
1

MiniNet: An Efficient Semantic Segmentation
ConvNet for Real-time Robotic Applications

Iñigo Alonso, Luis Riazuelo, and Ana C. Murillo

Abstract—Efficient models for semantic segmentation, in terms
of memory, speed, and computation, could boost many robotic
applications with strong computational and temporal restrictions.
This work presents a detailed analysis of different techniques for
efficient semantic segmentation. Following this analysis, we have
developed a novel architecture, MiniNet-v2, an enhanced version
of MiniNet [1]. MiniNet-v2 is built considering the best option
depending on CPU or GPU availability. It reaches comparable
accuracy to the state-of-the-art models but uses less memory and
computational resources. We validate and analyze the details of
our architecture through a comprehensive set of experiments
on public benchmarks (Cityscapes, Camvid, and COCO-Text
datasets), showing its benefits over relevant prior work. Our
experiments include a sample application where these models
can boost existing robotic applications.

Index Terms—Deep learning, Efficient models, Semantic seg-
mentation, Scene understanding

I. INTRODUCTION

Research on novel efficient deep learning models is increas-
ing the number of robotic applications that can make use of
learning-based solutions. In particular, more efficient semantic
segmentation models have brought a lot of attention [3], [4],
[6], [33]. Semantic segmentation models compute semantic
label probabilities for every image pixel, providing very rich
information about the context and details within the captured
scene. This task is essential for a quick scene understanding.
As with many other deep learning-based solutions, it is un-
feasible to run many of the top-performing models on CPUs,
or even at low-powered GPUs, at the high rates required in
many real applications.

CNN models usually require to have high-end GPUs to run
inferences in near real-time. Unfortunately, these GPUs are
often not available in robotic platforms or are not affordable
for some applications running on small robots, drones or
mobile phones. Even for autonomous vehicles, we cannot
expect them to hold one high-end GPU for each task it has
to perform. Therefore, there are many restrictions to take
into account to deploy deep learning-based techniques in real-
world applications. Available computational resources, power
consumption and time restrictions are some of the significant
constraints that robotic applications usually face. In the last
years, we have seen an increasing interest in deep learning so-
lutions for real-time applications on low-power GPUs. Several
solutions [22], [24], [32] get results close to top-performing
methods at much lower computational and energy cost.

I. Alonso, L. Riazuelo and A.C. Murillo are with the DIIS - I3A, Universi-
dad de Zaragoza, Spain. {inigo, riazuelo, acm}@unizar.es

Fig. 1. MiniNet-v2: overview of the proposed architecture.

This work presents an study of efficient techniques for
efficient semantic segmentation that yielded to our novel
architecture for efficient semantic segmentation. MiniNet-v2
(summarized in Fig. 1 and detailed in Table I) presents a
better accuracy vs resource requirements trade-off than the
state-of-the-art. It is an improved version of MiniNet, firstly
introduced in [1]. The main improvements come from the use
of our proposed multi-dilation depthwise convolution and the
use of an additional convolutional branch for retrieving fine-
grained information instead of using skip connections. The
new architecture presented here has two main configurations:
MiniNet-v2 is focused on more general set-ups with GPU
availability and MiniNet-v2-cpu enables many applications and
tasks to run semantic segmentation models without requiring
GPU on-board. For instance, we show its usefulness for V-
SLAM smart key-frame selection, demonstrated in [1].

Our experiments evaluate how different CNN techniques
and operations affect relevant semantic segmentation metrics,
namely: GFlops (computation), the number of parameters and
model size (memory), execution time (both on CPU and
GPU) and Mean Intersection over Union (accuracy of the
segmentation). We show that MiniNet-v2 is more efficient
overall than the state-of-the-art regarding those metrics, es-
pecially in the required memory, and still gets comparable
performance on well known public datasets from autonomous
driving environments, Cityscapes [7] and Camvid [5].

II. RELATED WORK

Techniques to improve CNNs efficiency: Many works
lately focus on reducing CNNs memory and computational
requirements, which directly affects energy consumption and
execution time. We next group some of the most relevant ideas
into several categories depending on what they focus on.

Some approaches focus their contributions on the train-
ing phase. The most common strategy is joint training and
distillation [11], [23]. These techniques rely on two models,

2

one larger and not focused on efficiency which can get top-
performing results, and a corresponding small and efficient
model. The contribution relies on how to transfer the knowl-
edge from the accurate model to the efficient one.

Other works focus their attention on carefully choosing
the parameter data types. Quantized models [13] or binary
networks [8] are recent works studying the effect of using
less precise data types on the accuracy vs. memory trade-off
and on the computation required.

Increased efficiency can also be achieved through post-
processing methods such as pruning [21]. These methods study
how to reduce a trained CNN without losing accuracy.

Other works study novel network operations such as depth-
wise separable convolutions [27] and dilated convolutions [9].
Finally, other works propose novel CNN architectures directly
focused on the target task. In particular, for efficient segmen-
tation we find architectures such as Enet [22] or ERFNet
[24]. These works propose different modules and strategies
to perform semantic segmentation more efficiently.

Our work is more closely related to the last two groups
of prior work: novel network operations and novel CNN
architectures. Sec. VI includes a more detailed analysis of
existing network operations to improve efficiency on semantic
segmentation architectures.

Semantic segmentation architectures: CNNs for semantic
segmentation typically follow an encoder-decoder structure:
the encoder learns features while reducing the resolution and
the decoder upsamples the learned features and maps them
into the segmentation result. FCN [17] is one of the early
works following a fully convolutional design for semantic
segmentation. They propose to add a single decoder layer
at the end of a classification CNN. Their results show that
just upsampling the encoder features was enough to learn
the semantic segmentation. SegNet [3] follows a symmetric
encoder-decoder structure achieved by adding upsampling
layers, i.e., unpooling. More recent works improve these
earlier segmentation architectures by adding novel operations
or modules proposed initially within CNNs architectures for
classification tasks. FC-DenseNet [14] follows the DenseNet
work [12] using dense modules. PSPNet [33] uses ResNet [10]
as its encoder and introduces the Pyramid Pooling Module,
which is incorporated at the end of the CNN allowing to
learn effective global contextual priors. Deeplab-v3 [6] is
one of the top-performing architectures for segmentation and
makes use of two powerful operations: the depthwise separable
convolutions [27] and the atrous (or dilated) convolutions [9].

The semantic segmentation methods discussed so far
have achieved impressive results but are not designed for
computationally limited scenarios. Sometimes they rely
on costly post-processing methods, e.g., CRFs or multi-
scale inference, and they present too high computational
requirements and inference time for embedded platforms.

Efficient segmentation architectures: As efficient seman-
tic segmentation architectures are concerned, ENet [22] sets
up certain basis which following works, such as ERFNet [24],
ICNet [32], ThunderNet [30] or GUN [18], have built upon.

These architectures perform early downsampling of the feature
maps so that most of the learning is performed at a low
resolution (e.g., 1/8 of the input size). In these architectures,
the computation is focused on the encoder which is in charge
of learning the features and the decoder just upsamples them.
In ERFNet [24], the authors propose an architecture inspired
by Enet, but including the use of factorized convolutions [2],
which reduce the number of learning parameters. ICNet [32] is
a three-branch architecture that learns parameters at different
resolutions and then joins the branches to compute the final
result. GUN [18] is a two-branched architecture that also
works at different resolutions but, differently from previous
architectures, shares weights at early stages. It also propose a
guided upampling operation, latter improved in Mazzini et al.
[19]. Li et al. [16] perform an auto-search approach in stead
of manual implemented modules to find an architecture with
good speed-performance trade-off.

In the following section, we analyze and evaluate different
techniques that can help building more efficient architectures.

III. TECHNIQUES FOR EFFICIENT SEMANTIC
SEGMENTATION CNNS

This section presents a compilation of relevant ideas to build
efficient semantic segmentation architectures and discusses
their main insights.

A. Convolutional layers

Convolutional layers are very relevant to our work since they
are the computation core in CNNs. Apart from the standard
convolutional layer, there are other layers that perform the
convolution in a different way reducing the required number
of parameters and operations. We consider the factorized
convolutions and the depthwise separable convolutions [27] as
the most relevant approximations for our goals. These ideas
have been proved to perform very similar or even better than
standard convolutions [24]. Figure 2 shows a comparison of
the different types of convolutional layers.

Factorized convolution: This convolutional layer consists
of performing two consecutive convolutions factorizing the
convolutional kernel. Let W ∈ RCi×d×d×Co denote the learn-
ing parameters of a 2D convolutional layer, where Ci is the
number of input channels, Co is the number of output channels
and d × d represents the kernel size of each convolution.
A standard 2D convolution has d × d × Ci × Co learning
parameters. In contrast, a factorized convolution layer has
two convolutions of 1 × d and d × 1 kernels, leading to
2×d×Ci×Co learning parameters. When setting a 3×3 kernel
size, the parameter reduction comes to a 33% with respect to
the standard convolutional layer.

Depthwise separable convolution: It consists of factoriz-
ing the standard convolution into two separate convolutions.
The first convolution is called the depthwise convolution. It
performs a spatial convolution independently for each input
channel, i.e., each output channel is only computed by one
input channel in contrast to standard convolutions where all
input channels are used for each output channel. Therefore,
this depthwise convolution has Ci × d× d parameters (where

3

Fig. 2. Depiction of the different types of convolutions considered in this
work, including required number of parameters on each step of the convolution
(e.g., in d × d × Co × Ci: Ci is the number of input channels, Co is the
number of output channels and d is the kernel size).

Ci = Co). The second convolution is called the pointwise
convolution which consists in performing a 1×1 convolution,
projecting the output channels by the depthwise convolution
onto a new channel space, combining the output of the
depthwise convolution. It has Ci × Co learning parameters.
Thus, the total learning parameters is Ci × d× d+ Ci × Co.
Setting a 3×3 kernel size and 103 number of kernels leads to a
reduction of 88% of the learning parameters with respect to the
standard convolutional layer. Thus, the depthwise separable
convolution reduces, even more, the number of parameters than
the factorized convolution.

Combining both ideas, depthwise separable convolution and
factorized convolution, yields to (2×Ci×d+Ci×Co) learning
parameters, which leads to a reduction of 88% of learning
parameters with respect to a standard convolutional layer.

Atrous convolution: Atrous or dilated convolutions [9]
introduce the dilatation rate r. This dilatation rate defines the
stride between two adjacent kernel values. Therefore, a 3x3
kernel with r = 2 will have the same field-of-view as a 5x5
kernel, while only using 9 parameters instead of 25. When
r = 1 there is no dilation and it is just a standard convolution.

This type of convolution is very important regarding effi-
cient semantic segmentation because it allows lowering the
number of layers and parameters [22], [24], [32] while being
able to cover the same field-of-view. Nevertheless, this type of
convolutions are not fully established in semantic segmentation
architectures because big dilation rates lose local information.

Multi-dilation depthwise separable convolution: We in-
troduce this new convolutional layer, which consists of two
parallel depthwise convolutions, one with a dilation rate r = 1
and the other one with r ≥ 1. Then, their outputs are added
and then a pointwise convolution is applied as Fig. 2 shows.

This convolutional layer improves the performance by effi-
ciently learning both local and global spatial relationships. It
learns a larger variety of kernels with less number of layers
thanks to the dilation rate. This layer only adds Ci × d × d
parameters with respect to the standard depthwise separable
convolution. Therefore, it still leads to a reduction of 87% of
the learning parameters with respect to the standard convolu-
tional layer.

B. Other efficient techniques to explore

There are additional techniques that can improve efficiency
in semantic segmentation architectures, which we discuss next.

Retrieving fine-grained information: Encoder-decoder ar-
chitectures for CNNs reduce the resolution of the input image
(between ×8 and ×32) when learning the features in the
encoder. Working at low resolutions hinders the CNN to get
detailed outputs because it does not learn well fine-grained
information. Another fact that makes difficult to learn fine-
grained information is stacking too many convolutional layers,
because deep features encode the image context rather than
local and spatial information. There are two common strategies
to deal with this issue.

Several works [14], [26] connect early layers to final layers,
in order to keep high-resolution information and recover fine-
grained information without the need of adding more layers
to the network. Nevertheless, these skip connections have
some drawbacks: early layers have to extract fine-grained
information for enhancing the output and useful low-level
features for the encoder, which, made at the same time, may
hinder the optimization.

Another strategy towards the same goal is to have a very
light independent branch of convolutions for spatial informa-
tion preservation [31]. This second strategy does not force
early layers to extract different types of features, but adds
more computational cost. Section VI includes a quantitative
comparison of these strategies.

Reducing output resolution: Working on high resolutions
implies a high computational cost. Therefore, apart from
working at low resolutions at the encoder, another way to save
computational resources is to perform the semantic segmenta-
tion predictions on a lower resolution than the input resolution
removing last convolution layers and upsampling layers. This
strategy has been shown to provide significant computational
saving with little loss in accuracy [6].

IV. PROPOSED EFFICIENT SEMANTIC SEGMENTATION
ARCHITECTURE

This section describes our architecture for efficient semantic
segmentation: MiniNet-v21. It is inspired by ERFNet [24] and
our design choices are based on the benefits and drawbacks
of the techniques discussed in previous section.

1Code at https://github.com/Shathe/MiniNet-v2

https://github.com/Shathe/MiniNet-v2

4

A. Main blocks

The main blocks are shown in Table I, where the whole
architecture is defined. The key ingredient and the core of
MiniNet-v2 architecture is its convolutional module. It consists
of a 3x3 depthwise separable convolution followed by a
residual connection. If the module is applied on the Feature
Extractor block, we use multi-dilation depthwise separable
convolution instead and add a dropout of 0.25 after the
convolution. All downsample operations consist of a max-
pool operation concatenated with a strided convolution and
all upsample operations are transposed convolutions.

1) Downsample block: This block quickly downsamples
the features. It consists of combining downsample operations
with convolutional modules.

2) Feature extractor block: This block is the main part of
the encoder. It consists of several consecutive convolutional
modules with different dilation rates.

3) Refinement block: This block extracts spatial and high
resolution features performing two downsample operations
to the input image. This block goal is to extract additional
features that can help to refine the features previously learned
in the feature extractor block.

4) Upsample block: This block upsamples the feature ex-
tractor block output. Then, the refinement block and this block
are added. The last part of this block consists of several
convolutional modules without dilation rate and upsample op-
erations. The output resolution is half of the input’s resolution.

B. MiniNet-v2

This new architecture enhances our previous one, firstly
introduced in [1], and gets similar performance than state-
of-the-art models with much larger number of parameters and
memory requirements. We propose two different configura-
tions: the main architecture, MiniNet-v2, defined in Table
I, and a smaller version, MiniNet-v2-cpu, built for CPU
applications. This smaller version is the same architecture
removing these convolutional modules: from m3 to m10, from
m16 to m25 and from m28 to m29.

MiniNet-v2 has 0.52M parameters and the model takes
up to 2.02MB. At 1024x512 resolution, it works at 50fps
in a TitanXp and 4fps in an Intel i5-8600k, and performs
12.89 GFLOPs (floating point operations) and 6.45 GMACs
(multiply–accumulate operations), getting 70.4% MIoU on the
Cityscapes benchmark.

MiniNet-v2-cpu has 0.27M parameters and the model takes
up to 1.06MB. At 512x256 resolution, it works at 250fps
in a TitanXp and 30fps in an Intel i5-8600k, and performs
1.68 GFLOPs and 0.84 GMACs, getting 59.9% MIoU on the
Cityscapes benchmark. This smaller version gets lower seg-
mentation accuracy but is more efficient due to smaller input
resolution and the reduction on the number of convolutional
layers.

V. EVALUATION

We use the following metrics and datasets for the evaluation.

TABLE I
MiniNet-v2 ARCHITECTURE FOR AN INPUT SIZE OF 1024X512.

Block Name Type Input Output size

D
ow

ns
am

pl
e

d1 downsampling image 512x256x16
d2 downsampling d1 256x128x64
m1 rate=1 d2 256x128x64
m2 rate=1 m1 256x128x64
m3 rate=1 m2 256x128x64
m4 rate=1 m3 256x128x64
m5 rate=1 m4 256x128x64
m6 rate=1 m5 256x128x64
m7 rate=1 m6 256x128x64
m8 rate=1 m7 256x128x64
m9 rate=1 m8 256x128x64
m10 rate=1 m9 256x128x64
d3 downsampling m10 128x64x128

Fe
at

ur
e

ex
tr

ac
to

r

m10 rate=1 d3 128x64x128
m11 rate=2 m10 128x64x128
m12 rate=1 m11 128x64x128
m13 rate=4 m12 128x64x128
m14 rate=1 m13 128x64x128
m15 rate=8 m14 128x64x128
m16 rate=1 m15 128x64x128
m17 rate=16 m16 128x64x128
m18 rate=1 m17 128x64x128
m19 rate=1 m18 128x64x128
m20 rate=1 m19 128x64x128
m21 rate=2 m20 128x64x128
m22 rate=1 m21 128x64x128
m23 rate=4 m22 128x64x128
m24 rate=1 m23 128x64x128
m25 rate=8 m24 128x64x128

R
ef d4 downsampling image 512x256x16

d5 downsampling d4 256x128x64

U
ps

am
pl

e

up1 upsampling m25 256x128x64
m26 rate=1 up1 + d5 256x128x64
m27 rate=1 m26 256x128x64
m28 rate=1 m27 256x128x64
m29 rate=1 m28 256x128x64
output upsampling m29 512x256xN

rate: stands for the convolutional dilation rate.

A. Metrics

• Execution time. Inference time both on GPU (on Titan
Xp using PyTorch framework) and CPU (on Intel i5-
8600k).

• Memory. Number of parameters of the CNN and the
required memory for the model (MB).

• Computation. GFlops (Giga Floating Point Operations)
of a forward step.

• MIoU (Mean Intersection over Union). This is the most
common metric for semantic segmentation tasks.

B. Datasets
• Cityscapes [7]. An urban-scene understanding dataset

widely adopted to evaluate semantic segmentation approaches.
It consists of 19998 coarsely annotated images and 5000 fine-
annotated images (split into 2975 images for training, 500
images for validation, and 1525 images for testing). Test set
evaluation is performed by submitting the test predictions on
the official benchmark server.
• Camvid [5]. An autonomous driving dataset frequently

used to train existing state-of-the-art approaches for urban
areas image segmentation. It consists of 367 training images,
101 validation images, and 233 test images.
• COCO-Text [28]. A text detection dataset based on the

MS COCO dataset. It contains over 173k text annotations in
over 63k images. The dataset provides bounding boxes for the
text detection task, but we convert them into pixel labels, i.e.,
binary segmentation (text vs non-text).

VI. ANALYSIS OF MININET-V2 COMPONENTS

This section evaluates the effects of the described techniques
in Sec. III and justifies our design of MiniNet-v2.

5

TABLE II
PERFORMANCE OF FACTORIZED (ERFNET) AND NON-FACTORIZED

(MININET-V2) CONVOLUTIONS USING DEPTHWISE SEPARABLE
CONVOLUTIONS (D) OR STANDARD CONVOLUTIONS (S).

GPU CPU Params Memory
Configuration (ms) (ms) (M) GFlops (MB) MIoU

ERFNet-S [24] 10 88 2.06 13.42 7.95 58.79
ERFNet-D 10 62 0.49 3.20 1.93 58.36
MiniNet-v2-S 9 109 3.02 19.68 11.55 58.89
MiniNet-v2-D 9 61 0.49 3.28 1.97 58.51

A. Training protocol and implementation details

The training protocol is the same for all our experiments.
We train the different CNN configurations on the Cityscapes
data (only fine–annotated images) for 250 epochs with a batch
size of 12. We use Adam optimizer with an initial learning rate
of 10−3 and polynomial learning rate decay schedule which
power is set to 0.9. We use a weight decay of 2 × 10−4.
We use horizontal flips and shifts for data augmentation. As
similar architectures, we perform the training optimization via
back-propagation of the loss. The loss is calculated as the sum
of all per-pixel losses, through parameter gradients using the
common soft-max cross entropy loss function.

For these experiments, MiniNet-v2 components are evalu-
ated using the Cityscapes validation set with input resolution
of 512x256 (half of its original input size).

B. Techniques for efficient semantic segmentation CNNs

In the following experiments, we refer as MiniNet-v2 (basic
version) to our initial ERFNet modification consisting of re-
placing each ERFNet convolutional module with two MiniNet-
v2 convolutional modules (explained in Sec.IV).

1) Factorized convolutions and depthwise separable con-
volutions: This is the most important experiment because it
is focused on variations on convolution layers, which are the
main ingredient in CNNs. This experiment compares standard
convolutions (S), depthwise separable convolutions (D) and
multi-dilation separable convolutions (M). It also compares
factorized convolutions used by ERFNet with respect to non-
factorized convolutions used by MiniNet-v2.

Table II summarizes the results of this evaluation. The
first thing to note is that standard convolutions (S) have too
many parameters, FLOPs and execution time compared to
depthwise convolutions. Regarding factorized convolutions,
they take more execution time and present worse segmentation
performance (MIoU) than non-factorized convolutions, while
having the advantage of running slightly fewer FLOPs.

The approach we select for our architecture (and used
in the following experiments), MiniNet-v2-D, shows several
enhancements over the original ERFNet architecture (ERFNet-
S): it reduces the generated computation (GFlops) by a 75%
and the memory cost (number of parameters) by a 75%.

2) Retrieving fine-grained information: This experiment
compares two different strategies to preserve high-resolution
information and recover fine-grained information from the
input image.

TABLE III
PERFORMANCE COMPARISON BETWEEN SKIP CONNECTION FROM EARLY

LAYERS (S) VERSUS A LIGHT ADDITIONAL BRANCH (I).

GPU CPU Params Memory
Configuration (ms) (ms) (M) GFlops (MB) MIoU

MiniNet-v2-D 9 61 0.49 3.28 1.97 58.51
MiniNet-v2-D-S 9 62 0.49 3.28 1.97 56.89
MiniNet-v2-D-I 9 62 0.49 3.42 2.00 58.71

We consider two different configurations. In the first setup
(S), we sum the output of the first downsampling operation and
the output of the penultimate upsample operation. The second
configuration, a new convolutional branch (I), performs two
downsample operations to the input image and then adds it to
the penultimate upsample operation.

Table III confirms our hypothesis on the detrimental effect
of the first skip connection configuration (S). This effect is
caused by forcing early layers to perform two jobs at the same
time: early layers have to extract fine-grained information
for enhancing the output and useful features for the rest
of the encoder. This is especially important in small and
efficient networks where there are very few layers and fewer
parameters. In contrast, the additional convolutional branch (I)
allows the network to extract fine-grained information without
any negative effect. This information allows the network to
get more accurate outputs, especially in contours, which is
beneficial to classes with small size like traffic lights.

3) Atrous convolutions: Atrous or dilated convolutions al-
low adjusting the kernel field-of-view to capture multi-scale
information. Nevertheless, they increase the execution time.
In this experiment, we evaluate four different configurations:
same dilation rates as ERFNet (E); double dilation rates than
ERFNet (2); no dilated convolutions, (0); using minimum
dilation rates needed to reach a field-of-view equal to the
feature extractor input resolution (1). We also evaluate our
proposed convolutional layer, multi-dilation depthwise separa-
ble convolution, which performs two depthwise convolutions
in parallel: one with dilation rate and another one without it.

As Table IV shows, decreasing the dilation rates harms
the MIoU performance while it does not improve much the
efficiency. This is particularly noticeable when there are not
many convolutional layers, as it usually happens in efficient
architectures. This is due to a lack of context information.
Increasing too much the dilation rates has the opposite effect,
it lacks local information. Our architecture uses multi-dilation
separable convolutions, which outperform the other methods.
The improvement is mostly due to the effect of learning global
and local context at the same time, thanks to the two parallel
depthwise convolutions with different dilation rates.

4) Reducing output resolution: This experiment evaluates
the benefits of reducing the output resolution with respect
to the input’s resolution. We compare the MiniNet-v2-D-I-
M configuration (the best so far) with MiniNet-v2-D-I-M-
R, which removes the penultimate upsampling operation and
the four last MiniNet-v2 convolutional modules that were
performed at that last resolution. We only decreased the
resolution ×2 to avoid loosing too much information.

6

TABLE IV
PERFORMANCE WHEN VARYING DILATION RATES: ERFNET DEFAULT
DILATION (E), DOUBLING ERFNET DILATION (2), NO DILATION (0),

MINIMUM DILATION FOR WHOLE FIELD-OF-VIEW (1) OR USING
MULTI-DILATION DEPTHWISE CONVOLUTIONS (M).

GPU CPU Params Memory
Configuration (ms) (ms) (M) GFlops (MB) MIoU

MiniNet-v2-D-I-E 9 61 0.49 3.42 2.00 58.71
MiniNet-v2-D-I-0 9 55 0.49 3.42 2.00 57.91
MiniNet-v2-D-I-1 9 60 0.49 3.42 2.00 58.81
MiniNet-v2-D-I-2 9 64 0.49 3.42 2.00 57.21
MiniNet-v2-D-I-M 10 69 0.53 3.66 2.10 59.36

TABLE V
PERFORMANCE WHEN REDUCING THE OUTPUT RESOLUTION (R).

GPU CPU Params Memory
Configuration (ms) (ms) (M) GFlops (MB) MIoU

MiniNet-v2-D-I-M 10 74 0.53 3.66 2.10 59.36
MiniNet-v2-D-I-M-R 8 54 0.52 3.22 2.02 59.08

Table V shows that the execution time has been drastically
reduced, 33% for GPU and 22% for CPU, because higher
resolutions take most of the computation. Besides, the drop
in the MIoU performance is not very significant. For these
reasons, our proposed MiniNet-v2 architecture follows this
approach. This last configuration, MiniNet-v2-D-I-M-R, is the
MiniNet-v2 final architecture.

VII. BENCHMARK EVALUATION

This section compares our work to current state-of-
the-art on different semantic segmentation problems, using
Cityscapes, Camvid, and COCO-Text datasets.

A. Multi-class segmentation

Training protocol: For the Cityscapes dataset, differently
from the previous section, we jointly train on the coarse-
annotated and fine-annotated data. For all datasets, we train
for 1M iterations with a batch size of 6, an initial learning
rate of 1 × 10−3, polynomial learning rate decay schedule
which power is set to 0.9 and weight decay of 2× 10−4. We
use horizontal flips, random scaling (×0.5,×2) and horizontal
shifts for data augmentation. For the optimization we use the
cross entropy loss function. To account for class imbalance,
we use the median frequency class balancing, as applied in
SegNet [3]. To smooth the resulting class weights, we propose
to apply a power operation: wc = (fmedian

fc
)i, with fc being the

frequency of class c and fmedian the median of all frequencies.
We set i to 0.12. When computing the loss, instead of resizing
the labels to match the output shape of our network, we resized
the output for not losing information in the labeled image.

Evaluation: Table VI shows the results on the test set
of the Cityscapes dataset. MiniNet-v2 at 1024x512 resolution
uses ×4 less memory, parameters and FLOPs than ERFNet
(our main baseline) while getting higher performance (MIoU).
Our architecture gets state-of-the-art performance (MIoU) for
efficient semantic segmentation, similar to ICNet or Li et al.
with pretraining, but with the lowest memory requirements
reported. At this resolution, it also gets better performance

TABLE VI
EVALUATION ON THE TEST SET OF THE CITYSCAPES DATASET.

GPU Input Params Memory MIoU MIoU
Method ms (type) Resolution (M) (MB) GFlops w pt w/o pt

Li et al. [15] 7* (1080ti) 1536x768 2.9** — 71.4 —
ICNet [32] 30 (TX) 2048x1024 6.7 — — — 70.6
GUN [18] 27 (TXp) 1024x512 19.0 — 58.7 70.4 —
ERFNet [24] 20 (TXp) 1024x512 2.1 7.95 53.78 69.7 68.0
Mazzini et al. [19] 9 (TXp) 1024x512 1.4 — — 68.9 63.7
CGNet [29] 56 (V100) 2048x1024 0.5 — — — 64.8
ThunderNet [30] 10 (TX) 1024x512 4.7 — — 64.0 —
ESPNet [20] 9 (TX) 512x256 0.4 1.46 4.5 — 60.3
ENet [22] 13 (TX) 1024x512 0.4 1.64 8.72 — 58.3
SegNet-basic [3] 60 (TX) 480x360 29.5 112.40 286.03 — 56.1
MiniNet [1] 5 (TXp) 512x256 3.1 12.35 1.06 — 40.7

MiniNet-v2 20 (TXp), 11 (2080ti) 1024x512 0.5 2.02 12.89 — 70.5
MiniNet-v2 9 (TXp) 512x256 0.5 2.02 3.22 — 64.7
MiniNet-v2-cpu 4 (TXp) 512x256 0.3 1.06 1.68 — 59.3

w pt: with pretraining on Imagenet; TX: TitanX; TXP: TitanXP
* Reported using TensorRT. 25 ms using Caffe Time.
** Only encoder meassure is reported.

than other networks that require many more parameters like
GUN, ThunderNet or SegNet. When it comes to MiniNet-
v2 at 512x256 resolution, the MIoU performance is higher
(+5 IoU) than ESPNet and ESPNet using similar number of
parameters, memory, FLOPs and runtime. The MIoU reached
is also higher than ThuderNet’s (pretrained) and Mazzini et al.
(without pretraining) MIoU, with similar efficiency metrics.
Our MiniNet-v2-cpu architecture, which is focused on CPU
applications, gets similar MIoU than ENet and ESPNet while
presenting better efficiency metrics.

Table VII shows a comparison of our models with the
state-of-the-art using the Camvid benchmark. MiniNet-v2 at
960x720 resolution presents a little higher MIoU than ICNet
and ERFNet, and it is much more efficient in terms of
both memory and speed. Comparing methods at 480x360
resolution, MiniNet-v2 gets higher MIoU than most of the
methods (Enet, SegNet, FC-DenseNet56) and similar results
than other methods that use many more parameters, like
FC-DenseNet103. Considering only the fastest approaches,
MiniNet-v2-cpu gets better performance (+8.6% MioU) than
ENet and earlier MiniNet (+18.6% MioU) and presents much
lower memory requirements. It also beats some relevant ar-
chitectures, like FC-DenseNet56, in all the metrics. MiniNet-
v2-cpu gets similar performance than ENet in the Cityscapes
dataset, but, interestingly, it gets significantly better perfor-
mance in the Camvid data. This could mean that our ar-
chitecture learns better on smaller datasets, a common case
in robotics. Note that this dataset is ×8 smaller than the
Cityscapes dataset and therefore, it is more sensitive to pre-
training: MiniNet-v2 goes from 69% MIoU to 76% in the
Camvid data if pretrained on Cityscapes.

B. Binary segmentation

Previous experiments have shown how MiniNet-v2 gets sim-
ilar or better results than state-of-the-art models while being
more efficient regarding several metrics. However, MiniNet-v2-
cpu is 10 MIoU points below when evaluated in the multi-class
benchmarks from the two previous experiments. Differently
from previous experiments performed on datasets with more
semantic classes, wow we consider binary text segmenta-
tion. We show that for simpler semantic segmentation tasks,

7

Fig. 3. Qualitative results on the Cityscapes validation dataset. We show that MiniNet-v2 achieves really accurate segmentation results, even better than
state-of-the-art methods. Different colors mean different classes (except black, which is the ignore/void class). Visual results taken from [20] except ours.

TABLE VII
EVALUATION ON THE TEST SET OF THE CAMVID DATASET.

GPU Input Params Memory MIoU MIoU
Method ms (type) Resolution (M) (MB) GFlops w pt w/o pt

Mazzini et al. [19] 4(TXp) 480x360 1.4 — — 68.7 —
ERFNet [25] 28 (TXp) 960x720 2.1 7.95 70.90 — 68.3
ICNet [32] 36 (TX) 960x720 6.7 — — — 67.1
FC-DenseNet103 [14] 109 (TXp) 480x360 9.4 35.77 139.43 — 66.9
FC-DenseNet56 [14] 70 (TXp) 480x360 1.5 5.29 61.75 — 58.9
SegNet-basic [3] 60 (TX) 480x360 29.5 112.4 286.03 55.6 —
ENet [22] 6 (TX) 480x360 0.4 1.64 2.87 — 51.3
MiniNet [1] 5 (TXp) 512x256 3.1 12.35 1.06 — 41.3

MiniNet-v2 28 (TXp), 15 (2080ti) 960x720 0.5 2.02 17.01 — 69.0
MiniNet-v2 9 (TXp) 480x360 0.5 2.02 4.22 — 66.1
MiniNet-v2-cpu 5 (TXp) 480x360 0.3 1.06 2.22 — 59.9

w pt: with pretraining on Imagenet. TX: TitanX; TXP: TitanXP

TABLE VIII
BINARY SEGMENTATION RESULTS ON THE COCO-TEXT DATASET.

GPU Input Params Memory
Method ms (type) Resolution (M) (MB) GFlops MIoU

DeeplabV3+ [6] 32 (TXp) 512x512 41.1 — 51.44 32.29
ERFNet [24] 20 (TXp) 1024x512 2.1 7.95 53.78 29.27
MiniNet [1] 5 (TXp) 512x256 3.1 12.35 1.06 27.63

MiniNet-v2 20 (TXp), 11 (2080ti) 1024x512 0.5 2.02 12.89 30.78
MiniNet-v2 8 (TXp) 512x256 0.5 2.02 3.22 29.02
MiniNet-v2-cpu 4 (TXp) 512x256 0.3 1.06 1.68 28.82

There is no pretraining run for any of the methods

MiniNet-v2-cpu also gets similar results than top-performing
CNNs, dropping only 2 MIoU points from MiniNet-v2.

For this experiment, we use the COCO-Text dataset [28] (a
subset of machine printed and legible text images). We trained
four architectures: MiniNet-v2-cpu, MiniNet-v2, Deeplabv3+
(top-performing generic semantic segmentation approach) and
ERFNet (the state-of-the-art for low-power GPUs), using the
same training protocol as in previous experiments.

Table VIII shows that our approach reaches comparable
performance to state-of-the-art architectures (even including
those not focused on efficiency like Deeplab) when training
for simpler segmentation tasks. Even MiniNet-v2-cpu performs
similar to top methods, while running at 250fps on GPU and
30fps on CPU.

C. Efficient keyframe selection example

MiniNet architectures facilitate the use of semantic segmen-
tation in robotic platforms that require fast pre-processing of
the current view content. For example, to decide whether to
transmit the frame or not to other robots or to select the most
representative frame to store from a sub-sequence.

We refer to [1] for a more detailed set of experiments
that demonstrate how even the semantic segmentation of our
simpler model, MiniNet, is enough for real practical applica-
tions. There MiniNet is used to enhance visual SLAM key-
frame selection in a realistic experiment. MiniNet is trained
to quickly segment regions in the image likely to have the
target scene class (in that example, scene text). Fig. 4 shows
an example of the advantages of the key-frame selection using
our proposed MiniNet.

VIII. CONCLUSIONS

This work presents our novel architecture for efficient
semantic segmentation, MiniNet-v2, and its variation MiniNet-
v2-cpu, improving our earlier work in MiniNet. These models
pave the way for applications in robotics or related embedded
systems that require quick visual scene understanding steps.
Our model design is based on the conclusions from the
presented study about the most relevant techniques to build
efficient CNNs. We analyze the trade-offs provided by several
techniques and operations for efficient semantic segmentation.
Our results show that our proposed multi-dilation depthwise
separable convolutions, the use of an additional convolutional
branch instead of skip connections and reducing the output
resolution, are key steps to achieve a good trade-off between
accuracy and computational requirements. Our proposed ar-
chitectures have been thoroughly evaluated to demonstrate
their benefits. MiniNet-v2 achieves similar or better results
than state-of-the-art models on known public benchmarks for
semantic segmentation, while it provides lower memory and
computation requirements. MiniNet-v2-cpu can be used for

8

Fig. 4. Key-frame selected by a standard VSLAM algorithm (ORB-SLAM2)
and the proposed selection using MiniNet [1]. Note how frames with better
illumination (a) and more semantic information (b) are selected by our
approach. MiniNet is trained to segment text regions and helps avoiding
frames with only partially visible scene text (red bounding boxes).

real-time CPU-only applications, achieving similar results than
top-performing CNN architectures when the segmentation task
is not very complex, e.g., binary segmentation. We have shown
a proof of concept demonstration of the benefits of these
models in robotic applications, namely, to allow a robot to
quickly analyze the content of a video to decide which frames
to share with the rest of the robotic team. The availability
of all our code leaves the door open for the development of
additional real-time applications using our models.

ACKNOWLEDGEMENTS

The authors would like to thank NVIDIA Corporation for
the donation of a Titan Xp GPU used in this work. This
project was partially funded by the Spanish Government
projects PGC2018-098817-A-I00 (MCIU/AEI/FEDER, UE)
and FEDER/Ministerio de Ciencia, Innovación y Universi-
dades - Agencia Estatal de Investigación/RTC-2017-6421-7,
DPI2016-76676-R-AEI/FEDER-UE, Aragón regional govern-
ment (DGA T45 17R/FSE) and the Office of Naval Research
Global project ONRG-NICOP-N62909-19-1-2027.

REFERENCES

[1] Alonso, I., Riazuelo, L., Murillo, A.C.: Enhancing v-slam keyframe
selection with an efficient convnet for semantic analysis. In: 2019
International Conference on Robotics and Automation (ICRA), pp.
4717–4723. IEEE (2019) 1, 4, 6, 7, 8

[2] Alvarez, J., Petersson, L.: DecomposeMe: Simplifying convnets for end-
to-end learning. arXiv preprint arXiv:1606.05426 (2016) 2

[3] Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE
transactions on pattern analysis and machine intelligence 39(12), 2481–
2495 (2017) 1, 2, 6, 7

[4] Briot, A., Viswanath, P., Yogamani, S.: Analysis of efficient cnn design
techniques for semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pp. 663–672 (2018) 1

[5] Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video:
A high-definition ground truth database. Pattern Recognition Letters
30(2), 88–97 (2009) 1, 4

[6] Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. In: Proceedings of the European conference on computer vision
(ECCV), pp. 801–818 (2018) 1, 2, 3, 7

[7] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for
semantic urban scene understanding. In: computer vision and pattern
recognition (2016) 1, 4

[8] Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep
neural networks with binary weights during propagations. In: Advances
in neural information processing systems, pp. 3123–3131 (2015) 2

[9] Fisher, Y., Vladlen, K.: Multi-scale context aggregation by dilated
convolutions. In: International Conference on learning representations
(2016) 2, 3

[10] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778 (2016) 2

[11] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 (2015) 1

[12] Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely
connected convolutional networks. In: Computer Vision and Pattern
Recognition (2017) 2

[13] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.:
Quantized neural networks: Training neural networks with low precision
weights and activations. The Journal of Machine Learning Research
18(1), 6869–6898 (2017) 2

[14] Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 11–19 (2017) 2, 3, 7

[15] Li, X., Zhou, Y., Pan, Z., Feng, J.: Partial order pruning: for best
speed/accuracy trade-off in neural architecture search. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9145–9153 (2019) 6

[16] Liu, C., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L.,
Fei-Fei, L.: Auto-deeplab: Hierarchical neural architecture search for
semantic image segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 82–92 (2019) 2

[17] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440 (2015) 2

[18] Mazzini, D., Buzzelli, M., Pauy, D.P., Schettini, R.: A cnn architecture
for efficient semantic segmentation of street scenes. In: 2018 IEEE
8th International Conference on Consumer Electronics-Berlin (ICCE-
Berlin), pp. 1–6. IEEE (2018) 2, 6

[19] Mazzini, D., Schettini, R.: Spatial sampling network for fast scene
understanding. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 0–0 (2019) 2, 6, 7

[20] Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet:
Efficient spatial pyramid of dilated convolutions for semantic segmen-
tation. In: Proceedings of the european conference on computer vision
(ECCV), pp. 552–568 (2018) 6, 7

[21] Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning
convolutional neural networks for resource efficient transfer learning.
arXiv preprint arXiv:1611.06440 (2016) 2

[22] Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural
network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147 (2016) 1, 2, 3, 6, 7

[23] Ravi, S.: Projectionnet: Learning efficient on-device deep networks using
neural projections. arXiv preprint arXiv:1708.00630 (2017) 1

[24] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Transactions on Intelligent Transportation Systems 19(1), 263–
272 (2017) 1, 2, 3, 5, 6, 7

[25] Romera, E., Bergasa, L.M., Alvarez, J.M., Trivedi, M.: Train here,
deploy there: Robust segmentation in unseen domains. In: 2018 IEEE
Intelligent Vehicles Symposium (IV), pp. 1828–1833. IEEE (2018) 7

[26] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. In: International Medical image
computing and computer-assisted intervention (2015) 3

[27] Sifre, L., Mallat, S.: Rigid-motion scattering for image classification.
Ph.D. thesis, Citeseer (2014) 2

[28] Veit, A., Matera, T., Neumann, L., Matas, J., Belongie, S.: Coco-text:
Dataset and benchmark for text detection and recognition in natural
images. arXiv preprint arXiv:1601.07140 (2016) 4, 7

[29] Wu, T., Tang, S., Zhang, R., Zhang, Y.: Cgnet: A light-weight
context guided network for semantic segmentation. arXiv preprint
arXiv:1811.08201 (2018) 6

[30] Xiang, W., Mao, H., Athitsos, V.: Thundernet: A turbo unified network
for real-time semantic segmentation. In: 2019 IEEE Winter Applications
of Computer Vision (WACV), pp. 1789–1796. IEEE (2019) 2, 6

[31] Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet:
Bilateral segmentation network for real-time semantic segmentation. In:
Proceedings of the European conference on computer vision (ECCV),
pp. 325–341 (2018) 3

[32] Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic
segmentation on high-resolution images. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 405–420 (2018) 1,
2, 3, 6, 7

9

[33] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing
network. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2881–2890 (2017) 1, 2

