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Abstract
Measuring the spectral power distribution of a light source, that is, the emission as a function of wavelength,
typically requires the use of spectrophotometers or multispectral cameras. Here, we propose a low-cost system
that enables the recovery of the visible light spectral signature of different types of light sources without requiring
highly complex or specialized equipment and using just off-the-shelf, widely available components. To do this, a
standard DSLR camera and a diffraction filter are used, sacrificing the spatial dimension for spectral resolution.
We present here the image formation model and the calibration process necessary to recover the spectrum, in-
cluding spectral calibration and amplitude recovery. We also assess the robustness of our method and perform a
detailed analysis exploring the parameters influencing its accuracy. Further, we show applications of the system
in image processing and rendering.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Radiometry

1. Introduction

Obtaining a multispectral image of a scene allows us to ex-
tract information of it that our eyes fail to capture. This has
wide applicability in a variety of disciplines, including com-
puter vision, medical imaging or computer graphics. Mul-
tispectral imaging enables characterization of light sources,
material recognition and inspection, industrial control, spec-
tral rendering, or tissue identification, among others. Be-
sides, with the proliferation of cameras—both DSLRs and
in mobile devices—, photographic hardware and software
filters and simple image processing algorithms are widely
used and available in a number of software programs and
apps. These apps can benefit from knowledge of the spec-
tral signature of the light source(s) illuminating a scene for
different purposes: to yield better renditions of the images,
for white balancing, for the application of certain artistic
filters or for insertion of synthetic objects into the image.
This spectral signature, also called spectral power distribu-
tion (SPD), is the power emitted by a light source as a func-
tion of wavelength, and can be measured with spectropho-
tometers. These devices, however, are specialized equipment
of relatively high complexity and cost, not available to the
wide public.

This gives rise to this paper, where we propose a sys-
tem to estimate the SPD of different light sources at a low

Figure 1: Left: Elements of our capture system, which em-
ploys a DSLR camera and a diffraction filter like the ones
shown. Right: Two images of light sources captured with our
camera using a 500 lines/mm diffraction filter, showing the
diffraction pattern (spectral signature) of the source.

cost and requiring only off-the-shelf equipment. This equip-
ment comprises a camera and a diffraction filter, such as
those shown in Figure 1, left, and described in Section 3.
Our main focus is simplicity of use, availability, and low
cost. Other approaches in the literature have used prisms for
a similar purpose [DTCL09, CDT∗11], but require a larger
setup, while we just require a filter placed in front of the
lens. Further, we do not aim at obtaining an emission spec-
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trum as accurate as that yielded by spectrophotometers, but
to obtain a spectrum that can be used for a number of com-
monplace everyday applications, such as white balancing or
compositing of synthetic objects into an image (Section 7).
This paper is an extension of the method previously pub-
lished in [APKM14]. We extend that work by performing a
detailed analysis in order to test the robustness of our ap-
proach. In this analysis, we explore how different variations
in the scenario or the light source affect the quality of the
recovered emission spectrum. We also compare ourselves to
the work of Cao et al. [CDT∗11]: While we obtain slightly
less precise results, our setup is less bulky and complex and
requires less equipment, and still enables useful applications.

2. Related Work

In 1814 Joseph von Fraunhofer became known as the dis-
coverer of the missing dark absorption lines in the solar
spectrum [KB32], an indicative of the relationship between
the emission spectrum and the chemical composition of the
molecules of the emitter. Years later, in 1898, J. J. Thomson
would develop the first mass spectrometry method [Tho21],
which was later further developed and improved by F. W. As-
ton [Ast19] and A. J. Dempster [Dem18]. One of the main
goals of both mass spectrometers and spectrophotometers is
to measure the spectral power distribution of a signal, typ-
ically by splitting the ray into its wavelengths. To achieve
this, dispersive or diffractive elements must be placed in the
light path. These elements are usually gratings, where the
splitted rays are spatially shifted according to the grating
equation [Hec87].

This paper focuses on spectral measurement techniques
based on a spatial multiplexing of the spectrum. The reader
may refer to compilations such as [IWH10] for a thor-
ough description of spectral acquisition methods; we sum-
marize here some of the main approaches. These tech-
niques usually use dispersive or diffractive elements to-
gether with optical elements to change the rays direction in
a scene that will impinge the camera sensor creating multi-
ple, spectrally sampled images which will be reconstructed
in post-processing. An example are methods based on com-
puted tomographic imaging spectrometry (CTIS) [DD95,
VMHD07]; they were developed by Okamoto and Yam-
aguchi [OY91] using diffraction gratings, a field stop and
a lens to estimate a 3D distribution from a set of 2D images.

To capture specific spectral components of a scene, sev-
eral methods based on placing band-pass filters in front of
the camera’s sensor have been designed. Examples include
tunable filters (ELTs) [Gat00], or a wheel of filters [WH04].
Typically, these methods employ narrow-band filters which
give rise to a low light throughput; to avoid this, Toyooka
and Hayasaka [TH97] present a system based on broad-
band filters together with computational inversion and with-
out any scanning mechanism. A high number of approaches
to tunable filter systems have also been made: Liquid Crys-

tal Tunable Filters (LCTFs) [Cha10], based on a cascade
connection of Lyot filter stages; variable optoacoustic tun-
able filters, where a crystal was acoustically excited work-
ing as a diffraction grating; or an association of redirect-
ing mirrors [GKT09, GFHH10, HFHG∗05] which achieves
images of up to 25 spectral bands in real-time. Bodkin et
al. [BSN∗09] and Du et al. [DTCL09, CDT∗11] exploit a
similar concept by using a set of pinholes to restrict the rays
captured by the sensor. Behind these pinholes a prism is lo-
cated for spreading the spectrum, which then impacts in the
sensor, allowing for the acquisition of multispectral videos.
Other approaches to multispectral imaging include the use
of coded illumination [PLGN07], or the use of one color
channel to increase the spectral resolution [KN07], trading
off temporal for spatial resolution. In comparison with the
above, the system we present in this paper minimizes the
complexity of the hardware setup and the calibration pro-
cess. Note that, while these works are the closest to ours, in
this paper we do not aim at recovering a multispectral image
or video of a scene (i.e., spectrally sampled values per pixel);
instead, our goal is to obtain the SPD of a light source in a
simple, practical manner using a low cost, commonly avail-
able setup.

3. Overview of the System

We adopt a computational photography approach, in which
we will trade off the spatial dimension for the spectral one.
Our system requires only a diffraction filter mounted on a
camera; this can be done simply using a filter mount, which
is screwed in at the end of the lens. This filter will sepa-
rate light emitted by the source into its spectral components,
producing a diffraction pattern (spectral signature) that we
will capture and process to obtain the spectral power dis-
tribution of the source. Figure 1, right, shows two exam-
ples of diffraction patterns captured with our Canon EOS
500D and a linear diffraction filter. Diffraction filters such
as the ones used in this work (see Figure 1, left) are easily
found and common among photographers and amateur as-
tronomers, and they can be bought at a cost lower than five
US dollars. The image formation model of the system is de-
scribed in Section 4.

Obtaining the spectral power distribution of the source
from the diffraction pattern implies inverting a number of
processes that the signal undergoes in the camera. We refer
to this as the calibration of the system. Its first step is the so-
called spectral calibration (Section 5.1), where the mapping
between sensor pixels of the spectral signature and their cor-
responding wavelengths is found. The second step deals with
amplitude recovery (Section 5.2), since the camera has vary-
ing sensitivities for each wavelength and color channel that
need to be inverted to recover the original signal. While we
do provide a mathematical model for these different aspects
of the system, there are a number of issues which are diffi-
cult to take into account theoretically. These issues include
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technical specifications of cameras (e. g., spectral sensitivity
curves) not being disclosed by manufacturers, or influencing
phenomena that need very complex modeling (e. g., glare or
sensor bleeding). We thus revert to a data-driven approach in
some cases to circumvent this.

4. Image Formation Model

Our capture system, described in Section 3, allows us to cap-
ture an image of the light source with an associated diffrac-
tion pattern (or spectral signature) such as the ones shown
in Figure 1, right. Next, a 1D intensity profile is obtained
from a scanline of this captured image; this scanline is taken
from the central line of the spectral signature, and although
it is currently done manually by simply selecting a line, au-
tomatization is straightforward. This section describes the
image formation model of the system, while the next delves
on how to transform the aforementioned 1D intensity profile
in an actual spectral power distribution. We describe here the

Figure 2: Ray diagram of the system. Light rays are
diffracted by the filter, stopped down by the aperture, and
impinge on the sensor. For simplicity, a pinhole aperture is
represented instead of the lens system. Note that here two
diffraction orders (m =−1 and m = 1) are shown; in prac-
tice, the position of the light source is offset in the sensor, so
that only one diffraction order (m = 1) is visible.

model for a 1D linear diffraction filter, but other filters could
be used; a ray diagram of the setup can be seen in Figure 2.
For simplicity, in the following derivations we will assume a
thin lens model. As we will see later in Section 5.1 and Fig-
ure 5, right, this model proves to be enough for our purposes,
since we use this derivation mainly to support the validity of
our data-driven approach.

A light source imaged through the linear filter gives rise to
two symmetrical diffraction patterns at a distance from the

central maximum. Diffraction in the filter is governed by the
diffraction grating equation, such that the diffracted angle β j
at which the peak occurs for a certain wavelength λ j is given
by the following equation:

β j = arcsin(
mλ j

d
− sinθ) j = {1,2, ...,N}, (1)

where m is the diffraction order, d the separation between
grooves of the grating, θ the angle of incidence to the grat-
ing, and N is the number of samples considered along the
spectrum. The light source is assumed to be far away from
the filter, such that θ ≈ 0. Details on the derivation of this
equation can be found, e.g., in Hecht’s book [Hec87]. We
work in the Fraunhofer regime, as given by the Fresnel num-
ber F = a2/(Lλ), a being the width of the slit or groove
(50% of the separation between slits), and L the distance be-
tween the grating and the diffraction plane (the sensor). The
separation between lines or grooves (d) can be obtained from
the specifications of the grating (in our case, 500 lines/mm).
We work with the first order of diffraction, i. e., m = 1, since
the second and higher orders are much lower in magnitude
and fall outside the sensor area for typical diffraction grat-
ings. Note that this means that the field of view when taking
the image needs to be such that both the light source and
the first-order diffraction pattern need to be present in the
captured image. Diffraction patterns for a point and a finite
fluorescence light source captured with a linear diffraction
filter can be seen in Figure 1, right.

We can compute the displacement in the sensor from the
central maximum (corresponding to m = 0) for each wave-
length λ j as:

x j = s′tan(β j) j = {1,2, ...,N}, (2)

where the diffraction angle β j for each λ j is given by Equa-
tion 1. Equations 1 and 2, together with the well-known
thin lens equation 1/ f = 1/s + 1/s′ (Gaussian Lens for-
mula [Hec87], where f is the lens’ focal length, s′ the virtual
distance of the image and s the distance between the aperture
plane and the light source), and knowing the effective pixel
size t, allows us to compute the relationship between dis-
tance in sensor pixels measured from the central maximum
(m = 0) p j and wavelength λ j (Figure 2):

p j =
s f

t(s− f )
tan(arcsin(

mλ j

d
− sinθ)) j = {1,2, ...,N}

(3)
This relationship will be used for the spectral calibration de-
scribed in Section 5.1. Besides, we can compute the spectral
resolution (res, nm/pixel) of our system by obtaining the po-
sition in the sensor for the extremes of the visible spectrum:

res =
λM−λm

pM− pm
, (4)

where subindices M and m refer to the maximum and min-
imum wavelengths in the visible spectrum, and pM and pm
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Figure 3: Diffraction pattern from a white low-energy con-
sumption bulb after deconvolution using the Richardson-
Lucy algorithm.

can be obtained from Equation 3. In our system, this yields
a resolution of 0.333 nm/pixel.

4.1. Finite light sources

With the exception of ideal point light sources, the shape of
the light bulb modulates the emission spectrum, effectively
mixing different wavelengths of the spectral signature. This
modulation can be modeled as a 2D convolution between the
shape of the bulb and the image of the spectrum, since it acts
as part of the point spread function of the system [Goo05].
To cast aside the influence of the light bulb shape we apply a
Richardson-Lucy deconvolution [Ric72, Luc74]. The kernel
for this deconvolution is obtained by cropping and thresh-
olding the image. This operation can be done automatically
by detecting the maximum value of the image (which cor-
responds to the light source) and setting a relative thresh-
old around it. Figure 3 shows the image of a source and its
spectrum before and after deconvolution. We chose Lucy-
Richardson for deconvolution because it is ubiquitous, with
plenty of implementations available, and yields considerably
less noisy results in our scenario than other standard de-
convolution methods. This is shown in Figure 4, which de-
picts the spectrally calibrated distributions obtained with dif-
ferent common deconvolution methods for a white fluores-
cent light source. Richardson-Lucy deconvolution assumes a
Poisson distribution of the noise of the sought image; how-
ever, in our setup, our distribution would be better approx-
imated by a combination of Gaussian and Poisson distribu-
tions, for which other more sophisticated methods could be
better suited [GRPMSM11].

4.2. Background subtraction

There might be cases in which our light source of interest is
not the only source of illumination present in the scene. In
those cases, our system requires two photographs, one with
the diffraction filter and one without the filter, as input. Light

Figure 4: Spectrally calibrated intensity distributions from
a white low-energy consumption light source obtained us-
ing different deconvolution methods. In reading order:
Wiener deconvolution (with a NSR of 10); Wiener decon-
volution with a regularizer consisting of a Laplacian op-
erator; deconvolution relying on a prior enforcing sparsity
of gradients (designed for natural images) [LFDF07]; and
Richardson-Lucy deconvolution, which provides a smoother,
less noisy and overall better solution, thus being the selected
method.

is additive and follows the principle of superposition, mean-
ing we can simply subtract both images to obtain a dark im-
age with the spectral signature of the source of interest. The
diffraction undergone in the filter, however, is a non-linear
process, and therefore this subtraction will not only leave be-
hind the diffraction pattern of the light source that we want,
but also residual light due to diffraction of light coming from
parts of the scene other than the light source. This stray light,
however, is orders of magnitude lower than the diffraction
pattern of interest (recall that we are using HDR images,
allowing for more dynamic range), and thus has no signif-
icant effect on its recovery. We further discuss this issue and
show the validity of this approach in Section 8. Following
the subtraction, we perform a deconvolution as described in
Section 4.1 (this step is not necessary if we are dealing with
a point light source) and proceed with the calibration as de-
scribed in Section 5.

5. Calibration of the System

This section covers the process to transform the 1D profile
extracted from the HDR image of the light source captured
with the diffraction filter into a spectral power distribution
(SPD) which can be used for different applications, such as
the ones shown in Section 7. This is what we refer to as
calibration of the system. Although not strictly necessary,
we work with HDR images; this offers us a higher dynamic
range and avoids the need to linearize the intensities in the
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image. Further, HDR capture is commonplace and comes as
a preset mode in a large number of cameras today.

Several factors come into play when attempting to retrieve
the emission spectrum from an image. The diffraction un-
dergone in the filter (recall that diffraction is a non-linear
process), the presence of noise, dispersion and glare as light
propagates within the camera, human factors present during
capture, or lens aberrations are all responsible of modifica-
tions performed to the original emission spectrum. The lack
of detailed specifications of the camera’s hardware and soft-
ware due to manufacturers’ reticence to disclosure further
hinders the generation of a comprehensive forward model
and thus of a reliable inverse model. Here, we focus only on
the effects that the camera’s hardware plus the filter cause on
the captured signal. These effects must be reversed to obtain
the original emitted signal as accurately as possible.

The calibration consists of two parts: first, a spectral cal-
ibration, in which the objective is to find the mapping func-
tion between pixel values and light wavelength values; sec-
ond, amplitude recovery in which we model variations in the
amplitude of the SPDs due to the camera’s varying sensitiv-
ity to different wavelengths.

5.1. Spectral Calibration

The mapping between the displacement in pixels within the
sensor (from the central maximum) and the wavelength is
given, theoretically, by Equation 3. We are, however, making
a series of assumptions, such as the use of a thin lens model,
when deriving that equation. Therefore, we additionally take
a practical approach by imaging a light source with known
SPD, and obtaining the displacement (in image pixels) of a
series of characteristic peaks of the source (Figure 5, left) for
which the corresponding wavelength is known. These cor-
responding points (shown as black circumferences in Fig-
ure 5, right) allow us to fit an experimental mapping using
least squares. We consequently obtain the linear relation-
ship shown in Figure 5, right. Note that the theoretical curve
(Equation 3) already hinted this linear relationship (for inci-
dence angle θ≈ 0). We use R2 as a measure of the goodness
of fit of this mapping, which yields R2 = 0.99. We also plot
in Figure 5, right, the theoretical mapping for the parame-
ters of our system ( f = 50mm, s = 1.97m, m = 1, θ ≈ 0,
d = 2.004 µm, t = 9.38 µm/pixel). There is a slight differ-
ence between both mappings, probably due to the simplified
modeling of the lens system we perform. The fact that the
relationship very well approximates a linear function means
that two recognizable peaks of any light source will suffice
to calibrate such a system. This is very practical, since com-
mon fluorescent light sources have well-known peaks (546.5
and 611.6 nm for white fluorescent light sources [DTCL09])
which can be used for spectral calibration without the need
of knowing the whole SPD of the source used for calibra-
tion or the specific parameters of the system implementation.
Thus, we will use the experimental calibration.

Figure 5: Left: Emission spectrum of a white fluores-
cent light source exhibiting several characteristic peaks at
known wavelengths, and used for the experimental calibra-
tion. Right: Mappings pixel-wavelength obtained via the
theoretical (red) (Equation 3) and the experimental (blue)
spectral calibration procedures. The points used for the ex-
perimental mapping are shown as black circumferences.

Figure 6: Red curves correspond to the 1D profiles of the
diffracted intensities emitted by a white fluorescent point
light source (left) and a white LED point light source (right)
after spectral calibration (see text for details). The corre-
sponding ground truth SPDs are shown in black for compar-
ison purposes.

This spectral calibration is applied to 1D intensity profiles
obtained from the captured images. The spectral calibration
allows us to map the pixel positions of the profile into wave-
lengths, obtaining the profiles shown in Figure 6 for two dif-
ferent light sources. Once the system is spectrally calibrated,
the next step is the recovery of the correct amplitude values
of the SPD, described next.

5.2. Amplitude Recovery

A digital camera’s sensor is overlaid with a color filter ar-
ray that causes the impinging light to be weighted by differ-
ent wavelength-dependent response curves corresponding to
the spectral sensitivities of the three color channels (see Fig-
ure 7, left).

In an ideal case, Equation 5 would be fulfilled for each
color channel i = {R,G,B} for each pixel in the 1D profile.
We will denote each pixel p by its corresponding wavelength
λ obtained by means of the spectral calibration.

r(i,λ) = c(i,λ)s(λ), (5)

where r(i,λ) is the relative intensity extracted from the im-
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Figure 7: Left: Canon EOS 500D normalized spectral sen-
sitivities c(i,λ) f or i ∈ {R,G,B} [BCC∗09]. Right: Weight-
ing values ω as a function of v(i,λ), the normalized dis-
tance to the median of the three color channels for quotient
ri,λ/ci,λ for a certain λ (see text and Equation 8 for details).

age for that wavelength and color channel, s(λ) the emission
of the light source for a certain wavelength, and c(i,λ) the
spectral sensitivity of the camera for each color channel i
and wavelength λ.

Following Equation 5, recovering the light source’s emit-
ted spectrum would imply a simple division for each pixel
and color channel, the three color channels yielding the same
s(λ) value for a certain pixel. This ideal situation is however
not the case in our real scenario, where bleeding among pix-
els and other factors introduce inaccuracies. We therefore
solve the overdetermined problem that Equation 5 consti-
tutes via a least squares optimization. Besides, the values of
c(i,λ) that fall below a certain threshold (c(i,λ)<0.02) have
been ignored in the optimization because of their very low
signal-to-noise ratio. We look for the estimation of the emit-
ted spectrum, ŝ(λ), that minimizes the following energy term
E:

E = Edata +wsEsmooth (6)

The first term, Edata, corresponds to the error with respect
to the observed data, while the second term, Esmooth, is a
regularization term that strives for smoothness and continu-
ity. Both are detailed below. Finally, ws controls the relative
weight of each term; ws = 50 works well across sources and
is used for all the results shown in the paper.

The term Edata is constructed from Equation 5 as follows
(note that we use ci,λ for c(i,λ), and equivalently for r and ŝ,
for clarity of the notation):

Edata =
3

∑
i=1

∑
λ

(
ωi,λ

(
ŝλ−

ri,λ

ci,λ

))2
, (7)

where, again, i corresponds to the color channel. The data
term thus tries to minimize the error with respect to the ob-
served data, looking for the ŝλ that best approximate the
ri,λ/ci,λ, but this error is weighted by values ωi,λ. This
weighting function ω penalizes the errors of data points that
yield values of the quotient ri,λ/ci,λ very far away from its
median for the three color channels for that λ, assuming they

are more unreliable. The function, shown in Figure 7, right,
is given by the following expression:

ωi,λ = 1− exp
( −1

v(i,λ)2 +α

)
· exp

( 1
1+α

)
, (8)

where values v(i,λ) are the normalized distances of the data
point to the median of the corresponding three color chan-
nels, given by:

v(i,λ) =
1
Pi

ri,λ

ci,λ
−median

({ 1
Pk

rk,λ

ck,λ

}3

k=1

)
(9)

Pi = max
400≤λ≤700

{ ri,λ

ci,λ

}
∀i = {R,G,B} (10)

Parameter α controls the slope of the function ω, and it
takes a value of α =0.09 for fluorescent light sources and of
α =10 for incandescent light sources, whose spectral power
distributions typically are more broadband and vary more
smoothly than those of fluorescent sources (see also Sec-
tion 6.1 for further discussion on this).

The smoothness term for the obtention of ŝ is given by:

Esmooth = ∑
λ

(∆ŝλ)
2, (11)

where the discrete Laplacian is implemented as a circular
convolution with the 1D kernel [1 −2 1].

The minimization of E as given by Equations 6 to 11 al-
lows us to recover the original amplitude of the spectrally
calibrated signal, as shown in Figure 8, right. Note that λ

in Equations 7 to 11 is in practice a discrete signal λ j with
j = {1,2, ...,N}, as in Section 4; the subindex j has been
dropped here for clarity. More results of recovery are shown
in Section 6.

Figure 8: The red curve corresponds to the 1D profile of
the diffracted intensity emitted by a white incandescent point
light source after spectral calibration (left). The blue curve
shows the estimated SPD of this light source after recover-
ing the amplitude through the algorithm we have exposed
(right). The corresponding ground truth SPD is shown in
black for comparison purposes.

6. Results and Analysis

The technique presented allows us to recover the spectral
signature of both point and finite light sources from high dy-
namic range images captured with the camera and diffraction
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filter setup. To quantify the accuracy of our estimations, we
captured ground truth SPDs of the recovered light sources
with an Ocean Optics USB4000-UV-VIS photospectrome-
ter, which has a spectral resolution of 1.5 nm in the range
200-850 nm. The sensitivity of the Canon 500D is limited to
the range between 400 and ca. 680 nm (see spectral sensi-
tivity curves in Figure 7, left), and thus so is our recovered
spectrum. This range, however, covers the majority of the
visible spectrum and suffices for a large number of applica-
tions (human spectral sensitivity as given by the CIE 1924
photopic luminous efficiency function is below 1.7% of its
maximum value for λ > 680 nm [RKAJ08]). In this section
we provide additional results, offer an extensive analysis of
the performance of our system under different conditions,
and compare our technique with the state of the art.

6.1. Precision analysis

One of the main advantages of our method lies in recov-
ering a sufficiently accurate spectrum even in largely under-
constrained scenarios. To prove this robustness, we have per-
formed a thorough analysis testing the accuracy of the recov-
ered spectra under different conditions. This analysis also al-
lows us to validate the steps in our pipeline, including the de-
convolution step (Section 4.1) and the background subtrac-
tion (Section 4.2). In particular, we test the influence of three
factors, shown in Figure 9. The first factor is the shape of the
source, that is, whether the light source is a point or a finite
one. This tests whether the deconvolution required for finite
light sources has a negative influence on the final result. Sec-
ond, we investigate if the background has an effect on the
recovered spectra. This factor has three levels: (i) dark back-
ground, in which the background holds no information (it is
black), and the recovered source is the only source of light;
(ii) non-dark background, in which the background has some
kind of color information, which gets mixed with the spectral
signature (and will be removed by background subtraction);
and (iii) illuminated background, in which there are addi-
tional sources of illumination in the scene which may inter-
fere in the measurement. Testing this factor is also a means
of validating the background subtraction step of our pipeline.
Last, we investigate whether the type of light source has an
effect on the quality of the recovered spectrum. To do this,
we classify our sources into two large types: incandescent
and fluorescent, which are the two main types of artificial
sources to be found in the real world.

Our dataset consists of six different light sources (white,
green and red low energy consumption fluorescent sources,
and white, green and red incandescent sources), each
captured with all the different backgrounds and both as
a finite and as a point light source (the latter we ob-
tain by placing a black screen with a hole in front
of the light source). This yields a total of 36 images
(3 backgrounds · 2 shapes · 6 light sources = 36)
for which we recover the SPD. We measure the accuracy

Factor F-statistic p-value
shape 3.17 0.088
background 1.65 0.213
type 26.33 0.000

Table 1: ANOVA results when testing the influence of the
three factors (shape, background and type) in the error of the
recovered SPD. A p-value below 0.05 for a factor indicates
that the null hypothesis (the factor does not influence the
error) can be rejected for the corresponding factor.

of our recovered spectra by computing the mean squared
error (MSE) with respect to the measured ground truth.
Some of these light sources, together with their recovered
spectra and associated ground truth can be seen in Fig-
ure 11, where we plot the average of the six measurements
(3 backgrounds · 2 shapes) taken per light source. The
main features of the light sources are captured, even if there
are inaccuracies in the recovered spectrum. These recov-
ered curves are enough to allow for light source recognition,
which can be used to enable a number of applications, ex-
plained in Section 7.

We analyze the errors in the recovered spectra using an
ANOVA with three factors (background, shape, type). The
goal is to know which of the factors have a significant ef-
fect on the error of the recovered spectra. The results of the
ANOVA are shown in Table 1. Neither the background nor
the shape of the light source have a significant effect on the
error (p− value > 0.05 for both factors), showing that the
background subtraction and the deconvolution steps work
well in practice. The type of light source does have a sig-
nificant effect on the recovered spectra (p− value = 0.000).
These results are further shown in Figure 10, in which we
plot the average error for each level of each factor. As ex-
pected, the error in dark backgrounds is slightly lower than
in the other cases, but the difference is not significant. In the
case of shape, point light sources have slightly larger error
(although not significant) than finite light sources. This is
probably because only finite light sources are deconvolved,
and point light sources are not purely a point (an impulse)
but actually have a finite diameter. Further, the point light
sources have a lower signal-to-noise ratio (the signal inten-
sity is lower), which may increase the error in the recovery.
Finally, incandescent light sources have significantly larger
error than fluorescent ones. This is due to the characteristics
of their spectra, which are typically broadband, and have a
large amount of energy in areas in which the spectral sensi-
tivity of the camera is relatively low. This is especially true
in the higher wavelengths (λ ≥ 670nm), were incandescent
sources emit a large part of their energy, while the sensi-
tivity of the camera is very poor. Meanwhile, in fluorescent
light sources, due to their narrowband nature around certain
wavelengths, there tends to be a color channel with high sen-
sitivity around those wavelengths which is able to provide a
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Figure 11: Average spectral power distributions recovered with our method (blue curves) and corresponding ground truths
(black curves) for four different light sources used in our experiments. From left to right: white, red and green low-energy
consumption (fluorescent) and red incandescent sources. Insets show the spectral signature of the sources.

good SNR for recovery. It is due to these characteristics of
the spectra of incandescent sources that in our amplitude re-
covery step we use an α value (see Equation 8) of 10, higher
than that of fluorescent sources: In the latter, due to the afore-
mentioned narrowband nature, there tends to be a color chan-
nel that is significantly more reliable than the other two, and
a low value of α (large slope in the ω weights function given
by Equation 8) favors this selective reliability of color chan-
nels. Meanwhile, in incandescent sources, the reliability of
all color channels is more similar, which is taken into consid-
eration by means of a higher α. Additionally, incandescent
light sources have a smoother spectral power distribution,
and larger α values increase the weight of the smoothness
term with respect to the data term. To further illustrate the
performance of our system when recovering a variety of in-
candescent light sources, we show in Figure 12 the recovered
spectra for a green and a yellow incandescent light source to-
gether with their ground truth; the graphs show how the main
features of the light sources are recovered.

6.2. Comparison to other methods

One of the main advantages of our method in contrast with
existing methods is that it does not require any specialized
equipment, or any complex or bulky setup. At the same time,
note that the goal of most previous works [CDT∗11] is mul-
tispectral imaging (i.e., obtaining an image of a scene sep-
arated in spectral components), while our goal is to recover
the spectral emission of a light source of the scene. In this
section, we aim at showing that, for this purpose, our method
can obtain comparable results to those of more complex
techniques with simpler equipment. In particular, we com-
pare ourselves to the results obtained by the work of Cao et
al. [CDT∗11]. In their paper, the authors present a system
for capturing multispectral videos. The system consists of a
lightproof box containing a prism, a monochrome camera,
an occlusion mask and an optional optical filter. They also
provide a result of light spectrum recovery for a fluorescent
light source (Figure 12(b) in their paper), to which we com-
pare.

Figure 13 shows the spectral emission of a fluorescent

Figure 9: Images illustrating the factors (and their corre-
sponding levels) taken into account in our analysis of perfor-
mance. From top to bottom: shape of the light source, type of
light source, and background. We perform an ANOVA in or-
der to assess which of these factors, if any, has an influence
on the recovered SPD.

Figure 10: Average MSE (mean squared error) for each
level of each of the three factors (shape, background and
type). Bars show the standard error of the mean.
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Figure 12: Recovered (blue curves) and ground truth (black
curves) SPDs for a green incandescent finite light source
(left), and a yellow incandescent finite light source (right).
In both cases, the main characteristics of the light sources—
i.e., the central peak and subsequent decay in the green in-
candescent source, and the lack of emission until 500 nm
followed by a monotonic increase in the yellow source—are
captured by the system.

light source recovered with Cao et al.’s method and with
our method (blue curves). In both cases the corresponding
ground truth is shown (black curves). The figure also shows
the mean squared error (MSE) in both cases. To compute
it for the case of Cao et al., we have sampled the curves
every 5 nm. In our case, we show our most difficult case:
a finite light source captured with a non-dark, illuminated
background (i.e., there was an additional, incandescent light
source in the scene). While our system is slightly less precise
(MSECao = 0.006; MSEours = 0.015), even in the worst case
scenario it offers enough accuracy to enable many applica-
tions, and is simpler. Note that their system requires, in ad-
dition to a prism, a mask and a more bulky setup. Other mul-
tispectral imaging methods [GKT09, GFHH10, HFHG∗05,
PLGN07] are not comparable to our system because they
require a much more complex setup (e.g., cascaded bire-
fringent interferometers in [GFHH10] or coded illumination
in [PLGN07]), and their aim is different: They recover spec-
tral values per pixel of a scene, while we recover the SPD of
a light source.

6.3. Recovery in the wild

The analysis described in Section 6.1 already shows that our
system is robust to different backgrounds and shapes of light
sources. To further demonstrate this capability, we include
here an example of a highly challenging scenario, showing
the results obtained in this case and their accuracy. Figure 14
shows, for two different light sources, a photo of the scenario
(top row), a photo of the scenario captured with the diffrac-
tion filter (middle row), and the recovered spectrum (bottom
row). We can see how, for both sources, our system is able
to recover the main features of the spectral power distribu-
tions of the light sources, despite the complex shape of the
bulb (and thus of the photographed spectral signature) and
the background information. Further, we provide white bal-

Figure 13: Left: SPD obtained with the method by Cao et
al. [CDT∗11] for a fluorescent light source (blue curve) with
corresponding ground truth (black curve). They show the re-
covered SPD for different widths of the slits of their mask, but
the 0.2 mm width (blue curve) is the best case (figure adapted
from [CDT∗11]). Right: SPD obtained with our method for a
white fluorescent light source (blue curve) with correspond-
ing ground truth (black curve). We slightly sacrifice accu-
racy for a much simpler, easily available setup, and can still
recover the light source’s main features.

ancing results for this scene captured with an incandescent
source in Figure 16.

7. Applications

7.1. Light Source Recognition

Spectral emission of commercial light sources are available
in a number of databases [KGH∗14, Sed09]. In our case, we
have built up our own database by capturing ten common
light sources, including e.g., LEDs, a laser, low-energy con-
sumption bulbs, or incandescent sources.

Given a recovered SPD, which can be seen as a vec-
tor ŝλ, it is compared to the distributions in the database
by simply computing the Euclidean distance (L2-norm) be-
tween both vectors, once they are appropriately re-sampled
for equal dimensionality. Other distances such as the Fréchet
distance [CCdVE∗10] were tested but yielded worse results.
This recognition step has been used in the two following ap-
plications shown in this section.

7.2. White Balancing

There is a large number of white balancing algo-
rithms [Lam05,HCWW06,BGS07]. In most cases, however,
they rely on obtaining information of the illuminant either
from the image once captured [HMP∗08, CFB02], or from
very simple calculations done by the camera at the time of
capture [Shi06, II02]. We show here how to perform white
balancing via recovery of the SPD of the illuminant, yielding
appealing results in scenarios where other existing methods
would fail.

We first compute the CIE 1931 XYZ color space val-
ues [RKAJ08] from the SPD of the light source under con-
sideration. This XYZ values are computed for the spectral
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Figure 15: Three scenarios processed with four white balancing algorithms. From left to right: original images, white balanced
images using the light source’s correlated color temperature algorithm (our method), the Gray World algorithm, the Max-RGB
algorithm, and the Shades-of-Gray algorithm [Coh11]. These scenarios are illuminated by different kinds of sources; from top
to bottom: filament incandescent, opaline and filament incandescent together, and a yellow incandescent light source. Note that
we provide results at least on par with the state of the art and consistent across a variety of illuminations.

Figure 14: Top row: photographs of the scenario. Middle
row: photographs of the scenario with the diffraction filter
added to the lens. Bottom row: SPD of the light source re-
covered with our method (blue curve) and corresponding
ground truth (black curve). The left column corresponds to a
white fluorescent light source and the right column to a red
incandescent source. The original images are high dynamic
range and have been tone-mapped for display.

emission stored in the database for the light source identified
via the recognition system (Section 7.1) getting as input the
spectrum recovered as explained in Section 5. This is done to
increase the accuracy of the XYZ values computation, since
the recovered spectrum accumulates error when integrating
over the spectrum to obtain the XYZ values.

Once the XYZ values are calculated from the SPD, a
white balancing algorithm is used, based on finding out the
correlated color temperature CCT of the light source which
illuminates the scene [McC92, HALR99]. To compute the
CCT , first the x and y chromaticity coordinates are calcu-
lated from the XYZ values [RKAJ08], and then McCamy’s
polynomial equation for CCT is used [McC92], as follows:

n =
x−0,3320
y−0,1858

(12)

CCT =−449n3 +3525n2−6823,3n+5520,33 (13)

The CCT is measured in Kelvin and gives good results
within the range (2000− 12500K). This value shall be con-
verted to sRGB values, for which the D65 illuminant’s white
point ew is used. To this end, we use a conversion ta-
ble [Cha01] which gives us the sRGB values ei (i = {R,G,B})
for the CCT of the light source. These values ei are used to
compute a weighting value gi per color channel i of the im-
age we want to white balance (I), such that the white bal-
anced image IWB is given by IWB

i = giIi. The weighting val-
ues gi are given by:

gi =
ewi

ei
∀i = {R,G,B}, (14)
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where e is the vector defined by the three sRGB values of
the light source under consideration.

Some results of our white balancing algorithm in three
different scenarios can be seen in Figure 15. We also show
a comparison against three widely used white balancing al-
gorithms, described in [Coh11]. These three algorithms are
based on image post-processing, estimating the illuminant
from image pixel values and modifying the pixel values of
each RGB channel accordingly. Some current digital cam-
eras perform white balancing via some calculations at the
time of capture [Shi06, II02]; we do not compare against
them, however, because the algorithms are typically pro-
prietary information, not disclosed by manufacturers, and
they operate at intermediate stages performed in the camera
firmware which we do not have access to.

The fact that our white balancing algorithm does not de-
pend on the spatial distribution of the pixels in the scene
yields an overall better performance than the others, which
may fail in specific cases, as shown in Figure 15. The image
may not satisfy the Gray World Assumption (which states
that given an image with enough variety of RGB colors, the
average values of these three color channels should average
out to a common gray value), as is the case in Figure 15,
first row; or be illuminated with a skewed SPD that would
disrupt the behaviour of the Shades-of-Gray algorithm (Fig-
ure 15, third row). A common example of images in which
image-based white balancing algorithms such as the above
will fail is that of images with a clearly dominant color or
range of colors. Finally, Figure 15, second row, also shows
that our algorithm can be applied when there is more than
one light source illuminating a scene, yielding compelling
results. Compared to existing approaches, we provide results
at least on par with them and consistent over a range of il-
luminations. We have further applied this white balancing
to the challenging case presented in Section 6.3 and show
in Figure 16 both the scene illuminated by an incandescent
source (left) and the white balancing result (right) when em-
ploying the emission spectra of the identified incandescent
source. Even though the scene is very challenging (see ex-
amples of spectral signatures in that scene in Figure 14), our
method is able to obtain convincing white balancing results.

Figure 16: Original photograph (left) and white-balanced
result (right) of a scene illuminated with an incandescent
light source. Insets show close-ups of the scene where the
white balancing is better appreciated (see white text).

7.3. Compositing of Synthetic Objects

Integrating synthetic objects in a convincing way within a
captured image of a real scene is always a challenging task,
requiring manual work to painstakingly adjust the lighting.
If, however, the spectral emission of the light source illumi-
nating the scene is available, which can easily be done with
our system, compositing becomes easier and offers more
compelling results in less time.

The SPD obtained with our system is once more used for
identification of a light source, whose spectrum is input to
a spectral rendering engine to render an image of the ob-
ject which we want to integrate in an image (in this case,
the Stanford bunny). During rendering, rays will be char-
acterized by a certain frequency (wavelength); in our case,
the implementation utilizes 20 nm steps for the sampling in
wavelength. Once the object is rendered, it is introduced in
the captured image by using as a mask an alpha channel cre-
ated when rendering the 3D model. Figure 17 shows some
results for the same scene illuminated under two dramati-
cally different light sources; note that the bunny’s reflectance
is white and purely diffuse.

Figure 17: Spectrally-rendered Stanford bunny inserted in
a scene illuminated with a green low-energy consumption
light (top row) and a yellow incandescent (bottom row).

8. Discussion and Limitations

An error in the estimation of the SPD will always exist, since
part of the hardware of the camera is not known. It is not our
goal here to surpass the accuracy of a spectrophotometer,
but to offer a simple approach to obtain an estimation of the
SPD of a light source that is good enough for applications
in imaging that can benefit from having this spectral infor-
mation. In addition to unknown hardware specifications (in-
cluding the camera’s spectral sensitivities, which are not pro-
vided by the manufacturer but obtained from other sources
instead), there are a number of more complex phenomena,
such as bleeding of pixels into neighboring pixels in the sen-
sor, glare, or noise, which are very hard to model theoreti-
cally; this is one more reason for our experimental approach
to calibration.
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We use for recovery an HDR image of the light source,
since this allows us to avoid possible saturation in the sensor,
and yields a linear relationship between impinging radiance
and intensities recorded in the image. This, together with the
fact that HDR creation software and capture capabilities are
becoming commonplace, makes them a better choice than
LDR images. Currently, the 1D profile is extracted from this
HDR image manually by clicking on the start and end points
of the spectrum in the image. This is a very simple require-
ment from the user; however, if desired, the process could
be automatized by, e.g., looking for the row with maximum
integrated intensity.

In the presence of multiple light sources or a non-dark
background, background subtraction allows us to extract
a spectral signature for the recovery, as explained in Sec-
tion 4.2. Having an HDR image as input allows the possible
stray light arising from diffraction in other sources of light
(or diffuse surfaces) other than our source of interest to be
negligible. This can be seen in Figure 10, in which the graph
shows the error in the recovery of light sources captured with
different backgrounds: The error, although slightly smaller,
is not significantly different in scenes with a dark back-
ground (no stray light), and scenes with a non-dark back-
ground or with an illuminated background (requiring sub-
traction), such as that shown in Figure 9 (bottom right). A
further example is provided by the scenario in Figures 14
and 16, which has two light sources (the one shown plus an-
other white incandescent source not directly visible to the
camera), and a white diffuse background that could con-
tribute stray light to the diffraction pattern. For six different
light sources (white, red and green incandescent and fluores-
cent sources), we computed the contrast ratio between each
sample (pixel) in the diffraction pattern and its surrounding
background, in the image resulting after background sub-
traction and deconvolution. This ratio was on average well
over two orders of magnitude (grand average across light
sources yielded a ratio of 585). Thus, background subtrac-
tion provides a reasonable approximation even in the pres-
ence of other sources of light in the scene that may give
rise to diffracted stray light. An exception to this would be a
scene with abundance of highly reflective surfaces, but that
is typically not the case.

Additionally, if there are multiple light sources in the
scene, they can be individually recovered using our proce-
dure. There would be, however, a limitation to recovery, if
the spectral patterns are not isolated and those of two or
more light sources interfere. While modeling and inverting
this interference could be possible, it could also result in an
ill-posed problem, and the accuracy could be compromised.

Other diffraction filters, such as cross filters, could also
be used. The use of these filters introduces redundancy in
the data, since a number of diffraction patterns appear in the
image, and this can make the estimation more robust. The
downside, however, is the presence of interference which

needs to be computed and inverted, and as before, could re-
sult in an ill-posed problem. Further, the spectral calibration
curve (Figure 5, right) will no longer yield a linear relation-
ship, which significantly eases calibration allowing to per-
form it with any common white fluorescent source.

As mentioned before, in terms of wavelength range we
are limited to the part of the spectrum that our sensor is
sensitive to, that is, from 400 to ca. 700 nm. Additionally,
the different sensitivities to different wavelengths (Figure 7,
left) cause the signal-to-noise ratio to be different at differ-
ent wavelengths, and thus not all wavelengths are recovered
with the same accuracy. An option would be to introduce this
factor into the optimization described in Section 5.2. The ef-
fect of these possible inaccuracies is variable with the light
source under consideration (e.g., underestimating the main
peak of a fluorescent has a larger effect that underestimat-
ing that same wavelength in an incandescent source); this
can have an important effect in applications such as white
balancing, and is the reason why we now include an iden-
tification and ground truth retrieval step prior to the actual
white balancing. It should also be noted that proper ampli-
tude recovery depends on an accurate spectral calibration,
since otherwise the spectral sensitivity curves are not ade-
quately matched to their corresponding wavelengths.

Finally, light sources often have an anisotropic emission,
that is, their emitted spectrum is different for different an-
gles, since the emitted intensity varies. While we do not mea-
sure angular variation here, nothing prevents the usage of the
system taking images from different directions to character-
ize angular variation. In any case, the SPD would typically
vary very slightly with the angle, if at all.

9. Conclusions and Future Work

We have proposed a low-cost system for acquisition of
spectral power distributions of light sources using off-the-
shelf equipment consisting of a photographic camera and a
diffraction filter. We present a calibration method so that a
1D intensity profile extracted from an HDR image of the
light source is transformed into the SPD emitted by the light
source. This calibration implies obtaining the mapping be-
tween pixels and wavelengths, which as we show can be
done by imaging a common white fluorescent, whose two
main peaks are well-known. The second step recovers the
original amplitude of the emitted spectrum, and requires
knowing the spectral sensitivity curves of the camera. We
have performed a series of tests to assess the influence of a
number of factors in the recovered spectra, and determine
that the recovery is robust to different scene backgrounds
and light source shapes. We have further shown a number of
applications in image processing which can benefit of know-
ing the SPDs of light sources illuminating a scene. Even in
highly challenging scenarios, our recovery is enough to en-
able these applications, such as white balancing. Note that
the goal of our method is to provide SPDs that are accurate
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enough for these applications, while requiring easily avail-
able, low cost hardware.

As future work, and as hinted in Section 8, informa-
tion from the camera’s spectral sensitivities could be em-
ployed when recovering the amplitude of the emitted spec-
trum as an indication of the reliability of the estimation
obtained from the data for a particular color channel and
wavelength. Further, in the deconvolution step, other more
sophisticated algorithms that take into account both Pois-
son and Gaussian noise, such as that of Gil-Rodrigo et
al. [GRPMSM11], could be used. Another interesting option
would be to combine our approach with perceptual aspects
taking into account the characteristics of the human visual
system (e.g., [MMG11, MPCG12]).

Potentially, obtaining the spectral signature can be done
not from direct imaging of light sources, but of other objects.
This, which could be challenging for a diffuse object, may
be worth looking into for specular or glossy objects. Fur-
ther, this approach could be extended to obtaining spectral
information from materials, aimed at, for instance, material
recognition [DTCL09].
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