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A Additional details on experiments

A.1 Experiment 0: Principal components space

To make sure that choosing only five principal components does not affect the perception of appearance, we have run a pilot
test. We use as stimuli 20 BRDFs from the MERL database, manually selected to cover a wide range of appearances (see
Fig. S.1). The test follows the two-alternative forced choice (2AFC) methodology. Two images are presented to the user: the
original BRDF, next to the same BRDF represented with only the first five components. Each comparison asks about a particular
attribute from our list. The user has to choose which of the two depictions of the material better conveys such attribute (for
instance, Which of the two images looks more metallic?). The order and relative location of each version was randomized. Each
subject was shown 25 BRDFs, and a total of 47 subjects took part in the experiment. On average, the BRDF represented with
five components was chosen 49% of the times. We ran χ2 tests per attribute to confirm whether users where actually picking
randomly between both options, results are presented in Table 1. For all attributes we obtained a very high p-value, which
speaks highly in favor of a random selection by subjects.

We conclude that a five dimensional space suffices for our subsequent tests. Additionally, limiting the space to five dimensions
has an additional advantage: When sampling the space to create a larger database of BRDFs (Sec. 3.2 in the main paper), the
reduction of the space to 5D improves the sampling process by avoiding the placement of samples in regions of the space with
little impact on appearance.

A.2 Experiment 1: Building the space of attributes

Finding a parameter space providing an intuitive representation of material appearance is a long-standing problem, for which no
definite answer [Eugene 2008; Choudhury 2014] nor methodology [Schwartz and Nishino 2013] exist, whereas usually naming
depends on the field [Adelson 2001]. The parameter space must be reduced enough to be manageable, but also comprehensive
enough to allow for rich yet intuitive appearance edits, even for inexperienced users. For this first test, we rendered a large



Table 1: Results of the χ2 test for the principal component space experiment.

χ2 Df p-value
Plastic-like 0.0169 1 0.8965
Rubber-like 0.3137 1 05754
Metallic-like 0.0041 1 0.9489
Fabric-like 0.6792 1 0.4098
Ceramic-like 0.4010 1 0.5265
Matte 0.0051 1 0.9430
Glossy 0.0727 1 0.7874
Bright 0.6545 1 0.4185
Rough 0.2426 1 0.6223
Strength of reflections 0.7059 1 0.4008
Sharpness of reflections 0.4175 1 0.5181

number of stimuli depicting different materials, built an extensive initial list of candidate appearance descriptors, and then relied
on a user study to reduce them to a suitable size. We included in our list attributes ranging from high level class descriptors
(e.g. ceramic-like) to low level appearance descriptors (e.g., strength of reflections). Relying on Fleming’s work [2013], where
he states that we can also make many judgments about the perceived qualities of different materials irrespective of their class
membership, we do not make any restrictions about the type of descriptors in our list.

Stimuli Inspired by recent works on material perception and design (e.g., [Ngan et al. 2006; Kerr and Pellacini 2010; Jarabo
et al. 2014]), our stimuli consist of spheres of 60 different materials from the MERL database [Matusik et al. 2003], chosen
to span a wide range of different appearances. The spheres are lit by direct illumination. We render them using PBRT, and
the St. Peter’s environment map from the Light Probe Image Gallery [Debevec 1998], since real-world illumination, and that
environment map in particular, facilitates material perception in single images [Fleming et al. 2003].

Initial list of attributes We compiled an extensive list of appearance attributes from previous works in industry and academia [Hunter
and Harold 1987; Westlund and Meyer 2001; Burley 2012; Wills et al. 2009]. Additionally, seven subjects were asked to pro-
vide, for each of our 60 stimuli, at least four attributes that described its appearance, using their own words; this yielded a
second initial list of attributes. We ensured that each stimulus was seen by at least two people. We then joined the two lists
and reduced the number of entries by clustering semantically equivalent attributes; from this we obtained our initial list of 28
appearance attributes (see Sec. H).

Participants Twenty-six paid subjects took part in our experiment, under controlled conditions in our lab. They all had
self-reported normal or corrected-to-normal vision, and had no graphics background.

Procedure We seek to further reduce the initial 28 attributes, keeping only those meaningful and understandable even by
inexperienced users, and reasonably well represented in our database. To do this, we devised an experiment in which subjects
had to establish, for each stimulus shown, whether each of the attributes applied to the material or not. Each subject was
randomly shown 12 stimuli on a calibrated display, and there was no time limit (on average the complete tests took around
20 minutes per subject). Among the stimuli, a specific BRDF (the same for all subjects) was shown twice throughout the
experiment, and served as a control stimulus for outlier rejection. This experiment would tell us: First, for which attributes
there is a high agreement between users, and therefore they are clearly understood; and second, which attributes systematically
received negative answers and thus are not representative of material appearance in our database.

Analysis and main findings We first computed agreement, as the percentage of responses coincident with the majority
answer. Additionally, we computed Hamming distances between answers for different attributes, as an indicator of correlation
between them, and confirmed these correlations using Pearson’s chi-square test [Pearson 1900; Fisher 1922], which analyzes
whether there is a relationship between each pair of attributes, as well as the strength of this relationship. Attributes were then
removed according to three conditions: a chi-square value above 65, an agreement below 0.8, or a Hamming distance below 0.2.
The final list consists of fourteen attributes, covering both high- and mid-level features: plastic-like, rubber-like, metallic-like,
fabric-like, ceramic-like, soft, hard, matte, glossy, bright, rough, tint of reflections, strength of reflections, and sharpness of
reflections.



Figure S.1: Stimuli for the principal component space experiment. For each pair the BRDF on the left is the original, and the
BRDF in the right is represented only with the first five components of the PCA space.

A.3 Data pre-processing: outlier rejection

In Experiment 2 we gather up to 56,000 responses from 400 subjects via Amazon Mechanical Turk. Since these responses are
perceptual ratings which we will use to derive our mappings (attribute-PC space), we need an effective outlier rejection prior
to using the gathered data to fit the RBFNs.

We use the BRDF shown in Fig. S.2 as a control question to reject outliers. We discard full subjects that do not have a reasonable
answer to very clear attributes regarding our control image which are:

• Glossy = 4 or 5

• Metallic = 4 or 5

• Strength of reflections = 4 or 5



• Sharpness of reflections = 4 or 5

We also discard BRDFs from our experiment that are confusing for most of the users. We do this by calculating the difference
between the 3rd and the 1st percentile of the observations. If this difference is greater than two for more than four attributes of
the BRDF, we consider this BRDF as confusing for the users.

Finally, we discard outliers regarding observations for each attribute in each brdf. We do this if the observations fulfills any of
the following conditions:

Observation < (P1 −Kd ∗ Pd)

Observation > (P3 +Kd ∗ Pd)

with Pd = P3 − P1 and Kd = 1.5

Figure S.2: Control image used for outlier rejection in our experiments

A.4 User study interface

We show in Fig. S.3 the web-based interface used for the Experiment 0 (2AFC), and in Fig. S.4 the web-based interface used
for the Experiments 1 and 2 (Likert rating).

Figure S.3: Web-based interface used for the experiment 0



Figure S.4: Web-based interface used for the experiments 1 and 2

B Per cluster analysis

In Figs. S.5 and S.6 we show a per-cluster analysis of the mean and variance. Please refer to the main paper (Sec. 6.2) for cues
on how to interpret these plots.



Figure S.5: Means and variances for different types of BRDFs (I).

Mean values per attribute for fabric BRDFs Agreement per attribute for fabric BRDFs

Mean values per attribute for metallic BRDFs Agreement per attribute for metallic BRDFs

Mean values per attribute for acrylic BRDFs Agreement per attribute for acrylic BRDFs



Figure S.6: Means and variances for different types of BRDFs (II).

Mean values per attribute for plastic BRDFs Agreement per attribute for plastic BRDFs

Mean values per attribute for phenolic BRDFs Agreement per attribute for phenolic BRDFs

Mean values per attribute for metallic-paint BRDFs Agreement per attribute for metallic-paint BRDFs



C Goodness-of-fit

In this section we show the goodness-of-fit maps derived for all our attributes as explained in Sec. 5.1 in the main paper. We
evaluate the goodness-of-fit of the RBFs by calculating for each attribute, and for all the BRDFs in our database, the mean
distance between the values predicted by our functionals and the answers actually given by each particular user.



Figure S.7: Goodness-of-fit maps derived for all our attributes
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D Correlations

In this section we present additional correlation analysis of our attributes. In Sec. 6.3 in the main paper we show the Pearson
correlation analysis, we complete this analysis in Fig. S.8 providing the results of the Spearman correlation.



Figure S.8: Spearman correlation analysis between our attributes
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E Proof of concept with novice users

We provide in Figs. S.9, S.10, and S.11 additional results of the proof of concept test described in Sec. 8 in the main paper.



Figure S.9: Results from editing the BRDFs Pair #1. The task was performed by three different novice users and consisted
on finding a BRDF of intermediate appearance given an initial and a final appearance, with 3ds Max (bottom row) and our
prototype (top row). Our prototype yields more similar results across users, and allows them to achieve better results in less
time.
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Figure S.10: Results from editing the BRDFs Pair #2. The task was performed by three different novice users and consisted
on finding a BRDF of intermediate appearance given an initial and a final appearance, with 3ds Max (bottom row) and our
prototype (top row). Our prototype yields more similar results across users, and allows them to achieve better results in less
time.
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Figure S.11: Results from editing the BRDFs Pair #3. The task was performed by three different novice users and consisted
on finding a BRDF of intermediate appearance given an initial and a final appearance, with 3ds Max (bottom row) and our
prototype (top row). Our prototype yields more similar results across users, and allows them to achieve better results in less
time.
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F Additional editing results

In this section we show more examples of BRDFs obtained by modifying attribute values. We indicate the name of the original
BRDF and which attribute is modified in each of the examples.



Figure S.12: Edits of different attributes for a variety of BRDFs ordered alphabetically.
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Figure S.13: Edits of different attributes for a variety of BRDFs ordered alphabetically.

Edits for the brdf beige-
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rubber of the attribute
glossiness



Figure S.14: Edits of different attributes for a variety of BRDFs ordered alphabetically.
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Figure S.15: Edits of different attributes for a variety of BRDFs ordered alphabetically.
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Figure S.16: Edits of different attributes for a variety of BRDFs ordered alphabetically.
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G Stimuli

We show here the full BRDF database we use, which consists of 94 BRDFs from the MERL database [Matusik et al. 2003]
plus 306 new BRDFs which we synthesize as explained in Sec. 3 of the main paper.



Figure S.17: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.
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025.png 026.png 027.png 028.png 029.png 030.png 031.png 032.png

033.png 034.png 035.png 036.png 037.png 038.png 039.png 040.png

041.png 042.png 043.png 044.png 045.png 046.png 047.png 048.png

049.png 050.png 051.png 052.png 053.png 054.png 055.png 056.png

057.png 058.png 059.png 060.png 061.png 062.png 063.png 064.png

065.png 066.png 067.png 068.png 069.png 070.png 071.png 072.png



Figure S.18: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.
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129.png 130.png 131.png 132.png 133.png 134.png 135.png 136.png

137.png 138.png 139.png 140.png 141.png 142.png 143.png 144.png



Figure S.19: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.
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Figure S.20: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.

217.png 218.png 219.png 220.png 221.png 222.png 223.png 224.png

225.png 226.png 227.png 228.png 229.png 230.png 231.png 232.png

233.png 234.png 235.png 236.png 237.png 238.png 239.png 240.png

241.png 242.png 243.png 244.png 245.png 246.png 247.png 248.png

249.png 250.png 251.png 252.png 253.png 254.png 255.png 256.png

257.png 258.png 259.png 260.png 261.png 262.png 263.png 264.png

265.png 266.png 267.png 268.png 269.png 270.png 271.png 272.png
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Figure S.21: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.

289.png 290.png 291.png 292.png 293.png 294.png 295.png 296.png

297.png 298.png 299.png 300.png 301.png 302.png 303.png 304.png

305.png 306.png alum-bronze.png alumina-oxide.png aluminium.png aventurnine.png beige-fabric.png black-fabric.png

black-obsidian.png black-phenolic.png black-soft-plastic.png blue-acrylic.png blue-fabric.png blue-metallic-paint.png blue-metallic-paint2.png blue-rubber.png

brass.png chrome-steel.png chrome.png
color-changing-
paint1.png

color-changing-
paint2.png

color-changing-
paint3.png dark-blue-paint.png dark-red-paint.png

dark-specular-fabric.png delrin.png fruitwood-241.png gold-metallic-paint.png gold-metallic-paint2.png gold-metallic-paint3.png gold-paint.png gray-plastic.png

grease-covered-steel.png green-acrylic.png green-fabric.png green-latex.png green-metallic-paint.png
green-metallic-
paint2.png green-plastic.png hematite.png

light-brown-fabric.png light-red-paint.png maroon-plastic.png neoprene-rubber.png nickel.png nylon.png orange-paint.png pearl-paint.png

pickled-oak-260.png pink-fabric.png pink-fabric2.png pink-felt.png pink-jasper.png pink-plastic.png polyethylene.png polyurethane-foam.png



Figure S.22: Stimuli of our experiments including 94 brdfs from the MERL database and 306 new generated brdfs.

pure-rubber.png purple-paint.png pvc.png red-fabric.png red-fabric2.png red-metallic-paint.png red-phenolic.png red-plastic.png
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teflon.png tungsten-carbide.png two-layer-gold.png two-layer-silver.png violet-acrylic.png violet-rubber.png white-acrylic.png white-diffuse-bball.png

white-fabric.png white-fabric2.png white-marble.png white-paint.png yellow-matte-plastic.png yellow-paint.png yellow-phenolic.png yellow-plastic.png



H Attribute lists

We compiled an extensive list of appearance attributes from previous works in industry and academia. Additionally, seven
subjects were asked to provide, for each of our 60 stimuli, at least four attributes that described its appearance, using their own
words. We then joined the two lists and reduced the number of entries by clustering semantically equivalent attributes; from
this we obtained the following initial list of 28 appearance attributes:

• Plastic-like

• Rubber-like

• Mirror-like

• Metallic-like

• Ceramic-like

• Fabric-like

• Acrylic-like

• Pearlescent

• Velvety

• Organic

• Golden

• Silver

• Polished

• Varnished

• Chromed

• Coated

• Opaque

• Soft

• Matte

• Shiny

• Rough

• Strength of reflections

• Sharpness of reflections

• Tint of the Specular

• Sheen

• Tint of the sheen

• Haze

• Specular Gloss



The initial list of attributes was reduced to be manageable. To do this, we devised an experiment in which subjects had to
establish, for each stimulus shown, whether each of the attributes applied to the material or not. The outcome of this experiment
(Exp. 1 described in Sec. A.2 in this document) was the following list of perceptual attributes:

• Plastic-like

• Rubber-like

• Metallic-like

• Fabric-like

• Ceramic-like

• Soft

• Hard

• Matte

• Glossy

• Bright

• Rough

• Tint of reflections

• Strength of reflections

• Sharpness of reflections
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