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This document offers additional information and details on the following topics:

• Depth improvement for motion parallax (Section 4 in the main paper)

• Layered video representation (Section 3 in the main paper)

• Results (Section 6 in the main paper)

• Evaluation (Section 5 in the main paper)

A Depth improvement for motion parallax
We show more analyses of influence of the parameters in Equation 4 in the main paper, and the edge stopping function used for
the edge guidance term (Equation 6 in the main paper).

A.1 Parameter Analysis
We show the influence of each term in Equation 4 in the main paper (Figure S.1). The first two rows show the results from
different parameter sets of the data term (Equation 5). As the data parameter λdata increases, the result gets similar to the input
depth map that has artifacts. On the other hand, if λdata is too small, our method overly corrects the input depth, resulting
in wrong depth. The smoothness term (Equation 7) enforces smoothness of depth values, so the higher the parameter λsm is,
the smoother the result becomes. However, if λsm is not enough large, our method fails to correct the regions in which wrong
depth inputs should be smoothed out (See the region that is indicated by a white arrow in the case of λsm = 5 · 10−3). The
edge guidance term takes edge-aware propagation into account. If λe is too small, bleeding/blurry artifacts cannot be removed
well, and if it is too large, it overly corrects the input depth, resulting in wrong depth.

A.2 Edge-stopping Function
The edge guidance term (Equation 6 in the main paper) includes a spatially-varying weight we (i, j) consisting of an edge-
stopping function: Tukey’s biweight. The edge-stopping function prevents propagation across edges, so the choice of it is
crucial in our problem. The colorization method of Levin et al. [2004] uses an exponential function to give edge-awareness:

fexp (x) = exp

(
− x2

2σ2

)
, (S.1)

where σ is a 3 × 3 local standard deviation. The anisotropic diffusion method of Perona and Malick [1990], they employ
Lorentzian edge-stopping function:

florentzian (x) =
1

1 + x2

2σ2

. (S.2)

Black et al. [1998] suggest using Tukey’s biweight as an edge-aware function:

ftukey (x) =

{ (
1− x2

σ2

)2
|x| ≤ σ

0 otherwise
. (S.3)

For all the functions in depth improvement, x is a local gradient value in 3× 3 neighborhoods, which is denoted as e (i)− e (j)
where e is either an RGB or a depth pixel, i is an index of a pixel of interest, and j is i’s local neighborhood.

Figure S.2 shows plots of the three functions with σ2 = 0.5. All the plots show that around zero they have value close to one,
and they rapidly drop in the other way around. In depth cleaning, x-axis is a gradient value of a guidance image, so we can



Figure S.1: Results with different parameters. The third column is our parameter choice (marked with a blue square).

see that if an edge-stopping function has a small value, it is likely that there is a prominent gradient (edge), and vice versa.
Lorentzian function shows the most generous behavior in determining edges since it has the thickest tails. The exponential
function plummets as it goes away from zero, but Tukey’s biweight used in our method shows the strictest determinant of
gradients. In other words, if there is even a small gradient, Tukey’s biweight blocks propagation during optimization while
Lorentzian allowing. The double arrows in Figure S.2 indicate the intervals that the functions allow propagation. Figure S.3
shows the results from different edge-stopping functions. Lorentzian function shows the smoothest result since its gradient
determinant is generous. The exponential function gives better results, but around non-prominent edges, it shows blurry depth
boundaries. Tukey’s biweight produces the sharpest outputs since its gradient threshold is the strictest.
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Figure S.2: Edge stopping functions. For our results we choose the Tukey stopping function.

Figure S.3: Results from different edge-stopping functions. For our results we choose the Tukey stopping function (marked
with a blue square).

B Layered video representation
B.1 Computation of opacity map α: Intermediate steps
We show a more detailed pipeline of our α processing explained in Section 3 in the main paper. See Figure S.4 for the
description of the pipeline.



Figure S.4: (a) Depth map of the foreground layer for a given frame of the video. (b) Raw fragment orientation map OF .
(c) Intermediate orientation map processed with erosion and dilation operators (OF •K). (d) Processed fragment orientation
map α̂F . The raw orientation values (OFi,j) are too noisy to provide smooth transparency values, as they include information
not only on disocclusions, but also on foreshortening and quantization errors. We process this raw values as described in the
main paper, and obtain a clean transparency map (α̂F ) that smoothly matches the RGB image. (e) RGB image of which the
processed fragment orientation map α̂F is overlaid on top.

B.2 Computation of maximum parallax ρ

In this section we include additional details on how to compute the maximum parallax angle ρ, this dictates the number of
pixels to inpaint in the inpainted background layer. The geometrical representation for the following derivation is given in
Figure S.5. We provide the derivation for the 2D case for simplicity, since the extension for 3D space is straight-forward. Given

Figure S.5: Illustration that accompanies the computation of maximum parallax ρ (see main supplementary text).

two consecutive mesh vertices d1 and d2, the maximum parallax ρ depends on the depth difference between such vertices, and
the maximum head movement allowed (rmax). The vectors v2 and v3 are given by the position of the two vertices, (dx1 , d

y
1) and

(dx2 , d
y
2). The vector v1 is determined by setting a maximum head displacement circle around the center of projection (x0, y0)

with radius rmax. The angle of maximum parallax ρ can be expressed as:

cos(ρ) = v4·v5
‖v4‖‖v5‖ ,

with
v5 = v3 − v1,
v4 = v2 − v1

(S.4)

We aim to compute the maximum ρ, so we can formulate our problem as a maximization problem in the form:

argmax
x1,y1≤r

ρ = arccos v4·v5
‖v4‖‖v5‖ (S.5)



If we substitute v4 and v5 by their expressions as defined in Equation S.4:

argmax
x1,y1≤r
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√
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(S.6)

Finally, we can assume that maximum angle of parallax ρ will lie in the outer boundary, such that x21 + y21 = r2max:
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(S.7)

where all the terms but x1 are known, and we seek to find x1 such that |x1| ≤ rmax. By knowing x1 and y1 we can go back
to Equation S.5 and obtain the maximum angle of parallax ρ. By knowing ρ, we can compute P (assuming a planar surface to
inpaint, i.e., for this example this will imply that P lies at the same distance than the further mesh vertex d2 in the y axis) to
calculate the number of pixels Npix to inpaint in the inpainted layer.

C Results
We show additional examples of results as described in Section 6 of the main paper. Six results are shown in Figure S.6,
depicting a variety of scenes. For each result, we show a view from the center of projection, and a displaced view leading to
disocclusions. In each of the scenes we highlight regions illustrating the added parallax. We also include results from monocular
videos from different sources with estimated depth in Figure S.7.

Figure S.6: Six examples of novel views generated with our method. For each example we show the original view (top), and
the corresponding displaced view (bottom). We also include close-ups of regions where the added parallax is clearly visible.



Figure S.7: Results using monocular video without depth as input. For each row, we show a representative frame (left), details
of the initial estimated depth [Godard et al. 2017] and our improved depth (middle), as well as the corresponding results when
generating a novel view (right). Our method yields minimal distortions even in the presence of such suboptimal input. The first
row depicts a scene captured for this paper with a GoPro Odyssey, while the second row is taken from a previously existing
short clip (dataset from [Serrano et al. 2017]); in both cases we use only a 360◦ RGB monocular view as input and drop the
remaining data.

D Evaluation
We show additional plots from the experiments explained in Section 5 of the main paper, and the questionnaires used for user
study.

D.1 Experiment #1
We conduct a user study without noticing participants about the difference between two visualizations modes: with/without
head-motion parallax (Experiment #1 in the main paper). Figure S.8 shows representative frames of the dataset used for this
user study. We show the vote counts of artifacts (Figure S.9), comfort (Figure S.10), immersion (Figure S.11), preference (Fig-
ure S.12), and realism (Figure S.13).

Figure S.8: Representative frames of Experiment #1.



Figure S.9: Votes of artifacts in Experiment #1 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The lower a
vote count is, the less the artifacts are seen by a participant.

Figure S.10: Votes of comfort in Experiment #1 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The higher
a vote count is, the more a participant prefers.

D.2 Experiment #2
We conduct a user study to check sickness in VR depending on whether motion parallax is supported or not (Experiment #2 in
the main paper). Figure S.14 shows representative frames of the dataset used for this user study.

D.3 Experiment #3
We conduct a user study with noticing participants about the difference between two visualizations modes: with/without head-
motion parallax (Experiment #3 in the main paper). Figure S.15 shows representative frames of the dataset used for this user
study. We show the vote counts of artifacts (Figure S.16), comfort (Figure S.17), immersion (Figure S.18), preference (Fig-
ure S.19), and realism (Figure S.20).



Figure S.11: Votes of immersion in Experiment #1 for our method with motion parallax and the method without motion
parallax. The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer.
The higher a vote count is, the more a participant prefers.

Figure S.12: Votes of preference in Experiment #1 for our method with motion parallax and the method without motion
parallax. The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer.
The higher a vote count is, the more a participant prefers.



Figure S.13: Votes of realism in Experiment #1 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The higher
a vote count is, the more a participant prefers.

Figure S.14: Representative frames of Experiment #2.

Figure S.15: Representative frames of Experiment #3 .



Figure S.16: Votes of artifacts in Experiment #3 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The lower a
vote count is, the less the artifacts are seen by a participant.

Figure S.17: Votes of comfort in Experiment #3 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The higher
a vote count is, the more a participant prefers.



Figure S.18: Votes of immersion in Experiment #3 for our method with motion parallax and the method without motion
parallax. The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer.
The higher a vote count is, the more a participant prefers.

Figure S.19: Votes of preference in Experiment #3 for our method with motion parallax and the method without motion
parallax. The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer.
The higher a vote count is, the more a participant prefers.



Figure S.20: Votes of realism in Experiment #3 for our method with motion parallax and the method without motion parallax.
The purple bars indicate the vote counts of our method (6-DoF), and the yellow bars show those of 3-DoF viewer. The higher
a vote count is, the more a participant prefers.



D.4 Questionnaires
We include the questionnaires used for our user study. The first questionnaire is to ask participants if they are familiar with a
VR headset, prior to the experiments. The second questionnaire is used to ask preference of one viewing mode over the other in
terms of realism, comfort, immersion, presence of visual artifacts, and global preference. To assess if the subjects experienced
sickness, dizziness, and/or vertigo, and whether they had experienced discomfort, and if so, to measure how much they felt
those during viewing, we use the sickness questionnaire.



EXPERIMENT ID  _____________________ 

Age __________ 
Gender _______ 
 
Have you used an HMD before?                                                     YES / NO 
If yes: 
 Was it PC-based or smartphone-based? 
 How many times have you used it? ____________________________ 
 When was the last time you used it?___________________________ 

Do you use it regularly (more than once a month)?                                              YES / NO 
 Have you ever experienced eyestrain, dizziness, headaches, or nausea in VR?    YES / NO 
 

Do you play videogames regularly?                  YES/NO 

If yes, how often (days/week)?___________________________________________ 

Other information?____________________________________________________ 

 

 

 

 

 

 

 

  



Experiment #1 and Experiment #3 

EXPERIMENT ID           ______________ 
RENDERING MODE     ______________ 
VIDEO _________________ 
 
1. With which of the two methods did you feel more immersed in the scene? 

First method  ☐  Second method  ☐ 

Comments:…………………………………………………………………………………………………………………
…………………………………………………………………………………………………………... 

2. Which of the two methods had more visual artifacts? 

First method  ☐  Second method  ☐ 

Comments:…………………………………………………………………………………………………………………
………………………………………………………………………………………………………….. 

3. Which of the two methods offers a more realistic experience? 

First method  ☐  Second method  ☐ 

Comments:…………………………………………………………………………………………………………………
…………………………………………………………………………………………………………… 

4. With which of the two methods did you feel more comfortable watching the 
scene? 

First method  ☐  Second method  ☐ 

Comments:…………………………………………………………………………………………………………………
…………………………………………………………………………………………………………… 

5. Globally, which of the two methods do you prefer for visualizing the scene? 

First method  ☐  Second method  ☐ 

Comments:…………………………………………………………………………………………………………………
…………………………………………………………………………………………………………… 

6. [This is a simple question regarding the scene content, it differs for each scene] 

………………………………………………………………………………………………………………………… 



SICKNESS QUESTIONNAIRE (Experiment #2) 

EXPERIMENT ID  ______________ 

RENDERING MODE ______________ 

 

General discomfort  
   None      Slight     Moderate  Severe 
 

Fatigue          
   None      Slight     Moderate  Severe 
 
Eyestrain           
   None      Slight     Moderate  Severe 
 

Difficulty focusing          
   None      Slight     Moderate  Severe 
 

Headache           
   None      Slight     Moderate  Severe 
 

Fullness of head           
   None      Slight     Moderate  Severe 
 

Blurred vision           
   None      Slight     Moderate  Severe 
 

Dizzy (eyes closed)           
   None      Slight     Moderate  Severe 
 

Vertigo           
   None      Slight     Moderate  Severe 
 
 
Did you feel totally comfortable while watching the videos? 
 

_________________________________________________________________________ 
 
Did you experience at any moment while watching the videos any symptom of dizziness, vertigo, 
disorientation, or nausea? If yes, describe the video and situation where this happened.  
 

________________________________________________________________________________ 
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