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Figure 1: Our multidimensional filtering approach allows angularly-coherent editing of glossy appearance in a light field (LF) by means of a
user-specified roughness parameter σv. In pairs, from left to right: input LF, and two editing results showing increasing roughness (σv = 0.016
and 0.064, respectively). Each pair shows the actual LF view, and the corresponding specular component with increased contrast for better
visualization. We show here two views of the LF (top and bottom rows); for videos of the full LF please refer to the supplemental material.

Abstract

With the improvement of both acquisition techniques, and computational and storage capabilities, we are witnessing an increasing
presence of multidimensional scene representations. Two-dimensional, conventional images are gradually losing their hegemony,
leaving room for novel formats. Among these, light fields are gaining importance, further propelled by the recent reappearance of
virtual reality. Content generation is one of the stumbling blocks in this realm, and light fields are one of the main input sources
of content. As their use becomes more common, a key challenge is the ability to edit or modify the appearance of the objects in
the light field. This paper presents a method for manipulating the appearance of gloss in light fields. In particular, we propose a
multidimensional filtering approach in which the specular highlights are filtered in the spatial and angular domains to target a
desired increase of the material roughness. The filtering kernel is computed based on surface normals and view direction. Our
technique generates angularly-coherent plausible edits in both synthetic and captured light fields.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

A light field (LF) is a general representation of the light travers-
ing a scene, which provides information about its appearance ob-
served from different directions [LH96]. This potentially enables
reproducing all visual cues that can be observed in the real world,
including motion parallax and accommodation, which are usually
missing in conventional imaging pipelines. Given the completeness
of LFs, they have a potential of becoming the ultimate visual data
representation for digital imaging. The process of adapting them

to current imaging pipelines is facilitated by recent work on LF
acquisition [NLB∗05, VLD∗13], compression [VTMC11], and dis-
play [WLHR12], which makes a good prospect for developing an
end-to-end LF pipeline in the near future. An important component
of such a pipeline is a post-processing stage where artists can edit
the content to alter its appearance. In this work, we address the prob-
lem of material editing, and more precisely, editing the apparent
roughness of a surface, in structured LFs.

In this context, several techniques have been proposed for edit-
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ing of 2D content [KRFB06, BBPA15], but the problem remains
mostly unexplored for LFs. Although it seems feasible to use ex-
isting 2D techniques and apply them separately to different views,
such an approach does not exploit the rich information encoded
in LFs. As a result, complex interactions between scene geometry,
viewing location, and light positions cannot be easily handled. Even
though LFs enable reconstruction of such information by means of
inverse rendering [HFB∗09], the problem is usually difficult, and
requires solving a highly underconstrained optimization problem.
Fortunately, the accurate solution might not be needed. Since re-
flectance estimation is an underconstrained problem [DAW01], the
human visual system (HVS) does not perform inverse rendering to
obtain information about physical properties of materials. Instead,
it relies on invariants and image properties such as highlight size
or brightness [Fle12]. The HVS is also insensitive to large incon-
sistencies in illumination [OCS05], which further suggests that an
approximate solution for material editing might be sufficient.

Inspired by these findings, our main observation is that an increase
in surface roughness leads to changes in the size and brightness
of specular highlights, and that such operations can be performed
using simple image processing techniques, and in particular filter-
ing. Consequently, we propose a new LF editing approach which
modifies the apparent roughness of the surface by filtering the spec-
ular component of the LF. Since angular consistency is of high
importance for material perception [WFEM10, DFY∗11], filtering
is performed jointly in the spatial and angular domains, with pa-
rameters optimized to closely match ground-truth results. Inspired
by perceptual findings, our approach explicitly avoids the difficult
problem of light source position estimation, and relies only on the
depth map, which can be computed for LFs with a satisfactory fi-
delity [CLY∗14,LCBKY15,ZSL∗16,WSR16]. For this purpose, we
adapt existing solutions paying special attention to the depth recon-
struction in highlights, which are often prone to artifacts (Sec. 3). We
demonstrate that even partial scene information, such as depth and
surface normals, enables high quality editing of the object appear-
ance (Sec. 4). One of the key benefits of using a filtering approach
is that in difficult regions it provides graceful quality degradation
without catastrophic failures. As a result, the edits do not introduce
visible artifacts and inconsistencies (Sec. 5).

2. Related Work

Methods for material editing can be categorized according to what
information they rely on. The most advanced techniques rely on
having complete scene information, i.e., geometry, lighting, and
reflectance properties of objects. In this category, interactive tech-
niques for both parametric [CP06, NDM06, TGY∗09], as well as
measured [BAOR06] BRDFs were proposed. Some of them ad-
dress also spatially-varying BRDFs [LBAD∗06]. For any of such
BRDF representations, even sparsely marked user edits must be
meaningfully propagated to all image regions of similar appear-
ance [PL07,AP08,NSRS13]. Another group of methods for material
editing includes techniques that do not rely on an explicit BRDF
representation, but work directly with a 3D scene where the user
interactively deforms the shape of reflections or their position on
the reflecting surface [ROTS09].

Our work is most related to image-based methods in which the

difficulty of humans to perceive inconsistencies in material appear-
ance has been exploited for editing materials [KRFB06], or even
caustics [GSLM∗08]. Such approaches benefit from the fact that
the scene is observed from a single viewpoint, and thus, some un-
noticeable inaccuracies can be present in depth or illumination
estimation. These techniques often require additional user inter-
action [OCDD01, YTBK11]. Meanwhile, other methods assume
that per-pixel normal and depth data are given together with the
input image, e.g., for shading manipulation [VBFG12]. More re-
cently, Boyadzhiev et al. [BBPA15] proposed a purely image-based
technique to modify material properties by performing a subband
decomposition and selectively sifting its coefficients.

The main difference between our technique and the work men-
tioned above is that our method does not require explicit information
about geometry, material, or illumination. Instead, during our fil-
tering step, we exploit the fact that such information is encoded
in the LF implicitly. As a preprocessing step, we compute depth
information and a specular-diffuse separation that will be used in
the filtering step. With respect to the recent work by Boyadzhiev
et al. [BBPA15], our technique provides different edits. While they
modify high level properties, such as oiliness, glow or blemishes of
the skin, we focus on the editing of glossy appearance, and rough-
ness in particular. Furthermore, our filtering allows to propagate
edits to views of the LF which had no gloss before. The approach by
Boyadzhiev et al. is designed for 2D images, and it cannot support
such operations in a trivial manner.

With the increasing interest in LFs, many techniques have
been proposed to edit them. These include methods for mor-
phing LFs [ZWGS02, WLL∗05], interactive deformation of ob-
jects [COSL05], or propagation of local edits such as painting and
scissoring [SK02]. Further efforts focused on hole-filling, object
reshuffling and resizing, manipulating object depth, and parallax
magnification [ZWS∗16]. Recently, some work has targeted auto-
matic edit propagation [JMG11] (with similar goals as in [AP08]
for BRDFs) to ensure spatial and angular consistency, and differ-
ent paradigms for efficient LF editing [JMB∗14]. Although many
new LF editing techniques have been recently proposed, to our
knowledge no method exists for gloss appearance editing in LFs.

3. Light Field Preprocessing

To run our gloss editing algorithm we require normal maps of the LF
views, as well as a separation of the specular and diffuse components.
In this section we describe how depth maps can be estimated, how
normals can be computed from these depth maps, and how to obtain
the separation for the specular and diffuse components.

3.1. Depth Estimation

There has been a significant progress in methods estimating depth
information from LF data [KZP∗13, HP14, CLY∗14, LCBKY15,
TSM∗15, ZSL∗16, WSR16]. We use the approach by Chen et
al. [CLY∗14] as it provides good reconstructions at object edges,
which is important to our algorithm. After computing depth map,
we perform an additional step that improves normal estimation and
angular coherence. For completeness, we provide a brief overview
of the method by Chen et al., followed by details of our extension.
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Figure 2: Illustration of 1D and 2D SCams. Left: The 3D LF con-
sists of two planar objects (green and blue) at two different depths.
A 1D SCam is shown for the scene point where the dashed lines
(rays) converge, as the image of the point in the different views. In
the case of a 4D LF each SCam would thus be 2D, and built in
an analogous manner. Right: Example SCams S, Sd and Sc (Eq. 3)
computed for the point of the ’dragon’ scene. The region marked
with green outline corresponds to S∗s,t,x,y.

3.1.1. Initial Disparities Estimation

In stereo image pairs, depth is estimated by finding correspondences
between the points of two views. The correspondences are defined
by the displacement (disparity) of the same object point between the
views. The disparity d and depth Z values are linearly related:

Z = b f/(b−d), (1)

where f is a focal length and b is a baseline, both in pixels units.

In a structured LF L, the displacement between cameras is uni-
form, and therefore, a single disparity value d provides a correspon-
dence between all instances of the same scene point. Each point in
a 4D LF L can be represented by four coordinates (s, t,x,y), using
two plane parametrization, where (s, t) define the view and (x,y)
the spatial position within this view; dimensions of the LF are thus
Ns×Nt ×Nx×Ny. In the absence of occlusions, the instance of
the point L(s, t,x,y) in other views can be obtained from the offset
(∆s,∆t) between of the views:

L(s+∆s, t +∆t,x+∆sd,y+∆td) = L(s, t,x,y). (2)

In the presence of occlusions it might correspond to a different
scene point (Fig. 2). The image Ss,t,x,y,d = ∪

(∆s,∆t)
L(s+∆s, t +∆t,x+

∆sd,y+∆td) defined by the relation (2), without consideration of
occlusions, is called a surface camera (SCam) [YMG04].

Since a diffuse Lambertian object has the same appearance from
all viewing directions, depth estimation algorithms typically try to
find, for each point (s, t,x,y), the disparity value d, which gives
the most uniform—in terms of color—SCam Ss,t,x,y,d . This works
well in most cases, but, on object edges and in the presence of
occlusions, the SCam might be divided into several regions. Thus,
one is interested in finding a set of pixels S∗s,t,x,y,d ⊆ Ss,t,x,y,d , which
are the actual instances of the scene point (s, t,x,y) (Fig. 2 right).
Chen et al. [CLY∗14] determine S∗s,t,x,y,d as the pixels with the most
similar color values to a color of reference pixel (s, t,x,y). To this
end, a bilateral consistency metric (BCM) for each pixel is computed
with respect to a reference pixel based on spatial and color distances.
Then, S∗s,t,x,y,d is obtained by thresholding the values of BCM. In the
BCM proposed by Chen et al., we set the color variance and spatial
variance to 5/255 and bmax(Ns,Nt)/2c. Finally, for each test value

a. Input view 

g. Normals,
initial depth

b. Initial depth d. Angular filtering e. Ground-truthc. Spatial filtering

h. Spatial filtering i. Angular filtering j. Ground-truthf. Specular mask

Figure 3: Illustration of the depth maps for each of the steps in
Sec. 3.1. The input LF consists of 15x15 views. The second row
shows our estimated mask of the specular regions and the normal
maps, computed as in Sec. 3.2. The maps show the values in the
masked region, but the masks are not used for the steps in Sec. 3.

d̃ the color consistency measure cd̃(s, t,x,y) is computed on the
region S∗s,t,x,y,d̃ , based only on color distances. Then, d is the optimal
value of the consistency measure: c(s, t,x,y) = max

d̃
cd̃(s, t,x,y).

3.1.2. Final Disparities Estimation

The depth estimation algorithm described in Section 3.1.1 com-
putes disparity estimates d for each point of the input LF. The
estimation might be noisy and not angularly consistent. It may also
contain errors in specular regions (see Fig. 3b). Most solutions
which perform regularization or filtering to avoid these problems
involve a MRF formulation to solve an energy minimization prob-
lem [TSM∗15, WSR16, LCBKY15]. However, a discrete labeled
disparity map, obtained from the optimization, is not optimal for our
subsequent normal computation. We thus avoid this solution and
rely on the fact that we have a good detector of inaccurate depth map
regions: noisy pixels or pixels belonging to specular regions will
have low values of the consistency measure c discussed in Sec. 3.1.1.
The unreliable pixels can be defined as the ones with c < θ, where
θ is a threshold value (in our implementation θ ∈ [0.8,0.9]) . Once
we have detected the regions where depth is inaccurate, we use a
strategy similar to [LLK∗02] to propagate depth from reliable to un-
reliable regions within each view of the LF. For this propagation we
rely on the idea that the depth of unreliable pixels can be estimated
as the average of depth values of reliable pixels in some window
around the unreliable pixel. We achieve this with a push-pull algo-
rithm. To this end, we first compute a Gaussian pyramid based on
reliable pixels, and then, propagate depth information in a top-down
fashion to unreliable pixels from coarser levels. As a result, the
depth map is significantly improved (compare Figs. 3b and 3c). This
type of propagation can lead to errors on objects edges. Moreover,
within-view propagation might lead to angularly inconsistent depth
estimates. However, most regularization or filtering solutions are
designed to work within each view separately, since most depth
estimation algorithms seek a depth map only for the central view.

To obtain angular consistency and alleviate the errors on the
edges, we perform an angular filtering step, which is performed
within SCams. We exploit the fact that the scene points which have a
specular reflection in certain views will not have them in some others.
For points with specular reflection, disparity estimates are obtained
through within-view propagation, while the rest of the points have

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Gryaditskaya et al. / Gloss Editing in Light Fields

been obtained as described in (Sec. 3.1.1). Since the latter are more
reliable than the former, we want to propagate angularly the disparity
estimates with high values of the consistency measure to those,
where the disparity has been estimated via within-view propagation.

For each reliable pixel (x,y) within each view (s, t), we compute
the SCams from the disparity d and consistency c maps (Fig. 2):

Sd ≡ Sd
s,t,x,y,d = ∪

(∆s,∆t)
d(s+∆s, t +∆t,x+∆sd,y+∆td) (3)

Sc ≡ Sc
s,t,x,y,d = ∪

(∆s,∆t)
c(s+∆s, t +∆t,x+∆sd,y+∆td), (4)

where d = d(s, t,x,y). Instead of propagating d, we first compute an
average d̄ in Sd over the reliable pixels with similar disparity values:
d̄ = ∑ j wi jSd( j), where i is the index in Sd of the pixel (s, t,x,y).
This step is performed to account for small errors in disparities
estimation obtained as described in Sec. 3.1.1. During the averaging,
the pixels are weighted by:

wi j = e
− w2

d
2σ2

d max
(

0,
Sc( j)−θ

1−θ

)
max

(
0,

Sc(i)−θ

1−θ

)
, (5)

where wd is the difference between disparity estimates, σd defines
how similar two disparity values should be to be considered as two
estimates for the same scene point. The other terms ensure we do
not take into account pixels with unreliable depth estimates (wi j is
zero if consistency value Sc( j) or Sc(i) is less than the threshold θ).

Once the averaged disparity value d̄ is obtained we want to prop-
agate it to the other pixels j ∈ Sd :

Sd( j) = d̄wp
i j +Sd( j)(1−wp

i j), (6)

where we perform linear interpolation between the average d̄ and
the old disparity value Sd( j) based on how reliable and how similar
its value to Sd(i). To do so, we now compute the weight wp

i j for
propagation:

wp
i j = e

− wc
a

2σ2
d

θ
2

(2Sd ( j))2 max
(

0,
Sc(i)−θ

1−θ

)
, (7)

where the exponential term determines to which pixel to propagate,
and the second term as before states that the propagation should not
be done if i = (s, t,x,y) has low value of consistency measure. The
term θ

2

(2Sd( j))2 influences the value of σd , so that the disparity values

of unreliable pixels j could differ from Sd(i) more.

3.2. Normals Computation

The technique described in Sec. 3.1 computes a disparity value for
each pixel of each view in the LF, d. To compute the corresponding
normals, we first convert the disparity value d ∈ d to depth value
Z using Eq. (1). We further compute horizontal (Gx) and vertical
(Gy) gradients using forward differences. The tangent plane for a
point is given by vectors [1,0,Gx(s, t,x,y)] and [0,1,Gy(s, t,x,y)],
and the normal is computed as the cross product of these two vectors.
Finally, we apply a guided filter [HST13] to the computed normal
map with the depth map as a guidance image, to obtain a smooth
normal map, and normalize vector lengths to one (Fig. 3 g-j).
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Figure 4: a. Reflectance lobes at a certain scene point, with normal
n and light direction l, for different roughness values. Vectors vi and
v j illustrate view directions of the scene point to two views of the LF,
i and j. b. Normals and view directions for two scene points within
one view.

3.3. Specular and Diffuse Component Separation

For a review of different approaches for specular separation please
refer to [ABC11]. We select an approach which does not require
any assumptions on illumination or any type of hallucination for
missing information [CKS∗05, TSW∗15].

The specular separation is performed under the assumption that
the point containing the specular reflection in one view will be
observed as diffuse in some other. We further assume a Lambertian
model for the diffuse component of the surface BRDF. To find all the
instances of the point (s, t,x,y) with disparity value d = d(s, t,x,y)
one needs to find the region S∗ ≡ S∗s,t,x,y,d (Sec. 3.1.1). Compared
to Sec. 3.1.1 we now know the disparity estimates Sd

s,t,x,y,d (Eq. 3)
and can immediately obtain S∗ by taking the pixels with depth
estimates similar to d. To an accuracy of noise level, the diffuse
component can be estimated as the RGB value of the pixel with the
lowest intensity value within S∗. Following Lin et al. [LLK∗02], we
consider all unreliable pixels, defined in Sec. 3.1.2, as specular.

4. Filtering

We pose the process of editing glossy appearance as a filtering prob-
lem, in which the edited value of each pixel in the LF is computed
from the values in neighboring pixels according to a roughness pa-
rameter specified by the user. In a LF, neighboring pixels refer to
both angular and spatial neighbors, i.e., filtering should be done in
both the spatial and angular dimensions, combined, since the shape
and appearance of the highlight is affected by both domains. We
describe and justify the filtering approach below. Note that we filter
only the specular component of the input LF (or of a masked region
of it). The object in LF can be selected for example using an interac-
tive technique [WSG13]. Thus, when we refer to LF values we will
be referring only to the specular component of the LF. However, we
maintain the notation of the previous section for clarity.

Angular filtering We exploit here that the LF contains instances
of a scene point as observed from different view directions. For
each point (s, t,x,y) of the input light field L with the disparity
d = d(s, t,x,y), these instances form the set S∗ ≡ S∗s,t,x,y,d , defined
in Sec. 3.1.1. The pixels of S∗ share the same depth, normal, and
directions to the light sources, while the direction to each camera
(or viewpoint) v j varies.

Our task is to obtain the new intensity value for a point from
the input LF, which implicitly encodes information about the light
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sources, and the known information about varying view directions.
This can be formulated as a convolution of the input specular signal
with some view-dependent weights, yielding the edited signal S̃∗.
This convolution is done per SCam of the LF as follows:

S̃∗(i) = ∑
j∈Ŝ∗

Ŝ∗( j)ka
i j(σv), for each i ∈ S∗, (8)

where ka is the convolution kernel, Ŝ∗ are the pixels of S∗ with
values greater than zero. For the computation of the kernel weights
ka

i j we consider the following: (i) two pixels i and j should share
more information (i.e., weights will have higher values) if their view
directions are more similar, and (ii) the higher the roughness value
we want to achieve, the more information will be shared between
the pixels with similar view directions. This is illustrated in Fig. 4a,
where we depict reflectance lobes for different roughness values,
together with view directions for a certain scene point as captured
in two views of the LF, vi and v j . For the different roughness values,
one can see that, the smaller the angle θ

i, j
v between camera directions

(θi, j
v = arccos(vi ·v j)), the more similar the reflectance values of the

pixels will be; and that, the higher the roughness, the more similar
the reflectance values as well, as explained in (i) and (ii) above.
Taking this into account, the weights of the convolution kernel for
the computation of pixel i are defined as:

ka
i j(σv)≡ ka(vi,v j,σv) = exp

(
−θ

i, j
v

2

2σ2
v

)
ωi j, (9)

where σv relates to the desired roughness. For the base version of
our weights we set ωi j to 1; its actual value is introduced next.

The question arises if there is any other information which can
be used without implicit computation of the scene lighting. Let us
consider the widely used Cook-Torrance BRDF model:

ρ(i, l,v) =
D(l,v)F(l,v)G(l,v)

4(v ·n)(l ·n) , (10)

where D(·) is a microfacets distribution function, F(·) is a Fresnel
term, G(·) is a geometrical attenuation term, l is the light source
direction, and i is some scene point. All the terms, except for the
(v ·n) term in the denominator, depend on the light source direction.
While performing a convolution we can account for this term by
multiplying the input signal at j by (v j ·n j) and dividing the result
of the convolution by (vi ·ni). That corresponds to setting weights
ωi j in Eq. (9) to the following:

ωi j ≡ ω(vi,v j) =
(v j ·n j)

(vi ·ni)
. (11)

Spatial filtering For different points within each view of the LF,
the normals, camera directions and light source directions might
differ. However, in a small neighborhood around a given surface
point one can assume a constant light source direction. Thus, the
similarity between pixels is determined not only as a difference
between view directions, but also as a difference between normal
vectors. This is also modeled as a convolution, involving view- and
normal-dependent kernel weights ks

i j and yielding the edited signal
L̃s,t . This convolution is done per view of the LF as follows:

L̃s,t(i) = ∑
j∈L̂s,t

L̂s,t( j)ks
i j(σv,σn), for each i ∈ Ls,t , (12)

where L̂s,t are pixels of the view Ls,t with values greater than zero.
The kernel weights are computed as follows:

ks
i j(σv,σn)≡ ks(vi,v j,ni,n j,σv,σn) = (13)

= exp

(
− (θ

i, j
v )2

2(σv)2 −
(θ

i, j
n )2

2(σn)2

)
ωi j,

where θ
i, j
n = arccos(n j ·ni), θ

i, j
v is the same as in Eq. (9), but com-

puted over a different set of LF points: i ∈ Ls,t and j ∈ L̂s,t (see
Fig. 4b). Parameters σv and σn control how rough the final mate-
rial will appear in the LF: the higher the roughness value we want
to achieve, the more information will need to be shared between
the pixels with similar view directions and normal vectors. This is
achieved by increasing σv and σn.

Combined Filtering One can observe that in the case in which i in
Eq. (13) is set to go over S∗, and j to go over Ŝ∗, then ks(σv,σn) =

ka(σv), since in this case θ
i, j
n = 0. This allows us to define the

universal kernel weights ki j(σv,σn) by Eq. (13), such that

• ki j(σv,σn) = ka(σv) if i ∈ S∗ and j ∈ Ŝ∗,
• ki j(σv,σn) = ks

i j(σv,σn) if i ∈ Ls,t and j ∈ L̂s,t .

In this case the convolution is done per LF and takes the form:
L̃(i) = ∑ j∈L̂ L̂( j)ki j(σv,σn), for each i ∈ L, where L̂ are pixels of
L with values greater than zero, and i denotes each of the pixels in
light field L.

4.1. Filtering parameters and validation

In order to validate the multidimensional filtering, as well as to
study the relation between σn and σv, we search for optimal values
of these parameters by formulating an optimization problem.

Optimal filtering parameters We minimize the luminance differ-
ences between a target material with roughness r2, and an input
material with roughness r1 filtered to obtain the target one. To avoid
convergence to local minima, this optimization is performed in two
steps: We first solve for σv and then for σn.

When solving for σv, we only perform angular filtering. Further,
we select SCams S that contain the peak of the specular reflection.
This ensures that our optimization results will not be biased by the
SCams with partial information about lighting. We demonstrate in
the next section that such SCams result in missing energy in the
filtered LF. Consequently, we minimize the luminance differences
between the specular component of the target SCam, S∗r2 , and that
of the filtered SCam, S̃∗r1 , for all SCams in subset S:

min
ε,σv

∑
S∗r2
∈S

∑
i∈S̃∗r2

S∗r2(i)− ε ∑
j∈Ŝr1

ka
i j(σv)Ŝ∗r1( j)

2

, (14)

where ε is a global normalization factor. Once we have σv and ε, we
obtain σn by minimizing the differences over the specular regions
of the full LF:

min
σn

∑
i∈L∗

r2

Lr2(i)− ε ∑
j∈L̂r1

L̂r1( j)ki j(σn,σv)

2

, (15)
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Figure 5: Evaluating the contribution of the weighting factor ωi j
on a 1D SCam of a LF with Ns = 50. Left: An input LF with a
roughness r = 0.001, is filtered with different parameters to obtain
different target roughnesses (0.002, 0.01 and 0.05). For each target
roughness, the three 1D SCams show the target (ground truth) SCam
(GT), the filtered SCam without ωi j (WO), and the filtered SCam
with ωi j (W). Note that ωi j is required to capture the asymmetry of
the ground truth SCam. Right: Illustration of light reflected at the
points sampled by the 1D SCam (for the specific case of r = 0.05),
for a scene point with normal n and light direction l (violet for
actual values and cyan for filtered values).

D. Spatial 
filtering

C. Angular 
filtering

E. Combined 
filtering

B. Target 
(ground-truth)

A. Input

(1,1)

(15,15)

PSNR 76.9dB PSNR 76.9dB

PSNR 83.2dB PSNR 87.5dB

Figure 6: Evaluation of angular, spatial and combined filtering
on a 4D LF (15x15 views; the figure shows the heatmaps for the
luminance channel of the views (s,t)=(1,1)/(15,15)). The input LF
(A) has a roughness value r = 0.001, and the target roughness is
0.1(B). Values of σv and σn are obtained as described in Sec. 4.1.
The light fields (B,D,E) are normalised to match the mean luminance
of the view (s,t) = (1,1).

where ki j is given by Eq. (13). We solve Eqs. (14,15) using the
implementation of the trust region-reflective algorithm from the
MATLAB Optimization Toolbox.

We solved these optimization problems for several target rough-
ness values to uniformly cover the range of possible roughness
values and observed that consistently we obtained σn ≈ σv/2. That
is in accordance with the following intuition: If we consider the case
where the normal, light source direction and view direction are lying
on the same plane, a change of the normal in this plane by some
angle γ will lead to the half angle changing by γ. At the same time,
a change of a view direction by γ leads to a change in the half angle
by γ/2. To obtain all results in Sec. 5, we fix the ratio between these
parameters, so that σn = σv/2.

Validation To assess the contribution of our weighting factor ωi j
(defined in Eq. 11), in Fig. 5 we show the results of filtering for
different target roughness values, with and without this factor. In
the figure we depict a 1D SCam of the LF. Note that without this

weighting factor the filtering can not achieve the asymmetry which
is inherent to large roughness values.

Once we have shown that the weighting factor ωi j is required to
properly depict the appearance, we evaluate the contribution of the
different types of filtering, i.e., considering only angular, spatial, or
combined filtering. In Fig. 6 we show the results obtained with each
type. If angular filtering alone is performed, for it to be correct, an
SCam should cover the full specular lobe. Otherwise, filtering will
lead to a lack of energy compared to the ground truth (see Fig. 6C
vs. B). Spatial filtering within a single image allows to correctly
modify the appearance of the specular component within a certain
neighborhood. However, the closer the light source is to the surface,
the less reliable the spatial propagation becomes for distant points.
Thus, the spatial filtering might not be sufficient and may lead to
inconsistent appearance of angular-dependent effects (see Fig. 6
columns D vs. B). Accounting for information both angularly and
spatially ensures a more correct distribution of energy over the LF
(Fig. 6 column E).

5. Results and limitations

We demonstrate our approach on three sample scenes. The full
preprocessing pipeline is shown in Fig. 7: Depth is estimated for
each view (Fig. 7E), followed by normals computation (Fig. 7F)
and separation of specular and diffuse components (Fig. 7C and
D). In Figs. 8 and 1 we show filtering results for three different
output roughness values for each of input scenes. For each result
we show both the filtered specular layer and the composited result;
when merging both layers, the filtered layer is scaled so that the
mean values of the input and filtered specular layers match. Please
refer to the supplemental material for videos showing the full light
fields of final and intermediate steps for all scenes. Our technique
yields angularly-coherent, plausible edits of the appearance of glossy
objects. In Fig. 9 and supplemental videos, we show side-by-side
comparisons with ground-truth, as well as error maps computed
using the SSIM [WBSS04] between the filtered and ground-truth
results. Note that the major differences are caused by imprecision of
depth reconstruction and not by the filtering. Additionally, varying
the weight of the specular layer while compositing one can achieve
more/less metallic appearance of objects (Fig. 10 and supplemental).

We also show that simple 2D images manipulation is insufficient
for editing a material’s roughness. The recent work of Boyadzhiev
et al. [BBPA15] enables single-image modification of some material
properties. In terms of gloss appearance it can make the material
more or less shiny; we show results of both operations in Fig. 11
(a and b) for our dragon scene. With this technique, not only the
highlight is modified, but the texture is also affected (see, e.g.,
Fig. 11b and supplemental). Further, while on a single image the
results of both techniques may not be strikingly different, the dif-
ference becomes clear when observing the whole LF (please see
supplemental videos). Finally, in Fig. 11c we plot the errors of this
technique, under these assumption that the decomposition allows to
process the highlight separately from the texture. The figure shows
that when highlights get brighter or dimmer, the shape of the lobe
does not change correctly. While our technique allows to model that
behaviour correctly (Sec. 4.1 and Fig. 5).

The major limitation of our approach comes from depth estima-
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A. Used lighting C. Diffuse layer D. Specular layer E. Depth F. NormalsB. Input view, t6, s6

Figure 7: Steps of our preprocessing pipeline for three sample scenes: bunny, dragon and dog. All three input LFs have 11 by 11 views. For
the bunny scene the disparity range is set to [-6:-3.3], for the dragon scene to [-6:-2.5] and for the dog scene to [-5.8:-2.5].

h. Filtered: σv = 0.032 k. Filtered: σv = 0.064g. Filtered: σv = 0.016  

s
c. Filtered: σv = 0.064 b. Filtered: σv = 0.032  a. Filtered: σv = 0.016  

Figure 8: Several filtering results for the scenes in Fig. 7, with varying degrees of output roughness. For each result we show both the filtered
specular layer and the composited result.

b.

Boost 30: ampl.: low, 
freq.:low, sign: pos.

a.

Reduce 50: ampl.: high, 
freq.:high, sign: pos.

l

n

Blinn-Phong

c.

Figure 11: a and b. Results of gloss editing using [BBPA15], mak-
ing the material less and more shiny, respectively (the parame-
ters used are specified in the figure, for their meaning please refer
to [BBPA15]). c. Illustration of these operations on an input re-
flectance lobe (purple), as it is made more shiny (green) or less
shiny (blue). Solid lines correspond to the ground truth, and dashed
ones to the results obtained by scaling the lobe.

tion and specular separation algorithms. Both, non-textured objects
or objects with very large specular highlights, will result in poor
depth estimation. Possible solutions involve integrating depth cam-
eras, hallucinating missing information, or using additional hard-
ware for, e.g., specular separation. So far our algorithm is targeted
for roughness increase only and is applicable only to opaque objects.
As mentioned in Sec.4 the editing requires preliminary masking
the object or the material. We use the ground-truth masks obtained

during rendering. Alternatively, the masks can be obtained automat-
ically, using segmentation techniques [MFT∗16].

6. Conclusion

We have presented a new technique for modifying glossy appear-
ance, and in particular apparent roughness, of materials in LFs. It is
based on the observation that plausible material edits do not require
a complete scene reconstruction which is usually expensive and
prone to artifacts. Instead, it is sufficient to consistently propagate
existing specular information in the spatial and angular domains.
For this purpose, we have developed a novel filtering approach that
is applied to the specular component of the light field. The filtering
parameters have been optimized to provide results closely matching
the ground-truth results, and the technique has been evaluated on
several scenes as well as compared to ground-truth renderings. Cur-
rently, our technique is only capable of increasing surface roughness.
The opposite operation is an interesting avenue for future work.
Despite our assumptions, the method provides results that closely
match the ground-truth results. In the future, perceptual experiments
could be used to further evaluate our results and investigate if the
technique can be further simplified.

c© 2016 The Author(s)
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D. Ground-truth result E. Filtered, σv =0.064 F. Filtered + SSIMA. Ground-truth result B. Filtered, σv =0.016 C. Filtered + SSIM

SSIM  = 0.9707

SSIM  = 0.9845 SSIM  = 0.9851

SSIM  = 0.9851 SSIM  = 0.9874

SSIM  = 0.9681

Figure 9: Comparison of the filtered results (b,e) with ground-truth results for different roughness values (a,d). In this case no optimization of
parameters was performed. The ground-truth results were selected manually by visual similarity to the filtered one. Figures (c,f) show the
overlay of the filtering results (σv = 0.016/σv = 0.064) with the dissimilarity maps between the filtered and ground-truth results, computed
using SSIM [WBSS04].

a. Diffuse layer b. Specular x1 c. Specular x2 d. Specular x3 e. Specular x4 f. Specular x5

Figure 10: Edited results obtained merging the diffuse layer with a linearly scaled filtered specular layer (σv = 0.032).
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