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Figure 1: Evolution of the result of the genetic algorithm as the number of generations increases. Left: original image from which the
Buddha’s reflectance properties are meant to be captured. Rest (from left to right): partial results every ten generations, showing convergence
to the solution.

Abstract

Most of the current appearance acquisition methods require the use
of specialized equipment and/or involved capture sessions. We pro-
pose a single-image approach based on genetic algorithms which
greatly simplifies the process, and allows to capture reflectance
properties of both opaque and translucent objects. Given the under-
constrained nature of an image-based approach, we leverage two
well-known illumination models, Phong and the diffuse approxima-
tion, to reduce the high-dimensional parameter space. We addition-
ally explore this reduced parameter space to analyze the resulting
behaviour of the algorithm.

CR Categories: I.4.1 [Image Processing and Computer Vi-
sion]: Digitization and Image Capture—Reflectance; I.3.3 [Com-
puter Graphics]: Picture/Image Generation—Display Algorithms;
I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Shading;
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1 Introduction

Realistic image synthesis requires precise reflection and scattering
models of real-world materials. As rendering algorithms become
more sophisticated, efficiently simulating all aspects of light trans-
port, a new area of research has gained importance over the last
few years: appearance acquisition. Capturing the appearance of an
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object implies obtaining its BRDF or BSSRDF (for translucent ob-
jects), in order to be able to model the interaction of light with that
object.

In a traditional direct rendering approach the lights, material, cam-
era position and geometry of a 3D scene are known parameters used
in the generation of the final 2D image. However, in many cases it
is useful to obtain unknown information of the 3D scene from a
rendered image, a problem known as inverse rendering. This in-
cludes inverse lighting (i.e. estimating the position and character-
istics of the light sources of the scene), estimation of the camera
position and orientation, obtention of the geometry of the scene,
and appearance acquisition. As the complete problem of inverse
rendering is highly under-constrained, previous knowledge of any
of these (lights, geometry, camera position or appearance) is usually
leveraged to determine the rest of them.

In this paper we will explore the specific problem of appearance ac-
quisition, assuming that the rest of the information of the 3D scene
is known, and starting with a single image as input. To do so, our
formulation is that of an optimization problem. Starting from the
initial image, successive images are rendered and compared with
the original, until the objective function, defined as the error be-
tween both images, falls below a certain value (or alternatively un-
til a maximum execution time is exceeded). We therefore do not
present a method for real acquisition of BSSRDF parameters, but a
way to estimate those parameters using an image of the object and
rendering a virtual scene.

The method proposed to solve this optimization problem is based
on genetic algorithms. Genetic algorithms are inspired in biological
evolution: each string of parameters to optimize is analogous to a
chromosome, and the way in which these strings are generated and
evaluated when searching for the best solution applies the concepts
of natural selection, reproduction and mutation. Whenever solving
an optimization problem, falling into local minima of the objective
function is always a concern, and in our case the objective func-
tion, i.e. difference between the original image and our rendered
image, has a large number of them. Statistically, genetic algorithms
have been demonstrated to be less prone to this problem than other
well-known optimization methods, as mutation favours diversity,
increasing the probability of overcoming local minima. We show
how genetic algorithms can be used to capture the appearance of
an object in an image. We also provide insight into how to config-
ure the parameters of genetic algorithms when applying them to the



specific problem of appearance acquisition, and their influence on
the final result.

2 Previous Work

An obvious choice to measure general reflection properties is using
a gonioreflectometer [Li et al. 2006]. However, a complete char-
acterization of a spectral, anisotropic BRDF may require up to 105

samples, so several optimization strategies have been introduced.
By using a camera instead of a single photoreceptor, lots of sam-
ples can be obtained simultaneously [Ward 1992]. However, cal-
ibration issues need to be considered, which make measurements
less precise.

More general solutions that include sub-surface scattering capture
typically use complex measuring equipment [Matusik et al. 2002;
Debevec et al. 2000; Goesele et al. 2004; Peers et al. 2006; Tariq
et al. 2006]. Image-based approaches, while simpler in concep-
tion, usually require large sets of data acquired from different an-
gles and/or lighting conditions [Yu et al. 1999; Lensch et al. 2003;
Shen and Takemura 2006; Ghosh et al. 2008; Donner et al. 2008].
Reduction of these sets can be achieved by adding some knowledge
of the geometry of the object whose optical properties are being
captured [Boivin and Gagalowicz 2001].

Wu and Tang [Wu and Tang 2006] separate the sub-surface scatter-
ing component of a BSSRDF, starting from a single image together
with a set of diffuse priors. Other methods to capture a generalized
BSSRDF from single images impose constraints on the positions
of the camera and light sources [Wang et al. 2008]. We refer the
reader to the excellent work by Weyrich and colleagues [Weyrich
et al. 2008] for a more comprehensive overview of appearance ac-
quisition techniques.

In our work, we are interested in exploring the feasibility of ap-
pearance acquisition of complex materials by using genetic algo-
rithms. This approach has been successfully used before in the field
of computer graphics for texture synthesis, analysis and parameter-
ization [Sims 1991; Salek et al. 1999; Qin and Yang 2002], image-
based simulation of facial ageing [Hubball et al. 2008], image
recognition [Katz and Thrift 1994; Koljonen and Alander 2006],
or extraction of geometric primitives [Roth and Levine 1994].

3 Genetic algorithms

Genetic algorithms, first introduced by John Holland in 1975, are
probabilistic heuristic algorithms for search and optimization which
apply the concepts of biological evolution: natural selection, repro-
duction and mutation. As any other optimization method, the al-
gorithm tries to find a set of variables, (x1,x2, ...,xn), so that the
objective function, F(x1,x2, ...,xn), reaches its maximum (or min-
imum). This section gives an overview of how these algorithms
work, but we refer the reader to Winter and colleagues’ work [Win-
ter et al. 1995] for a more comprehensive explanation on genetic
algorithms and their application.

Given that each possible set of input variables (x1,x2, ...,xn) is
equivalent to a chromosome (i.e. an individual) and each param-
eter xi is denominated genei, the analogy with the theory of evolu-
tion is immediate: starting from a population of n chromosomes,
each of them delivers a solution to the problem, and only the chro-
mosomes yielding the better solutions survive to produce the next
generations and perpetuate their genetic material. Genetic diversity
is completed by sexual reproduction and random mutations.

The algorithm consists of four steps: initialization, selection, re-
production and termination. Selection and reproduction are iterated
until the condition for termination is reached.

Initialization. The first step implies the creation of an initial pop-
ulation of individuals (or sets of variables corresponding to the pa-
rameters we want to estimate). The genes of these individuals are
generated randomly within the search space. Both the size of the
initial population and the limits of the search space are input param-
eters to the algorithm and have a great influence on its performance,
as analyzed in Section 4.3.

Selection. In order to apply the principle of natural selection, it
is necessary to evaluate the performance of each generated individ-
ual. To do this, each individual is assigned a rating, called fitness,
representing the proximity of that individual to the solution. Chro-
mosomes are then ordered according to their fitness and the ones
with the lowest fitness values are eliminated and substituted by the
descendants of the surviving chromosomes (based-on-rank selec-
tion). This way only the genetic material delivering the best results
is perpetuated.

Reproduction. This step entails the creation of the next genera-
tion using two genetic operators: crossover and mutation (see Fig-
ure 2). Crossover is a genetic operator used for exchange of genetic
material, in which two chromosomes are randomly selected and an
exchange of genes between them is performed. Mutation, on the
other hand, ensures genetic diversity from one generation of indi-
viduals to the next by randomly modifying the value of some genes.

chromosome bchromosome a
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Figure 2: Crossover and mutation.

Termination. Typical termination conditions of the iterative pro-
cess are a solution being found which satisfies a certain mini-
mum criterion, the specified maximum number of generations be-
ing reached or the solution found not being able to be improved any
further.

In the following section, we present our adaptation of the genetic
algorithms approach to the problem of appearance acquisition, and
comment on some implementation details.

4 Appearance acquisition

To be able to run genetic algorithms for appearance acquisition, we
first need to define the variables and the objective function. In our
work, the variables are the parameters of the rendering model to
be used, whilst the objective function is the difference between the
input image and the result of each iteration. In order to reduce the
dimensionality of the problem, we assume that other parameters
such as lighting or the geometry of the object are known.

4.1 Variables and objective function

Our method works both for opaque and translucent materials, but
the parameters differ in each case. For opaque materials, interaction
of light with the surface of the object is rendered using the Phong
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η Relative index of refraction
σs Scattering coefficient
σa Absorption coefficient
p Normalized phase function
σt = σa +σs Extinction coefficient
σ ′s = (1−g)σs Reduced scattering coefficient
σ ′t = σa +σ ′s Reduced extinction coefficient
α ′ = σ ′s +σ ′t Reduced albedo
σt r =

√
3σaσ ′t Effective extinction coefficient

Fdr =−1.440/η2 +0.710/η +0.668+0.0636η

A = (1+Fdr)/(1−Fdr)
zr = 1/σ ′t ,zv(1+4A/3)
r = ‖xi + xo‖
dr =

√
r2 + z2

r ,dv =
√

r2 + z2
v

Table 1: Symbols used in the formulation of the dipole model.

model [Phong 1973]; the illumination on a certain point p on the
surface is obatined as the sum of the ambient, diffuse and specular
components as:

Ip = kaIa + ∑
lights

(kd(~L ·N)Id + ks(~R ·~V )α Is) (1)

~L indicates the direction of the rays of light from a light source to
a point of the surface, N is the normal to the surface, ~R indicates
the specular direction and ~V the direction joining the point and the
camera. Ia, Id and Is are the specular, diffuse and ambient intensi-
ties, respectively. The parameters which need to be estimated by the
algorithm are the ambient, diffuse and specular reflection constants
ka, kd and ks plus the Phong exponent α .

On the other hand, when working with translucent materials the
presence of subsurface scattering requires a more complex illu-
mination model. We have used the diffuse approximation model
described by Jensen et al. [2001] to render translucent materials,
which decouples single and multiple scattering. Single scattering
is obtained in a precise way, whereas multiple scattering is approx-
imated by means of dipole diffusion. The complete BSSRDF de-
scribing the outgoing radiance at point xo in direction ~wo is thus the
sum of both components:

S(xo,~wo) = Sd(xo,~wo)+S(1)(xo,~wo) (2)

where Sd and S(1) represent multiple and single scattering respec-
tively. These terms are given by:

Sd(xo, ~wo) =
1
π

Ft(η , ~wo)
∫

A
Rd(‖xo− xi‖)E(xi)dA(xi) (3)

S(1)
o (xo, ~wo) = σs

∫
2π

∫
∞

0
F p(θ)Ψ(s′i + s)S(xi, ~wi)dsd~wi (4)

where E(xi) represents incoming irradiance, F =
Ft(η , ~wo)Ft(η , ~wi) is the product of two Fresnel transmit-
tances, s′i y s indicate scattering paths and Ψ is an exponential
attenuation function. Rd is the diffuse reflectance function, which
is computed as (see Table 1 for a definition of all the symbols):

Rd(r) =
α ′

4π
[zr(σtr +

1
dr

)
e−σtrdr

d2
r

+ zv(σtr +
1
dv

)
e−σtrdv

d2
v

] (5)

Using this formulation (for the complete details and derivation of
these equations, consult Jensen et al. [2001]), it can be shown that
the dipole model depends on only four parameters [Xu et al. 2007]:
σs (scattering coefficient), σa (absorption coefficient), η (relative
index of refraction) and p (normalized phase function), which may
additionally show spectral dependencies.

Finally, for both opaque and translucent materials, we define the
objective function simply as the error between the generated image
at each iteration and the original image.

4.2 Implementation of the algorithm

We provide here some insight on how the genetic algorithms frame-
work maps to our appearance acquisition problem. A discussion of
the influence of the specific parameters is provided in subsection
4.3.

The first step of any genetic algorithm is initialization. A set of
chromosomes consisting of strings of reflectance parameters (eight
in the case of translucent and four in the case of opaque materials,
as explained before) are set. In this first generation the parameters
take random values within the search space, which, in the absence
of previous knowledge of the material, is [0,1]. The number of
chromosomes created is a configuration parameter of the algorithm.

An image is then rendered for each of the chromosomes created in
each generation to calculate the fitness value of each chromosome
and thus perform the selection step. This fitness value is calculated
with a per-pixel least squares function measuring the difference be-
tween the individual channels in the original and the rendered im-
ages. The set of parameters delivering the most approximate solu-
tion are used to create the next generation. The number of chromo-
somes being replaced conforms another configuration parameter of
the algorithm.

Once the best chromosomes have been selected, reproduction, in-
volving crossover and mutation, takes place. In our implementation
crossover is performed at only one point of the chromosome (as in
the case shown in Figure 2), which has proven enough for our ob-
jectives, but more complex crossover procedures are also possible.
During mutation gene values vary between ±0-30% of their origi-
nal value. Our research shows that greater variations introduce a too
random behaviour and control over the evolution of the algorithm
is easily lost, whereas very small variations need many generations
for the algorithm to reach a valid solution.

The processes of selection and reproduction continue iteratively un-
til the termination condition is met. Given that our goal is to study
the effectiveness of the algorithm and the influence of its configu-
ration parameters on the final result, we simply define our termi-
nation condition as a fixed number of generations. This suffices in
our context, although changing the termination condition to an error
threshold is straightforward.

4.3 Parameter space

Genetic algorithms have a series of input parameters (initial number
of individuals, crossover and mutation probabilities, etc), whose
correct configuration is vital in reaching a consistent solution within
a reasonable execution time. In order to select the most adequate
values for these parameters, we have performed a series of tests,
taking into account both the accuracy of the final solution and the
computation time required. The results of these tests for the most
relevant configuration parameters are discussed here, and can be
seen on Figure 3 for the case of the Phong model. The accuracy
was measured as percentage of error between the real ground truth
values and the values obtained by the algorithm.
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Figure 3: Left and center left: Percentage of error and execution time as a function of the probability of replacement. Center right and right:
Percentage of error and execution time as a function of the number of individuals in each generation. Data obtained for the Phong model.

Probability of replacement. The probability of replacement
accounts for the percentage of individuals which are eliminated in
each selection process. Following the evolution simile, the higher
this probability is, the faster the population evolves. However, run-
ning times also increase significantly, as all the chromosomes and
their corresponding image need to be created for each generation.
The greatly significant influence of this parameter, both in execu-
tion time and in the accuracy of the result, can be seen in Figure 3
(left).

Probability of crossover. As explained in Section 3, crossover
represents sexual reproduction and takes place after the selection
and replacement process. The probability of crossover represents
the percentage of individuals which are the result of combining the
genes of two survivor chromosomes. An increase in sexual repro-
duction (hence favouring genetic diversity) causes the percentage
of error to decrease slightly. As the resulting images of more com-
binations of genes need to be calculated, execution time increases
slowly.

Probability of mutation. Representing the percentage of genes
which mutate from one generation to the next, this probability is
critical when working with a small number of individuals per gen-
eration. Variations in the initial genes are crucial to progressively
reach the optimal solution, and the higher this probability, the lower
the percentage of error with minimum time penalty.

Number of generations. The number of generations is, to-
gether with the number of individuals per generation discussed be-
low, the parameter with the greatest influence. It indicates the num-
ber of generations which are created before the algorithm termi-
nates and delivers a solution (alternatively, an error threshold can
be trivially set as termination parameter). Figure 1 shows how the
solution progressively evolves along generations. With an infinite
number of generations, the solution would perfectly match the orig-
inal. In practice, a compromise has to be found between execution
time and accuracy of the solution, determined by the number of
generations.

Number of individuals per generation. The effect of the num-
ber of individuals of each generation in the performance of the al-
gorithm is straightforward: the more individuals, the least the per-
centage of error, as more possibilities are evaluated. However, there
is a substantial increase in the execution time, as shown in Figure 3
(right).

Reduced search space. Being able to reduce the size of the pa-
rameter search space considerably helps the algorithm to converge
faster. We carried out a test varying the size of the search space to
analyze its effect on the final solution. For this test the probabil-
ities of replacement, crossover and mutation were all fixed to 0.8,

the number of generations was 50 and the number of individuals
in each generation 40. The search space was reduced to values be-
tween ±100% and ±150% of the original value. Results are shown
in Figure 4 for a translucent object (thus using the diffuse approx-
imation as the illumination model). It can be seen how reducing
the search space yielded a better solution for the same number of
iterations.

Figure 4: From left to right: Original image, image rendered using
a global search space (parameters between 0 and 1) and image ren-
dered using a reduced search space (parameters between ±100%
and ±150% of the original value). The second one approximates
the ground truth image more closely for the same number of itera-
tions. Rendering time = 15 minutes.

5 Results and Conclusion

We have presented a method based on genetic algorithms suitable
for capturing the appearance of opaque and translucent materials
depicted in single images. The algorithm converges to an approxi-
mate solution in reasonable times with little user interaction.

Additionally, we have studied the influence of the different config-
uration parameters of the genetic algorithm in both the accuracy of
the result and the execution time of the algorithm, thus providing a
guidance for future implementations. Genetic algorithms have al-
ready proved useful in solving non-structured or inverse problems
in many other fields; however, configuring their input parameters
remains a fundamental task which varies across applications, and
thus has to be individually studied for each specific optimization
problem. The correct election of these parameters is a key aspect
for achieving a valid solution in a reasonable time, as expectedly
more accuracy in determining the solution implies higher execution
times. Special attention must be paid to the number of individuals
per generation and to the percentage of individuals being replaced
in each iteration, given their stronger influence in both computa-
tional cost and accuracy of the result. When possible, reducing the
search space of the parameters significantly increases the efficiency
of the algorithm.

Additional results are shown in Figure 5. The probabilities of re-
placement, crossover and mutation were all fixed to 0.8, the number
of generations was 50 and the number of individuals in each genera-
tion was set to 40. All images in this paper have been rendered on a
AMD Opteron Quad-core machine @3GHz and 4GB of RAM, and



took between 15 and 20 minutes in the case of translucent materials
and around one minute in the case of opaque objects. For the dif-
fusion approximation, we have used the fast hierarchical rendering
technique of Jensen and Buhler [2002].

Figure 5: Left column: Original image. Right column: Image
rendered with our algorithm. In the first two rows the material is
translucent, and thus modeled with the dipole model. The last row
shows an opaque material, modeled with the Phong model. Ren-
dering times are around 20 minutes for the translucent ones and 1
minute for the opaque one.

6 Future Work

One of the main lines for future research is exploring the possibili-
ties that mutation techniques can offer with the objective of acceler-
ating convergence to the solution and of overcoming local minima.
Besides, the operation with the highest cost is rendering the scene
with each set of parameters for evaluation by comparison with the
original image, so creating the chromosomes of possible solutions
intelligently instead of relying on brute force is vital, and more so-
phisticated mutation functions could also help in this direction.

To reduce the parameter space, we have assumed that information
of light sources, geometry and camera position was known, and
only the reflectance characteristics of an object in the image were
unknown. It would be interesting to stress our approach further and
see how genetic algorithms perform as the problem becomes even
more ill-posed.

Further strategies which can improve the implementation include

parallelization and improvement of the efficiency of GPUs. As
mentioned, the bottleneck of the implementation lies in generat-
ing an image for evaluation for each string of parameters; given
that these strings are completely independent between them, several
evaluations could be performed in parallel to reduce the execution
time.
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