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Abstract

Line projections in non-central systems contain more geometric information than in
central systems. The four degrees of freedom of the 3D line are mapped to the line-image
and the 3D line can be theoretically recovered from 4 projecting rays (i.e. line-image
points) from a single non-central view. In practice, extraction of line-images is consid-
erably more difficult and the resulting reconstruction is imprecise and sensitive to noise.
In this paper we present a minimal solution to recover the geometry of the 3D line from
only three line-image points when the line is parallel to a given plane. A second minimal
solution allows to recover the 3D line from two points when the direction of the 3D line is
known. Both cases can exploit the prior knowledge of the vertical direction in man-made
environments to reduce the complexity in line-image extraction and line reconstruction.
The formulation based on Plücker lines is integrated in a line-extraction pipeline, which
is tested with synthetic and real non-central circular panoramas. In addition, we evaluate
the performance of the robust extractor and the accuracy of the proposal in comparison
with the unconstrained method.

1 Introduction
Although line fitting in non-central systems provides interesting features, it is still a research
open topic with challenging problems to be solved. On the one hand, line projections con-
tain more geometric information because the four degrees of freedom of the 3D line are
encapsulated on a single line-image. On the other hand, the 3D reconstruction from a single
projection is very sensitive to noise. Additionally, the accuracy of the estimate strongly de-
pends on the effective baseline of the imaging systems, which is usually too small in practice.
The complexity of the extraction is related with the minimum required points for fitting the
line. Therefore, reducing the number of required points to fit lines in non-central systems
can be very interesting in terms of computational time efficiency.

Regarding the algorithms for central systems, the use of additional prior like the Man-
hattan assumption helps to improve the results [15, 17, 25]. In addition, knowing prior
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information from additional sensors like Inertial Measurement Unit (IMU) can reduce the
complexity of features extraction [26]. In particular, when fitting line images from non-
central images, knowing the gravity direction in man-made settings can be used to reduce
the minimal number of required points for line fitting from four to three.

There exist some previous works dealing with point and line projections in non-central
systems. For instance, point back-projection models for several non-central catadioptric sys-
tems were studied in [28]. However, a closed form solution of the forward projection is not
available in most non-central systems. The forward projection of axial non-central catadiop-
tric systems based on quadric mirrors can be obtained as the solution of a polynomial [1].
The non axial case is dealt in [2]. Another example of non-central images comes from mov-
ing cameras without common viewpoint. The case of linear pushbroom camera is extensively
studied in [13] and the non-central circular panorama is dealt in [18].

The fundamentals for line fitting in non-central systems consist in computing the solution
of lines intersecting four generic rays [12, 27, 30]. This theory is exploited in several works
dealing with non-central catadioptric systems [6, 7, 11]. Some related works are [5, 16, 29].
In [16] two non-central catadioptric systems are used for lines reconstruction. In non-central
cameras not only lines can be recovered from single projections but also other planar curves
[29]. In some non-central systems, the line-image encodes the 4 DOFs of the 3D line but
also calibration information [5].

Additional constraints can be used to improve the results: for example considering lines
orthogonal to the axis of revolution of the system [9, 22] or imposing parallelism and per-
pendicularity between pairs of lines [4]. Cross-ratio properties [21] or using off-axis systems
to avoid degeneracies [8] have been considered. Prior information can also be used to im-
prove the results, for example a prior line-based description of the scene is used in [19, 20]
to estimate the pose of a non-central catadioptric system.

In this paper we present the minimal solution to fit a line parallel to a plane in non-
central systems and the minimal solution for fitting a line when its direction is known. These
proposals allow using the vertical direction as additional prior knowledge to facilitate the
line-image extraction and to increase the accuracy of the metric reconstruction. We evaluate
the proposal in terms of accuracy and robustness using extensive simulation. The proposal
is integrated in a complete extraction pipeline which is tested with synthetic and real images
performing 3D reconstruction from single view.

2 Background
In this Section, we briefly present how to compute a 3D line from a single non-central pro-
jection with the notation of [23]. Using Plücker coordinates, the intersection between lines
is described by the side operator [14, 23]. A given line L =

(
lT, l̄T

)T ∈ P5 (where l ∈R3 and
l̄ ∈ R3) intersects a ray Ξ ∈ P5 if

side(L,Ξ) = LTWΞ = lTξ̄ + l̄Tξ = 0 where W =

(
03×3 I3×3
I3×3 03×3

)
. (1)

Since a 3D line has four degrees of freedom we need at least 4 equations to solve the
system for L. If four projection rays from a 3D line provide four independent constraints we
can compute the 3D line (see [30] for details). In some degenerated cases four rays do not
provide four independent equations [11]: when the projection surface is a plane (the line is
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(a) (b)
Figure 1: (a) Euclidean representation of a reference system C with any orientation and a
known direction u in a Manhattan scene. (b) Two dimensional subspace in P5 and Klein
Quadric M4

2 representing the constraint for being a line in Plücker coordinates.

coplanar with the axis of revolution or coplanar with the plane containing the circle) or when
the projection surface is a regulus (i.e. the locus of lines meeting three given skew lines).

3 Line fitting with known vertical direction
Let us consider a non-central imaging system placed in a man-made setting i.e. lines ar-
ranged in orthogonal directions (see Fig. 1 (a)). The vertical direction u corresponds to the
direction of vertical lines and it also defines a set of horizontal planes. In this Section we
first present the minimal solution to compute a 3D line parallel to a plane and secondly, the
minimal solution to compute a 3D line with known direction, both from a single non-central
view.

3.1 Computing a 3D line parallel to a plane

If we know that a line is parallel to a given plane U =
(
u0,uT

)T with known normal u, the
complexity to fit a line projection from a non-central image is reduced from 4 degrees of
freedom (DOFs) to 3 DOFs. Given the line L =

(
lT, l̄T

)T and three skew projection rays

Ξk =
(

ξ k
T, ξ̄ k

T
)T

intersecting the line, the null space of the under determined linear system

Ξ
T
k WL = ξ̄ k

Tl+ξ k
T l̄ = 0 , k = 1 . . .3 (2)

is a subspace of dimension 2 in P5. A parametrized description of this 2-dimensional sub-
space is obtained by solving the null space with singular value decomposition. Therefore,
the matrix A = (Ξ1,Ξ2,Ξ3)

TW can be written as the product of the three matrices, A = UΣV
and taking the three last columns of matrix V, denoted as L0, L1 and L2, we parametrize the
null space with L : P2 7→ P5 defined as

L = L0 +L1λ1 +L2λ2 . (3)

This subspace is not contained a priori in the Klein quadric M4
2 and intersects it in a one

dimensional curve (see Fig. 1 (b)). To obtain the two parameters λ1 and λ2 we need two
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additional constraints. First one is the constraint of being a line (usually represented in the
P5 space with the Klein quadric M4

2 ) which is expressed by

LTWL = 0 . (4)

Given that the 2-dimensional subspace L is not contained a priori in the Klein quadric M4
2 the

solution defined by this constraint lies on a one dimensional curve (see Fig. 1 (b)). Second
constraint is that the line is parallel to the plane U and it is defined by the orthogonality
between the direction of the line l and the vector u (uTl = 0). Assuming we know u and
solving this constraint for λ2 we obtain

λ2 =−
uTl0 +uTl1λ1

uTl2
(5)

and substituting it in equation (4) we obtain a quadratic equation,

b1λ
2
1 +2b2λ1 +b3 = 0 where (6)

b1 = β2211−2β1212 +β1122

b2 = β0122−β0212−β1202 +β2201

b3 = β2200−2β0202 +β0022

and βi jkl = Li
TWL juTlkuTll . Equation (6) has one unknown λ1 and two different solutions.

From each solution of λ1 a solution for L is computed using

L =
(
uTl2L0−uTl0L2

)
+
(
uTl2L1−uTl1L2

)
λ1 (7)

which is obtained by substituting (6) in (3). Consequently, the 3D line has been computed
from three independent projection rays intersecting the line and the normal to the plane u.
In Section 2 we mention some degenerated cases for 4 rays, note that the 3-points approach
can avoid the degeneracy of having the set of defining rays in a regulus because in this case
the rays provide 3 independent equations with the additional information of the remaining
constraint.

3.2 Computing a 3D line with known direction
When the orientation of a system is known in a Manhattan scene the direction l of the line
L is known a priori (it is one of the three dominant directions). This means that only two of
the four degrees of freedom of the 3D line must be computed and only two projection rays
Ξk for k = 1,2 are needed. As we know the direction l, the intersection between line L and
a ray Ξk can be written as

ξ k
T l̄ =−ξ̄ k

Tl k = 1,2 . (8)

By including the Plücker constraint lT l̄ = 0, we can compose a linear system of three equa-
tions and, solving for l̄, we obtain

l̄ =

 ξ 1
T

ξ 2
T

lT

−1 −ξ̄ 1
Tl

−ξ̄ 2
Tl

0

 . (9)
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(a) (b)
Figure 2: (a) Non-central panorama projection model: Any projection ray Ξ corresponding to
a pixel (characterized by angles ϕ and φ ) intersects the vertical axis and a circle of radius Rc.
(b) Mixture of Gaussians based on direction: The parameter of the distribution µ represents
the orthogonal vector to a given direction xi in a given plane.

When more than two rays are available the pseudo inverse can be used.
Notice that in this case we are fitting an element of the P5 space with more than four

equations. Therefore the obtained solution has five independent dimensions and it does not
perfectly fit the Plücker condition because it does not have to necessarily be a 3D line.

4 Line reconstruction from single non-central view
In this section, we present a method for line-image extraction in non-central images. The
procedure is split in two steps. During the first step we assume a soft-Manhattan scene (1
dominant direction and the rest of the lines on the plane orthogonal to this direction), whereas
for the rest we assume hard-Manhattan (3 orthogonal dominant directions). We assume that
the vertical direction u is known and coincident with the direction of the gravity (e.g. it is
obtained from a IMU system) but the imaging system is not aligned with this direction (see
Fig. 1 (a)).

The lines composing the scene can be horizontal (e.g. LH ) with direction orthogonal to
u or vertical (e.g. LV ) with direction coincident to u. Horizontal lines are fitted using the 3-
points method presented in Section 3.1 and vertical lines with the 2-points method presented
in Section 3.2. The proposal has been applied to non-central circular panoramas [3, 18] (see
Fig. 2 (a)) but it can be adapted to any other type of non-central system.

For automatic extraction, we extract edges from the image using Canny detector. To
avoid false edges we first filter the image using the Rolling Guidance Filter [31]. These
edges are then stored in connected components. From each component line-images are ex-
tracted using a greedy RANSAC approach which follows the pre-filter scheme described in
PROSAC [10] and USAC [24]. To evaluate the quality of the points we use a measure of
the effective baseline of a set of rays as described in [3]. This allows generating hypotheses
more likely to be valid. Then, from each set of 3 points, three hypotheses are computed:
two assuming the line is orthogonal to the vertical direction (Section 3.1) and one assuming
the line is parallel to the vertical direction (Section 3.2). Only one of these solutions has
enough supporting points on the image, hence we can store the three candidate solutions as
hypotheses and use the voting scheme to select one of them. Using the distance presented
in [3] we test each hypothesis. The most voted line-projection is selected, obtaining the 3D
coordinates of the line and its classification as horizontal or vertical.

Line directions are elements of the Euclidean space E3. When being horizontal they are
all contained in the same plane. If we assume that horizontal lines are arranged in dominant
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(a) (b)
Figure 3: Comparison of the accuracy in line fitting with Gaussian noise in the line-image
points without error in prior information. (a) Direction error (deg). (b) Distance error (m).

directions we can first cluster the horizontal lines in two classes along the unidimensional
space defined by a unitary circle on the horizontal plane (See Fig. 2 (b)). For clustering them
we use an algorithm based on mixture of Gaussians. Consider the following distribution

P(xi|c,θc) =
1

σc
√

2π
e
−

arcsin(µc
Txi)

2

2σ2c (10)

to describe the conditioned probability of the normalized direction vector xi given that the la-
bel of the direction is c and the distribution parameters are θc = (µc,σc) where µc represents
the mean of the orthogonal space to the corresponding dominant direction. This distribution
properly represents the direction considering both senses and both vanishing points simulta-
neously (see Fig. 2 (b)).

The initial solution is computed from two overlapped histograms. The posterior prob-
ability of each sample is estimated using the Bayes rule. For clustering the directions in
the two classes we maximize the likelihood for obtaining the parameters θ = (θ1,θ2) of the
two dominant orthogonal directions. After the clustering, the segments supporting horizon-
tal lines are classified in two dominant directions, we obtain the rotation of the system with
respect the scene, and 3D lines can be recomputed using the 2-points approach presented in
Section 3.2. Once the clustering is performed, we exploit the connectivity of the extracted
segments to generate hypotheses of connection. The connectivity map is built by composing
a set of local Delaunay triangulations computed on the tangent map of the torus defined by
the back-projection model.

5 Evaluation and experiments
In this Section we present a set of experiments to evaluate the performance of the proposed
method. First, we evaluate the accuracy in 3D line fitting. Second, we test the robustness
of the extraction proposal and finally we show examples of line extractions in synthetic and
real non-central images.

5.1 Accuracy and robustness evaluation
We present a comparison in terms of accuracy of the 4 points algorithm (without constraints),
the 3 points algorithm (assuming the line is parallel to a plane), and the 2 points algorithm
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(a) (b)
Figure 4: Comparison of the accuracy in line fitting with Gaussian noise in prior information
(with σ from 0 to 1 degrees) and Gaussian noise in line-image points with σ = 0.5 pixels.
(a) Direction error (deg). (b) Distance error (m).

(assuming the direction of the line is known). The system is a non-central panoramic imaging
system with radius Rc = 0.5, field of view of 180×360 deg and resolution of 2048×4096
pixels. For comparing the accuracy we have simulated the projection of 100 random 3D
lines and we have added Gaussian noise to the line-image points. Then the lines are fitted
using the three approaches. For the first approach (4pt), 4 points of the line-image are used
to fit the line (these points are selected for maximizing the effective baseline). For the second
approach (3pt), 3 points of the line-image and the orientation of a plane parallel to the line
are used for fitting the line. In this case, we also add Gaussian noise to the orientation of the
plane (and again the points of the line-image are selected to maximize the effective baseline).
For the third approach (2pt) the solution is computed from two points of the line-image but
assuming that the direction of the line is known and having a Gaussian noise on the line
direction. In Fig. 3 and Fig. 4, we represent the estimated accuracy according to two errors:

• the direction error between the estimated 3D line and the ground-truth line computed
as εϕ = arccos

(
lTlGT

)
.

• the depth error between the estimated 3D line and the ground-truth line computed as
εd =

∣∣‖l̄‖−‖l̄GT‖
∣∣.

Fig. 3 shows the influence of image error without noise in the prior information. The
abscissa axis corresponds to the Gaussian noise added to the image points from σ = 0 pixels
to σ = 1 pixel. As expected, the error is always bigger for the unconstrained method (4pt).
Notice that when the direction is known (2pt) the direction is not really estimated and the
plotted error in Fig. 3 (a) is always zero.

In Fig. 4, Gaussian fixed error of σ = 0.5 pixels is added to the line-image points and we
introduce a variation in the Gaussian error added to the prior information: the prior known
plane for the 3-points case and the prior known direction for the 2-points case. The abscissa
axis corresponds to the Gaussian noise added to the prior information from σ = 0 degrees
to σ = 1 degree. Notice that in this case the error when using the 4-points approach is
almost constant because we are introducing a variation in the prior noise which does not
affect the unconstrained method, and it is only affected by noise on the line-image points
(σ = 0.5 pixels). As expected the worst results are for the 2-points method which is the
one using more prior information. Notice that when the vertical direction is known up to
0.5deg (typical accuracy of a commercial IMU) our proposals (3pt, 2pt) outperform the
unconstrained approach (4pt).
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Figure 5: Precision and recall of the robust approach depending on the number of attempts
for a ratio of inliers ω = 0.6. (a) Precision, (b) Recall.

We also evaluate the robustness of the method presented in Section 4. We simulate
the projection of 100 random lines with two different kind of noise. The projected points
have Gaussian noise with σ = 0.5pixels representing the projection error. In addition, we
have added spurious points following a uniform distribution. We denote the original points
as inliers and the spurious points as outliers. The ratio between the generated inliers and
outliers is denoted as ω and its fixed to 0.6. Not all the inlier points have the same influence
when fitting the model because we first pre-filter the hypothesis with the baseline criterion. In
Fig. 5 we show the results of precision and recall, where precision= true positives

true positives+ f alse positives

and recall = true positives
true positives+ f alse negatives . The vertical lines represent the value for the number

of attempts with a probability of being successful P = 0.99.
Due to the nature of robust extraction, where a single false positive can condition the

whole fitting, we are interested in having a high precision to the detriment of the recall.
As expected, the number of attempts needed for an acceptable precision is inferior for the
constrained methods although a little higher than the theoretical value.

5.2 Line extraction with synthetic and real images
In this section we present the results of the pipeline presented in Section 4 obtained from
synthetic and real images of a Manhattan scenario. The synthetic images have been gener-
ated with the raytracing software MegaPov 1 which allows defining parametric non-central
cameras. The scenario is a modification of a publicly available synthetic scenario 2. The
synthetic panoramas have resolution of 4096×2048 pixels and the radius of the generation
circle is Rc = 0.5m. In Fig. 6 we show the results of extracted line-images of the first hor-
izontal dominant direction. The line projections are depicted in green and the supporting
points in red (see Fig. 6 (a) ). In the 3D view Fig. 6 (b) the ground truth is shown in blue
and the extracted 3D segments in red.

We have also tested the proposal with real non-central images. For that we use the
approximation described in [3]. The non-central panorama has a size of 4096×2048 pixels
and it has been composed using a rotating off-axis fisheye camera (uEye UI-148xSE-C with
lens Lensagon CF5M1414) with radius Rc = 0.77m. This panorama has been built stitching a
stream of 222 frames with resolution of 32×1920 where each image cover a step size of 1.62

1megapov.inetart.net
2http://hof.povray.org/office-13.html, The Office - Jaime Vives Piqueres, 2004
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(a) (b)
Figure 6: Extraction and reconstruction example from synthetic non-central panorama: (a)
Extracted lines following the main direction over a non-central panorama (green for the
parametric line and red for supporting points). (b) 3D view of the ground truth (in blue) and
the reconstruction of the 3D line segments (in red).

(a) (b)
Figure 7: Extraction and reconstruction example from real non-central panorama: (a) Ex-
tracted lines following the main direction over a non-central panorama (green for the para-
metric line and red for supporting points). (b) 3D view of the ground truth (in blue) and the
reconstruction of the 3D segments (in red)

degrees. The estimation of the vertical direction has been obtained from an IMU mounted
on the camera. According to the IMU the horizontal plane in the camera reference is slanted
9.06 degrees. In Fig.7 we show an example of line-image extraction correctly extracted in
a non-central panorama (the rest of the extracted lines have been omitted for facilitating the
presentation). The line projections are depicted in green and the supporting points in red (see
Fig. 7(a)). In Fig.7 (b) we show the extracted 3D segments in red and in blue the ground
truth manually defined from measures taken with a laser electronic distance meter (EDM).
The dimensions of the section of the corridor measured with the EDM are 3.72 m high and
3.18 m width, and the measures obtained from the metric reconstruction from the panorama
are 3.70m height and 3.63m width.

6 Conclusions
In this paper, we present the minimal solution for computing a 3D line parallel to a given
plane in non-central images. This approach can exploit prior information, e.g. from IMUs
in Manhattan settings, to reduce the complexity of line-image extraction also improving the
accuracy. In addition, we solve the minimal solution for computing a 3D line in non-central
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cameras when the direction of this line is known. Both approaches are integrated in a pipeline
for line extraction and reconstruction. The accuracy and robustness of the proposals are eval-
uated in simulation, concluding that the proposals outperform the unconstrained algorithm
taking into account typical accuracy in prior information (standard commercial IMUs error
is around 0.5 deg). Finally, the extraction method is tested with synthetic and real images.
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