use of
a flutter shutter to avoid motion-blur in image capture. With
the same purpose Gu et al. [?] propose the coded rolling
shutter, an improvement to the conventional rolling shutter.
Alternatively, codes in the spatial domain have been used to
avoid defocus blur [?,?], or recover depth information [?,?].

Finally, of particular interest to our work is that of Liu et
al. [?, ?] who introduce two key insights for capturing high
speed video with a compressive sensing framework. On the
one hand they propose a system able to recover a video se-
quence from a single image with coded exposure through
dictionary learning. On the other, they present a new shut-
ter function based in a pseudo-random sampling pattern. We
build on their work, analyze their system, and propose im-
proved design choices.

3. Background on Compressive Sensing

The basic idea of compressive sensing states that under cer-
tain conditions, a signal can be completely captured even
when sampled at rates lower than what the Nyquist-Shannon
theorem dictates. In order to accomplish this, two conditions
need to be satisfied, which are Sparsity and Incoherence.
Sparsity means that the signal can be represented in some
domain with only a few coefficients. This can be represented
as:

X =
N

∑
i=1

ψiαi (1)

where X is the signal, in this case a video sequence, in its
original domain; ψi are the elements of the basis that form
the alternative domain; and αi are the coefficients, which are
in their majority zero or close to zero if the signal is sparse.
Many natural signals, such are images or audio, can be con-
sidered sparse if represented in an adequate domain.

In order to satisfy the Incoherence condition, it is nec-
essary to sample the signal with a particular pattern that
guarantees incoherence of such pattern with the chosen ba-
sis. The coherence between two pairs of bases measures
the largest correlation between any two elements of those
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bases. For this purpose it has been demonstrated that a ran-
dom sampling, in particular for Gaussian and binary distri-
butions, yields a good grade of incoherence in an overall sys-
tem formed by the sampling pattern and any basis.

The sampling process can be represented as:

Y = φX (2)

where the video sequence is represented by X ∈Rm, the cap-
tured image is Y ∈ Rn, with n� m, and φ ∈ Rn×m contains
the sampling pattern which is called measurement matrix.

Finally, if both aforementioned conditions are fulfilled,
the theory states that it is possible to perfectly reconstruct
the original signal from the undersampled one acquired un-
der an ideal scenario. For this step, we jointly consider the
sampling process (Equation ??) together with the represen-
tation in the sparse dictionary (Equation ??), yielding the
following formulation:

Y = φX = φψα (3)

with ψ ∈ Rm×q being an overcomplete basis (also called
dictionary) with q elements. If the original sequence X is
k− sparse in the domain of the basis formed by the mea-
surement matrix φ and the dictionary ψ, it can be well rep-
resented by a linear combination of at most k coefficients
in α ∈ Rq. Note that we are looking for an sparse solution;
therefore, the search of the coefficients α has to be posed as a
minimization problem. This optimization will search for the
unknown α coefficients, seeking a sparse solution to Equa-
tion ??. This is typically formulated in terms of the L1 norm,
since L2 does not provides sparsity and L0 presents an ill-
posed problem which is difficult to solve:

min
α
‖α‖1 sub ject to ‖Y −φψα‖2

2 ≤ ε (4)

where ε is the residual error. Once the α coefficients are
known, we use them in Equation ??, together with the dic-
tionary ψ, to recover the original signal.

The three key components in a compressive sensing
framework are therefore the dictionary, the measurement
matrix, and the reconstruction algorithm, we will analyze
them in Section ??.

4. High speed video acquisition system

In this section we introduce the pipeline of a system based on
compressive sensing applied to high speed video capture, in-
cluding the reconstruction of a video from a single coded im-
age, and the process of building a dictionary appropriate for
high speed video representation. The pipeline is presented in
Figure ??.

4.1. Learning high speed video dictionaries

We need a dictionary in which the signals of interest, in this
case high speed videos, are sparse. The advantage of choos-
ing an already existing basis is that usually these bases are

mathematically well defined and their properties are known.
However, since they are designed to be generic, they usually
do not provide an optimal sparse representation for a specific
set of signals of interest. A way to ensure that our set will be
sparse in the basis domain is to train a dictionary specifically
adapted for sparse video representation.

We learn fundamental building blocks (atoms) from high
speed videos and create an overcomplete dictionary. For this
purpose, we use the DLMRI-Lab implementation [?] of the
K-SVD [?] algorithm, which has been widely used in the
compressive sensing literature, to train a high speed video
basis with a varied set of videos of interest.

We train our dictionary with an acquired high tempo-
ral resolution video database with varied scenes recorded
at 1000 frames per second. From them we have obtained
a training set by splitting some of these videos into blocks
of size n = px× py× pt . Given a large collection of blocks,
we have to choose a computationally affordable number of
blocks as a training set. Most of these blocks will not have
interesting features such as gradients or temporal events,
therefore we would like to discard some of them while en-
suring the presence of blocks with relevant information. In
this work we propose an alternative to random selection that
enforces this by giving certain priority to blocks with high
variance. This is further explained in Section ??, where we
also analyze the alternative choice of an existing base (DCT
Type-II) instead of a trained dictionary.

4.2. Capturing coded images from high speed sequences

The measurement matrix introduced in Section ??, for the
particular case of video sampling, consists on a coded ex-
posure implemented as a shutter function that samples dif-
ferent time instants for every pixel. The final image is thus
formed as the integral of the light arriving to the sensor for
all the temporal instants sampled with the shutter function.
This can be expressed with the following equation:

I(x,y) =
T

∑
t=1

S(x,y, t)X(x,y, t) (5)

where I(x,y) is the captured image, S the shutter function
and X the original scene. In a conventional capture system
S(x,y, t) = 1 ∀ x,y, t but in this case the goal is to achieve a S
function that fulfills the properties of a measurement matrix
suitable for compressive sensing reconstruction. As men-
tioned in Section ??, an easy way to fulfill this requirements
is to build a random sampling matrix. However, a fully-
random sampling matrix cannot be implemented in current
hardware, as explained below. Therefore, we use the shutter
function proposed by Liu et al. [?,?] that tries to achieve ran-
domness while imposing some restrictions to make a hard-
ware implementation possible.

Hardware Limitations Image sensors are usually based on
CMOS technology and a capture process comprises several

c© The Eurographics Association 2015.



Ana Serrano, Diego Gutierrez, Belen Masia / Compressive High Speed Video Acquisition

Figure 2: Pipeline of the system for high speed high resolution video acquisition. Top left: Training of a dictionary D with k
elements with a set of video blocks of size px× py× pt from the collection of signals of interest. Bottom left: Coded sampling
of the original scene X with a measurement matrix φ resulting in the coded image Y , and division of this image in patches pi
appropriate for the size of the blocks used for training the dictionary. Right: Reconstruction of the video blocks X̂i from each
image patch pi and merging of the blocks to obtain the full video X̂. Adapted from [?].

processes requiring a certain amount of time, making diffi-
cult to build a function that samples randomly every pixel
at every time instant. There are two key limitations: maxi-
mum integration time, i.e, the maximum time we can sam-
ple a pixel, which is limited by thermal noise in the sensor;
and speed at which the shutter can be opened and closed,
which is limited by the processing time of the camera (such
as A-D conversion and readout time). Because of this, the
shutter design for each pixel is limited to a single continous
exposure and this exposure time has to be shorter than the
integration time of the camera, that is, the shutter function
design is limited to a single continuous integration bump for
each pixel and this bump also has a limited duration. This
function can be easily implemented in a DMD or an LCoS
placed before the sensor, as proven by Liu et al. [?, ?].

4.3. Reconstructing high speed videos from coded
images

Once the dictionary and the measurement matrix are de-
cided, we need to solve Equation ?? to estimate the α co-
efficients and thus be able to reconstruct the signal. Many
algorithms have been developed for solving this minimiza-
tion problem for compressive sensing reconstruction. In Sec-
tion ?? we analyze the influence of this algorithm in the
quality of the results by comparing two algorithms that had
proven a good performance in similar problems: Orthogonal
Matching Pursuit (OMP) [?] and the LARS approximation
for solving the Lasso [?]. We use the implementations avail-
able in the SPArse Modeling Software (SPAMS) [?, ?].

5. Analysis of the system

In this section we perform an exhaustive analysis of the sys-
tem presented in Section ??, exploring the parameters of in-
fluence. All the learned dictionaries presented in this section
are trained with the same set of videos, which are included
in the supplementary material. We analyze several parame-
ters over a test set of six videos (see Figure ??) to find the
parameter combination yielding the best results. Note that
none of the testing videos are used during the training. In
order to isolate the influence of each parameter in the frame-
work, we maintain the rest of the parameters fixed while we
vary the one being analyzed. The set of parameters derived
from this analysis is presented in Section ??; these are also
the parameters we use by default to perform every section of
the analysis. We use as measures of quality the PSNR (Peak
Signal to Noise Ratio), widely used in the signal processing
literature. We also performed all tests with the MS-SSIM
metric [?], which takes into account visual perception, and
found that it yielded results consistent with PSNR. Thus, for
brevity, we only show results with PSNR.

5.1. Choosing a dictionary

In this section we compare our trained dictionary with a
three dimensional DCT basis. We compare the two dictio-
naries under the same conditions, i.e., same number of ele-
ments of the dictionary and same block size. We can see in
Figure ?? that the training dictionary performs better than
the DCT basis except for the case of the video Spring. This
video is consistently the result with worst quality, so the bet-
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Figure 3: Sample frame extracted from each of the videos used in the analysis.

ter performance of DCT can be arbitrary or due to different
amounts of noise and artifacts in the reconstruction. There-
fore, we choose the trained dictionary as the best alternative.

Figure 4: Quality of the reconstructed videos (in terms of
PSNR) for the set of analyzed videos reconstructed with a
trained dictionary and with a three dimensional DCT basis
under the same conditions (same dictionary elements and
same block size). The trained dictionary consistently outper-
forms DCT, except for the Spring video, which can be con-
sidered an outlier (see text for details).

5.2. Selection of training blocks

We use for the training a high speed video dataset and we
divide each video into blocks. The size of these blocks is
the size of the atoms of the resulting trained dictionary as
well as the size of the video blocks the reconstruction is able
to recover. The amount of blocks resulting from this divi-
sion is unmanageable for the training algorithm; thus the
dimensionality of the training set has to be reduced. The
straightforward solution is to randomly choose a manage-
able amount of blocks. However, a high percentage of these
blocks do not contain information about the scene (such as
blocks corresponding to plain surfaces with no movement

across the video). Aiming to improve the trained dictionar-
ies, we explore several ways to select the blocks to use dur-
ing the training, with the aim to avoid most of the blocks not
containing any useful information. The methods analyzed
are the following:

• Random sampling: The amount of training blocks are
randomly selected from the original set.

• Variance sampling: We calculate the variance for each
block and bin them in three categories (high, medium and
low variance). Then we randomly select the same amount
of blocks for every bin aiming to ensure the presence of
high variance blocks in the resulting set.

• Stratified gamma sampling: We sort the blocks by in-
creasing variance and sample them with a gamma curve
( f (x) = xγ). We analyze the effect of two possible curves:
γ = 0.7 which yields a curve closer to a linear sampling,
and γ = 0.3. The objective of the stratification is to en-
sure the presence of all the strata in the final distribution.
We divide the range uniformly in the amount of desired
final samples and we calculate thresholds for the strata ap-
plying the gamma function. Then we randomly choose a
sample from every strata and remove that sample from the
original set. Given some strata will be empty, this process
repeats iteratively until the number of desired samples is
reached.

• Gamma sampling: We choose directly samples from the
original set following a gamma curve sampling. We also
test two values for γ, γ = 0.3 and γ = 0.7.

We show in Figure ?? results from one of the six tested
videos reconstructed with different dictionaries learned from
blocks dragged from the same set of videos but with the dif-
ferent selection methods. Results for all the videos tested
were consistent. Random and Variance sampling clearly
outperform the other methods, with the Variance sampling
yielding slightly better results. Additionally, as shown in Ta-
ble ??, Variance sampling achieves a faster reconstruction
time.

5.3. Reconstruction algorithm

As explained in Section ??, we need a reconstruction algo-
rithm to recover the α coefficients that are multiplied by the
dictionary to obtain the original scene from the coded image;
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Figure 5: Quality of the reconstruction (in terms of PSNR)
for a sample video (PourSoda) as a function of the method
used to select training blocks for learning the dictionary. For
each method we show an inset with the histogram of vari-
ances of video blocks of the resulting training set.

Method Time (seconds)
Random 868.94
Variance 781.98
Stratified gamma 0.7 1295.61
Stratified gamma 0.3 971.25
Gamma 0.7 1001.48
Gamma 0.3 976.73

Table 1: Mean reconstruction times obtained for each of
the methods used to select the set of blocks for learning the
dictionary. Times shown are the average across all six test
videos.

this is posed as a minimization problem (see Equation ??).
This algorithm is used in the reconstruction as well as in
the training, since the training algorithm K-SVD solves the
minimization problem as a step to update the dictionary. In
this work, we analyze two algorithms for solving the min-
imization: Orthogonal Matching Pursuit [?] and the LARS
solver for the Lasso [?]. In Figure ?? we show combinations
of these two algorithms in the training and reconstruction
steps. It can be seen that the reconstruction algorithm has a
significant influence in the reconstruction step, with LARS-
Lasso yielding the best performance.

5.4. Measurement matrix

Choosing the best measurement matrix possible is crucial to
achieve good results in a compressive sensing framework.
As explained in Section ??, some properties need to be ful-
filled by this matrix and at the same time we want it to be

Figure 6: Quality of the reconstruction (in terms of PSNR)
for different combinations of the algorithms OMP and
LARS-Lasso for the training/reconstruction steps for each of
the analyzed videos. The best combination is obtained using
the LARS-Lasso both for training and reconstruction.

implementable in hardware. In this section we compare sev-
eral measurement matrices [?, ?] (see Figure ??):

• Global shutter: All the pixels are sampled over the inte-
gration time of the camera.

• Flutter shutter [?]: The shutter entirely opens and closes
over the integration time of the camera.

• Rolling shutter: Pixels are sampled sequentially by rows
through time.

• Coded rolling shutter [?]: Variant of the rolling shutter.
In this case the image is sub-divided and each part sam-
pled with rolling shutter independently. For example, for
an image sub-divided in two, first odd rows are sampled
with rolling shutter, and then even rows.

• Pixel-wise shutter [?, ?]: Each pixel is sampled over a
fixed bump time shorter than the integration time of the
camera, starting at different time instants. However, in
order to obtain enough samples for the reconstruction a
condition is imposed: Taking into account the size of the
blocks we want to reconstruct, for every temporal instant
at least one of the pixels from each block must be sam-
pled. This is a way to ensure that every temporal instant
is represented in every patch of the captured image. This
can be expressed as:

X = ∑
(x,y)∈p j

S(x,y, t)≥ 1 f or t = 1..T (6)

with T the temporal instants (or frames) to sample.

The results of the analysis of these measurement matrices
are shown in Figure ??. The best results are obtained with
the pixel-wise shutter, since it is specifically designed for
the compressive sensing framework, as it guarantees that at
least one pixel per patch is sampled for every frame.
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Figure 7: Shutter functions and resulting coded images when sampling with them. Black pixels correspond to pixels being
sampled (on) while white pixels correspond to pixels that are off.

Figure 8: Quality of the reconstruction (in terms of PSNR)
using several measurement matrices. The insets show a re-
constructed frame for every measurement matrix.

6. Results and evaluation

In this section we present additional results, and also include
a characterization of the input videos where we aim to iden-
tify which characteristics of a video may have an influence
in the quality of the results of the reconstruction.

6.1. Characterization of input videos

We have performed a characterization over the set of videos
we use to perform all the analysis aiming to find some in-
sights about how the characteristics of these input videos
influence the quality of the results. We have explored the
following methods (see Figure ??):

• Histogram of the high frequency energy density ratios
(Hratios) for every video block. It is calculated by perform-
ing a one-dimensional DFT along the temporal dimension
for every pixel of the block. Then, for each block, the

DFTs corresponding to all its pixels are added and the ra-
tio is calculated as the high frequency energy of the signal
divided by the total energy. A threshold is used to deter-
mine what is high-frequency. We set this threshold exper-
imentally to classify our set of signals correctly. Finally,
we obtain the histogram with the values given for every
block of the video and we calculate some standard statis-
tical descriptors: mean, standard deviation, skewness and
kurtosis. This ratio represents the percentage of high fre-
quency energy to the total energy of the signal.

• Histogram of variances (Hvar) for each video block. We
calculate the variance for each 3-D block and its his-
togram, together with the same statistical descriptors as
before: mean, standard deviation, skewness and kurtosis.
We aim to obtain joint information about the temporal and
spatial variation.

• Sum of the difference between frames. We sum the dif-
ference frame between all the consecutive frames in the
video obtaining a single frame. Then we sum all the pix-
els of that image to obtain a single value. This values gives
us an estimate of the amount of movement happening in
the whole scene.

We have performed a correlation analysis with between the
quality of the final result and all these characterization val-
ues using Pearson’s [?] and Spearman’s [?] correlation. The
characterization method yielding the higher correlation is
the standard deviation of the histogram of high frequency
energy density ratios σratios, with a Pearson’s coefficient of
ρP =−0.9636 and a p-value of 0.002 and a Spearman’s co-
efficient of ρS =−1 and a p-value of 0.0028.

Given these values, we consider it to be a good predictor
of the quality of the reconstruction. Intuitively, this statis-
tic tells us whether there is a high variance in the propor-
tion of high temporal frequencies across the frames of the
video. If this variance is high, then the reconstruction results
are poorer, since temporal information with very different
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Figure 9: Characterization of a sample video (PourSoda).
We compute different statistics from the input videos and an-
alyze their correlation with the quality of the reconstruction.
From top to bottom: Histogram of the variances computed
for every video block, histogram of the high frequency en-
ergy density ratios calculated for every video block, and sum
of the difference between all consecutive frames of the video.
Please refer to the text for details.

frequencies has to be coded within the same samples in the
coded image.

6.2. Additional results

We present some results for three reconstructed sample
videos. In Figure ?? we show 10 coded images, each one
containing the necessary information to recover 20 frames
of a sequence, therefore together forming a 200 frames video
coded within the 10 frames. In Figures ?? and ?? we show
some key frames of the reconstructed sequence correspond-
ing to two of these coded images. Another result is presented

in Figure ??, the sequence represents a flower toy moving.
For this video we show the coded image together with three
reconstructed frames.

For the reconstruction of all the video sequences pre-
sented in this section we use the combination of parameters
that yield better results according to our analysis. These pa-
rameters are chosen as follows:

• Dictionary: Trained with the K-SVD algorithm, making
use of the LARS-Lasso. The size of the atom is 7 pixels×
7 pixels× 20 f rames and the training set is chosen with
the Variance sampling method.

• Measurement matrix: We use the pixel-wise shutter func-
tion.

• Reconstruction: We solve the reconstruction minimization
problem with the LARS-Lasso algorithm.

Figure 12: Close-ups of coded image and three recon-
structed frames (out of 20) for a video of a moving flower
toy closing its eyes. The PSNR of the reconstructed video
sequence is 33.53 dBs.

7. Conclusions

In this work, we have performed an in-depth analysis of the
system proposed by Liu et al. [?, ?], running extensive tests
over a range of parameters of influence, possible algorithms
of choice, and characteristics of the input videos. We have
shown that there is room for improvement in a number of
aspects of their framework, and we proposed alternatives for
some of them that perform better, in particular the method
for choosing a training set for the dictionary, and the recon-
struction algorithm used. For the first one, we found that
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Figure 10: Coded images for the reconstruction of a sequence of 200 frames. Each coded image contains the necessary infor-
mation to recover 20 frames of a video sequence. In Figures ?? and ?? we show the reconstructed sequence frame by frame for
the marked coded images.

Figure 11: Left: Coded image of a flame burning in a lighter, inset shows a close-up of the temporal information coded. Right:
Sample frames (out of 20) of the reconstructed sequence. The PSNR of the reconstructed video sequence is 29.09 dBs.

carefully choosing the training set can improve the perfor-
mance of the framework, and for the second one, we have
proven that the LARS-Lasso algorithm performs better than
the OMP.

We have also computed a series of statistics from a collec-
tion of videos and provided some insights about the correla-
tion of these statistics with the quality of the reconstruction
obtained for those videos, in particular, we have shown that
the standard deviation of the histogram of high frequency
energy density ratios has a high correlation with the quality
of the results.

8. Future Work

Our work shows that there is still room for improvement in
several aspects of the framework. In particular, we would
like to test some others methods for the selection of blocks
for the training and analyze their influence in our framework,
such as the coresets proposed by Feldman et al. [?].

On the other hand, we would like to explore more deeply
on the influence of the characteristics of input videos in the
system, since this can provide insights about how to improve
both training and reconstruction algorithms.
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