
Enhancing V-SLAM Keyframe Selection
with an Efficient ConvNet for Semantic Analysis

Iñigo Alonso1 Luis Riazuelo1 Ana C. Murillo1

Abstract— Selecting relevant visual information from a video
is a challenging task on its own and even more in robotics,
due to strong computational restrictions. This work proposes
a novel keyframe selection strategy based on image quality
and semantic information, which boosts strategies currently
used in Visual-SLAM (V-SLAM). Commonly used V-SLAM
methods select keyframes based only on relative displacements
and amount of tracked feature points. Our strategy to select
more carefully these keyframes allows the robotic systems to
make better use of them. With minimal computational cost,
we show that our selection includes more relevant keyframes,
which are useful for additional posterior recognition tasks,
without penalizing the existing ones, mainly place recognition.
A key ingredient is our novel CNN architecture to run a quick
semantic image analysis at the onboard CPU of the robot. It
provides sufficient accuracy significantly faster than related
works. We demonstrate our hypothesis with several public
datasets with challenging robotic data.

I. INTRODUCTION

Visual SLAM is an essential task running in the back-end
of many robotic systems, but the mapping itself is often not
the final goal on the robot missions. In recent years, it is
more and more common to have robots or teams of robots
communicating with a central station or the rest of the team
members to achieve more sophisticated or high-level tasks.

Our work explores the possibilities of selecting more
carefully the keyframes that the V-SLAM uses for mapping
and place recognition, in order to be able to re-use them for
additional posterior tasks. This way, we enable more efficient
use of those keyframes that need to be stored and probably
transmitted. Currently, additional data would need to be used
for those posterior tasks, such as recognition of objects or
elements of interest in the mapped environment.

State-of-the-art approaches for visual recognition tasks
have witnessed a significant boost and outstanding perfor-
mances lately thanks, among other reasons, to deep learning
based solutions. There have been only a few years since
Convolutional Neural Networks (CNNs) caught significant
attention [17] and have already been adopted for numerous
commercial products. Although CNN models inference time
is very short compared to the training time, it is usually
required to have high-end GPU(s) to run inferences in near
real-time. Unfortunately, these GPUs are often not available
in robotic platforms, which present restrictions incompatible
with the use of high-end GPUs, such as small robots or
drones that cannot hold the extra weight or afford the extra
power consumption.

1 I. Alonso, L. Riazuelo and A.C. Murillo are at DIIS - I3A, Universidad
de Zaragoza, Spain. {inigo, riazuelo, acm}@unizar.es

Fig. 1. Our approach runs a smart keyframe selection at each robot on-
board CPU. Selected keyframes are stored and/or shared across the system,
typically for further more complex processing.

That is why in the last years, we see an increasing interest
on Deep Learning solutions for real-time applications on
low-power GPUs [10], [23], [27]. They get results close to
the state-of-the-art at much lower computational and energy
cost, as discussed in more detail later. Nevertheless, even
these architectures cannot run on CPUs with the required
execution times, although still CPU is the only computing
source available for many robots.

This work presents a novel and efficient strategy to include
additional criteria to commonly used V-SLAM keyframe
selection. Our contribution is twofold:
• A novel strategy for more meaningful keyframe selec-

tion, while a robot is mapping its environment, which
runs efficiently on the robot CPU.

• A new CNN architecture for semantic segmentation
(MiniNet) developed to be able to run on the robot CPU
and serve as quick semantic filtering of frames.

Our approach obtains more representative keyframes with
little extra cost and, by re-using the keyframes for multiple
tasks, avoids extra computations or communications. This
is particularly relevant in multi-robot settings where compu-
tation and communications bottlenecks are critical. Multi-
robot teams often have several nodes with heterogeneous
computational capabilities, as illustrated in Fig. 1. They
present scenarios where efficiently selecting the most rep-
resentative information is important to minimize the amount
of information shared. For example, the well-known DARPA
Subterranean (SubT) Challenge1, presents a real use-case
where communication restrictions are very strong, therefore
selecting carefully what to transmit is critical.

The proposed MiniNet gets comparable results to state-of-
the-art on segmentation tasks with few classes. It can run on-
board the robot CPU to perform tasks such as the presented
semantic based keyframe selection, but other applications
could benefit from this architecture. The keyframe selection

1https://www.subtchallenge.com/

https://www.subtchallenge.com/

proposed is shown to pick more representative information
for high-level recognition tasks (text reading), without losing
more basic navigation information (relevant information for
place recognition).

II. RELATED WORK

The most relevant literature to our contributions is related
to selecting relevant keyframes within sequences and to
efficient convolutional neural network architectures.

A. Keyframe selection

Selecting the most representative and valuable frames out
of a sequence is, in fact, a visual summarization problem.
Depending on the problem and scenario, the criteria and the
meaning of valuable information differs. For general video
summarization, the selection targets the most representative
frames which condense all the events of the entire video.
As for many other tasks, deep learning based approaches are
leading current state of the art, such us applying recurrent
methods [35], CNNs for ranking methods [32] or semantic
embeddings [34] for summarization tasks.

For more specific applications, such as surveillance, more
specific contents need to be selected, and additional restric-
tions, such as computational resource or execution time, need
to be considered [18]. This type of approaches is closer to our
goals since these restrictions also affect robotic applications.
Mobile robots need to perform several real-time tasks in
parallel (e.g., V-SLAM or visual recognition algorithms),
and cannot afford to apply heavy techniques such as the
ones used in general video summarization. Well-known VS-
LAM algorithms, such as ORBSLAM2 [21], need to select
keyframes to reduce the data used for tracking and place
recognition tasks. When modeling the environment with
multi-robot teams [26], [29], these keyframes become also
the information shared among the robots but still follow the
standard VSLAM selection criteria, even though other nodes
with higher capabilities could perform more demanding tasks
if we would select more carefully what to share.

B. CNN architectures for low computational environments

Many works lately focus on reducing CNNs memory and
computational cost, which directly affects energy consump-
tion and inference time. Some approaches focus on the train-
ing phase (e.g., joint training and distillation [25], [9], [28]),
others on parameters data type (e.g., quantized [11] or binary
[5] networks) or post-processing methods (e.g., pruning [20],
[8]) and others on novel architecture operations (e.g. depth-
wise separable convolutions [14], dilated convolutions [33]
and self normalizing neural networks [16]).

Our work is focused on running efficiently semantic seg-
mentation tasks. CNNs for semantic segmentation typically
follow an encoder-decoder structure: an encoder which learns
features while reducing the resolution and a decoder which
upsamples the learned features and maps them into the
segmentation result. Recent works towards efficient segmen-
tation architectures inlcude Deeplab-v3 [3], [2] and ERFNet
[27], that use atrous convolutions [33] to avoid the need

Fig. 2. Keyframe selection proposed. (Top) Define a window of keyframe
candidates around each selected keyframe by VSLAM; (middle) compute
the quality score to reduce the set; (bottom) pick the top best quality frame
according to our semantic score. Best viewed in color.

to reduce much the input resolution. Many architectures
targeting efficiency, e.g., ERFNet [27] and ENet [23], per-
form several consecutive early downsampling operations for
a quick reduction of the input resolution and they have light
decoders with very few parameters and layers.

Our proposed architecture is inspired by many of these
recent works, focused on efficient semantic segmentation
tasks but, differently from other works, considering the feasi-
bility of CPU execution. We focus on semantic segmentation
because it provides information about the whole image scene
(pixel-level semantic labels), essential to have a quick frame
content analysis.

III. EFFICIENT SEMANTIC BASED KEYFRAME SELECTION
ON THE ROBOT CPU.

Our proposed approach to select the most relevant
keyframes has been designed with two requirements in
mind: 1) A versatile framework to combine several scoring
functions about the relevance of the keyframes for both local
robot operations and global team goals. 2) Run at acceptable
rates locally on the robot CPU, i.e., around 20-30 fps.

To account for the first requirement, we propose a hierar-
chical scoring system to select the most relevant keyframes
processed during mapping (summarized in Fig. 2). To ac-
count for the limited computational resources, we introduce
a novel CNN architecture, MiniNet, that enables a rough but
very fast semantic segmentation on CPU.

A. Keyframe selection algorithm

The core idea of our keyframe selection algorithm is to
boost typical VSLAM criteria (select a new keyframe when
the established geometric change is reached) by selecting
a higher quality and meaningful keyframes for posterior
place recognition of other robots, relocalization, and further
visual analysis tasks. As Fig. 2 illustrates, our system runs
an evaluation on a window around each of the original
VSLAM keyframes and selects the overall best combining
two criterion:

a) Image quality criterion: we first set a candidate
window around each keyframe selected by the VSLAM.
We define the quality of an image I as a combination of
two scores, defined in eq. (1). The first score, blurriness
score scBL defined in eq. (2), is based on the Energy of

Laplacian [24], where ∂I is the Laplacian of I . The higher
the value of this score, the more likely to be selected. The
second score, brightness score scBR defined in eq. (3),
is based on the total luminance on the image pixels. The
image I is converted to LAB colorspace and the L channel
values are zero-centered and added. The higher this score,
the lower the image quality. To keep the computational cost
low, we use a 112×112 resolution. Before combining the two
scores, we independently normalize each one dividing by the
corresponding maximum value in each candidates window.

scquality(I) = norm(scBL(I)) ∗ norm(scBR(I)) (1)

scBL(I) =
∑

(i,j)∈Ω(x,y) ∂I(i, j)
2 (2)

scBR(I) =
1∑

(i,j)∈Ω(x,y) zero center(L(i,j))2 (3)

b) Semantic content criterion: the second part of the
selection algorithm focuses on the image semantic content
which may be relevant for the high-level tasks to be per-
formed. This step only evaluates the Q frames with higher
scquality score and computes the semantic score for each of
them. As a concrete use case to demonstrate this step, let us
think of a system focused on finding textual information in
the environment. However, note that the proposed MiniNet
for quick semantic filtering, detailed in next subsection III-B,
can be fine-tuned for different target semantic classes.

The proposed semantic score is based on a rough semantic
segmentation, achieved efficiently by the proposed MiniNet.
This score, eq. (4), is computed as the ratio of image pixels
that belong to the target class, penalizing the ratio of pixels
from the target class which lay on the image border. This
penalizes images where the target objects are very likely to
be only partially visible, e.g., if a text region is next to the
border, it is likely to have only half of a sign visible:

scsemantic(I) =

∑
(i,j)∈Ω(x,y) Text(i, j)

1 + (
∑

(i,j)∈Ω(x,y) Textborder(i, j))
, (4)

where Text(i, j) is the text segmentation value of image
pixel i, j (1 for text pixels, 0 otherwise). Same values for
Textborder(i, j), text on image borders.

B. MiniNet network architecture

The proposed architecture for semantic segmentation2 is
designed to efficiently run on CPU, which increases the
applicability of CNNs for robotic tasks with execution time
restrictions. In this work, MiniNet is used to build the
scsemantic score, eq. (4). However, we should note that it
could be beneficial on its own for many other visual tasks
run on restricted robotic platforms, independently of the use
of a VSLAM algorithm or not. MiniNet architecture is in-
spired by several prior works on CNNs for low computation

2Link to the official available implementation: https://github.
com/Shathe/MiniNet.

Fig. 3. MiniNet architecture diagram. See Table I for further detail.

Fig. 4. Convolutional module: Four separable convolutions with two
residual connections. Lastly a dropout layer is applied to help dealing with
overfitting.

TABLE I
MiniNet ARCHITECTURE. IT HAS FOUR MAIN BLOCKS: DOWNSAMPLE,

TWO CONVOLUTIONAL BRANCHES AND UPSAMPLE.

Name Type Input Output size

D
ow

ns
am

pl
e d1 downsampling image 256x128x12

d2 downsampling d1 128x64x24
d3 downsampling d2 64x32x48
d4 downsampling d3 32x16x96

B
ra

nc
h-

1 branch 1 1 module rate=1 d4 32x16x96
branch 1 2 module rate=2 branch 1 1 32x16x96
branch 1 3 module rate=4 branch 1 2 32x16x96
branch 1 4 module rate=8 branch 1 3 32x16x96

B
ra

nc
h-

2

d5 downsampling d4 16x8x192
branch 2 1 module rate=1 d5 16x8x192
d6 downsampling branch 2 1 8x4x386
branch 2 2 module rate=1 d6 8x4x386
branch 2 3 module rate=1 branch 2 2 8x4x386
up1 upsampling branch 2 3 16x8x192
branch 2 4 module rate=1 up1 16x8x192
up2 upsampling branch 2 4, d5 32x16x96

U
ps

am
pl

e up3 upsampling branch 1 4, up2, d4 64x32x96
module up module rate=1 up3 64x32x48
up4 upsampling module up, d3 128x64x24
up5 upsampling up4, d2 256x128x12
output upsampling up5 , d1 512x256xN

environments, as discussed in Sec. II, in particular ERFNet
[27] and ENet [23], with the particularity that our work takes
into account the best options for execution on CPU.

The MiniNet blocks (detailed in Figure 3 and Table I) are
the following:

a) Downsampling block: the purpose of this block is to
reduce the resolution to a reasonable one on which to perform
thorough feature extraction. The input resolution is 512x256
which is a reasonable input size compared to the state-of-
the-art[23], [13], [3]. Our downsample operation performs a
depth-wise separable convolution with a stride of 2x2. The
proposed architecture performs four downsample operations,
leading to a 32x16 resolution.

b) Two convolutional branches: the network is split
into two parallel convolutional branches. These branches use
our convolutional module (see Fig. 4). This module is based
on the ERFNet Non-bottleneck-1D module [27]. Our main
modifications are:

• Include a sum operation between the two decomposed

https://github.com/Shathe/MiniNet
https://github.com/Shathe/MiniNet

convolutions to conserve the output of the intermediate
convolution.

• Remove the Batch Normalization [12] (and Relu [22])
and adding in stead Selu activations, i.e., self normalizing
neural networks [16], gaining a ×2 of speed in CPU.
• Change standard convolutions for separable convolu-

tions. Performing depth-wise separable instead of standard
convolutions reduces around 2-3 times the computation [10].

• Instead of using the standard dropout, we perform the
alpha dropout [16].

The branch-1 block consists of four consecutive convo-
lutional modules with different dilatation rates. This branch
performs parameter-efficient feature extraction on a higher
resolution (32x16) than the other branch thanks to dilated
convolutions. We cannot afford to add more than four convo-
lutional modules at this resolution for real-time performance
on CPU. This fact shows the differences between CPU and
low-powered GPUs, where 10-20 modules of this type can
be processed and even at higher resolutions.

The branch-2 block follows the regular encoder architec-
ture with no-dilated convolutions working on a tiny res-
olution. This branch plays a very important role in this
architecture allowing more time-efficient feature extraction.
This branch consists of applying several downsampling and
convolutional modules up to 8x4 resolution performing the
feature extraction and then, upsampled the features up to the
initial size (32x16).

c) Decoder block: our upsample operation consists of
a transposed convolution (kernel 3x3 and stride of 2x2). The
two convolutional branches are concatenated, upsampled and
applied a convolutional module. Then, we concatenate the
features with skip connections from the downsample part
and perform an upsample operation. This is repeated until
getting the initial 512x256 resolution.

IV. EXPERIMENTS

This section validates the effectiveness of the keyframe
selection algorithm presented and evaluates the performance
of the proposed MiniNet.

A. MiniNet performance and suitability

The following two experiments compare its performance
to state-of-the-art CNNs on common segmentation bench-
marks, detailed later in each experiment. The first one,
Cityscapes, is a more general multi-class segmentation
benchmark, in order to have a general evaluation of the reach
of MiniNet. The second one, COCO-Text, is a more specific
binary-segmentation benchmark, to evaluate the network on
the more specific type of tasks expected to be part of the
keyframe selection proposed.

Training details: MiniNet has been trained for 90K
iterations on the Cityscapes dataset and for 20K iterations
on the COCO-Text dataset using a batch size of 32. We
use Adam optimizer [15] with initial learning rate of n =
10−3 and polynomial learning rate decay. We optimize it
through the cross-entropy loss function commonly used to
train segmentation models. To account for class imbalance,

TABLE II
SEGMENTATION RESULTS ON CITYSCAPES ONLINE BENCHMARK

CityScapes (19-classes) Metrics*
Cla-IoU Cat-IoU GPU (s) CPU (s)

DeeplabV3+ [3] 82.1 92.0 0.512 14.392
ERFNet [27] 69.7 87.3 0.024 0.571
ENet [23] 58.3 80.4 0.013 n/a
RTSeg [30] 58.3 80.2 n/a n/a
MiniNet (ours) 40.7 70.5 0.004 0.018
*Cla = Class; Cat = Category; IoU = Intersection over Union metric
*GPU = forward pass time on Titan X; CPU = forward pass time on
Intel i5-8600k

TABLE III
SEGMENTATION RESULTS ON COCO-TEXT

Text Segmentation (binary) Metrics*
GPU(s) CPU(s) GFlops R P IoU

DeeplabV3+[3] 0.512 14.392 102.85 58.85 43.90 33.29
ERFNet [27] 0.024 0.571 55.21 52.66 39.73 29.27
MiniNet (ours) 0.004 0.018 1.06 52.61 36.69 27.63
* R = Recall; P = Precision; IoU = Intersection over Union metric
*GPU = forward pass time on Titan X; CPU = forward pass time on
Intel i5-8600k

we use the median frequency class balancing, as applied
in SegNet [1]. To smooth the resulting class weights, we
propose to apply a power operation: wc = (fmedian

fc
)i, with

fc being the frequency of class c and fmedian the median of
all frequencies.

The image augmentation applied in all experiments con-
sists of left-right flips, small spatial shifts and scales (up to
10%) and small contrast normalization (α between 0.90 and
1.20). Additionally, for the binary segmentation experiment,
we include black-and-white augmentation, i.e., randomly
converting the RGB image into a grayscale one. This helps
to generalize better to gray-scale test images (very common
in robotics).

1) Multi-class segmentation experiment: This first exper-
iment compares the state-of-the-art with MiniNet results on
the Cityscapes dataset [4], an urban scene dataset commonly
used to evaluate semantic segmentation approaches. This
evaluation is done automatically on the dataset official bench-
mark site by submitting the test predictions. Table II shows
the performance of our approach, using the public benchmark
metrics, for the most relevant methods to our work published
on that site: Deeplabv3+ is currently the overall state-of-the-
art, while ERFNet and ENet are the best on low-power GPUs
considering the trade-off between performance and speed. If
available, we report the execution times for GPU. For CPU
times, we have computed the mean of 5 executions (ran with
the authors’ available code). Note that we were not able to
run ENet on CPU due to the lack of CPU implementation
of the required operation MaxPooling with argmax). MiniNet
is able to run ×3 faster than ENet on GPU, but gets 18%
less Cla-IoU and 10% less Cat-IoU. Thus, as far as GPU is
concerned, the trade-off between speedup and loss of IoU
seems proportional in both cases. However, concerning the
CPU time performance, note that MiniNet is over ×30 times
faster than ERFNet (while in GPU is ×6 times faster).

Fig. 5. Segmentation from COCO-Text (left) and V4RL data (rigth). (a)
input image, (b) MiniNet, (c) Deeplabv3+ and (d) ERFNet segmentations.

These results confirm the proposed architecture gets rea-
sonable accuracy in general tasks while achieving much
faster execution, especially in CPU, which is particularly
important for our goals: quickly filtering images on each
robot to select what’s worth sharing for further processing.

2) Binary segmentation experiment: This experiment fo-
cuses on text segmentation, which may seem an easier task
than the previous experiment, but it is closer to the type
of quick filtering tasks that MiniNet is designed to work
with. As we analyze in the next section, a use case of
the keyframe selection strategy proposed in this work is
to quickly filter keyframes on the robot where text regions
seem more significant to facilitate further text reading tasks
on the selected frames. For this experiment, we use the
well known COCO-Text dataset [31] (a subset of machine
printed and legible text images). Text in this dataset is labeled
for text detection with bounding boxes, but we use them
as approximated per-pixel annotations for our segmentation
results. For this experiment, we trained from scratch the three
architectures, i.e., MiniNet, Deeplabv3+ (a top-performing
generic semantic segmentation approach) and ERFNet (a
state-of-the-art for low-power GPUs that can also run on
CPU) with the same configuration previously described.

Table III shows the performance of our approach and the
other well-known architectures that we have trained on the
same setup. The only difference is the image input resolution
(which indeed affects directly the execution time), we show
performance results with the resolution reported by the
authors on their prior work: ERFNet 1024x512, Deeplabv3+
512x512 and we set MiniNet to use 512x256. To enable more
direct comparisons, note some of the relevant variations we
have run and measured: ERFNet with 512x256 input takes
0.21 on CPU (×8 than MiniNet) and 0.008 on GPU (×2).
ERFNet would need a 96x48 input to take the same time
that MiniNet CPU forward pass.

Differently, from the previous experiment, the text de-
tection quality metrics for MiniNet are much closer to the
other approaches, and still present a huge CPU speed-up.
This demonstrates that on this type of task MiniNet is able
to get similar results than state-of-the-art architectures for
low-power GPUs while running x6-7 times faster on GPU
and x30-60 times faster on CPU. Besides, the segmentation

examples in Fig. 5, qualitatively confirm that MiniNet finds
text regions similarly to state-of-the-art approaches. There
are visual results with COCO-TEXT images as well as
images from another public dataset: V4RL Urban Place
Recognition Dataset [19], a challenging drone image dataset.
It contains data from two drones mapping the environment
and serves as a realistic robotic use case to evaluate the full
system proposed in the next section. V4RL images where
segmented with the CNNs trained on COCO-TEXT, without
any adaptation on the model or the grayscale images.

B. Keyframe selection

To evaluate the proposed keyframe selection we compare
the relevance of the keyframes selected with it and with a
state-of-the-art VSLAM algorithm, ORB-SLAM2. Typically
VSLAM systems select keyframes online to perform the
camera localization and store most of them to enable loop-
detection/place-recognition tasks. We demonstrate how our
keyframe selection method is fast enough to replace those
selection strategies while it selects more relevant keyframes
for additional high-level tasks to be performed on a robot
team. We evaluate aspects of relevant information for place
recognition, additional recognition tasks and quality of the
selected images.

1) Set-up: We use the V4RL Urban Place Recognition
dataset [19], with outdoor data recorded for VSLAM and
place recognition applications. The configuration parameters
from Sec. III-A are set as follows. The candidate window
size is set as half the distance between the last keyframe
selected by our system and current keyframe selected by
ORB-SLAM2. The window is placed in such a way that there
are twice as many elements before the original keyframe than
after. The number of selected top-Q frames, sorted according
to the quality score, is 1/3 of the window size. These will
then be processed on a batch through the segmentation CNN.
With this configuration, the average cost per frame is just 7
ms on Intel i5-8600k and 16ms on the Intel NUC (i5-6260U).
As an overview, the execution time (Intel Core i5-8600k)
of each keyframe selection step for one image is: Resize
5ms, Blurriness score 0.1 ms, Brightness score 0.1 ms and
Semantic score 18 ms.

2) Place recognition: In these experiments, we evaluate
the place recognition performance, i.e., the capability to
relocate in an environment previously visited, since is an
essential VSLAM capability that depends on the selected
keyframes. We use the ground truth from V4RL dataset
and evaluate the accuracy for place recognition. We use
the DBoW2 [6] and match test query frames (from one
of the drone sequences) to keyframes selected by ORB-
SLAM2 algorithm or by our approach in the reference dataset
(the other drone sequence, acquired at different day and
time). Note we do not run a complete loop closure accuracy
evaluation, but we focus on the semantic content of the
keyframes. Therefore we provide accuracy of the top1 and
top5 results provided by the DBoW2 algorithm. Fig. 6(b)
shows that our proposal for selecting the keyframes does
not lose any information with respect to the keyframes

(a)

(b)
Fig. 6. Representativity of keyframe selection strategies. (a) Average text
(words) recognition recall with different % of keyframes. (b) Average place
recognition accuracy (top1 and top5) obtained running DBoW2 algorithm
with the different sets of selected keyframes.

selected by ORB-SLAM2. Accuracy decreases equally for
both approaches when the number of selected keyframes is
reduced to less than 20% of the total amount of keyframes
originally selected by the standard V-SLAM algorithm.

3) Text Recognition: This experiment shows that, be-
sides maintaining performance in original tasks, our selected
keyframes are more representative and useful for additional
tasks. Since the V4RL dataset does not have any semantic
label, we have manually labeled visible words in Shopping
Street 1 Sequence 1, from four different intervals of 200
frames each: frames 50 to 250, 1250 to 1450, 3650 to 3850
and 6760 to 6960. Fig. 6 (a) shows the average recall of
words correctly found running the text recognition from
Gupta et al. [7] on keyframes selected by ORB-SLAM2
and by our approach. It shows separated results for each
individual component of our score (quality and semantic)
to verify the contribution of each to the final result (Full).
The same text reading algorithm finds more information
on our keyframes, regardless of the density of keyframes
stored. This demonstrates our approach is more effective
in selecting the data to share with the system. We would
save computation and network resources by using the same
keyframes to perform multiple tasks.

4) Qualitative results: Our approach capabilities to en-
hance keyframe selection are highlighted in Fig. 7 (more
examples available on the supplementary video). The first
example shows how a better contrast frame is selected, which
was just 7 frames far from the keyframe picked by ORB-
SLAM2. Selecting this affects positively to the posterior
image analysis. The second example shows the effect of our
semantic score based on MiniNet: a frame containing two full

Fig. 7. Keyframes selected by our approach and ORB-SLAM2. (a) Example
with strong illumination changes, our approach picks keyframe with better
contrast. (b) Example with large text-signs, our approach picks a keyframe
with fully visible signs.

shop signs is selected, as opposed to the keyframe picked by
ORB-SLAM2, with one of them partially occluded.

V. CONCLUSION

We have presented a novel keyframe selection which
can be integrated with state-of-the-art VSLAM systems to
boost the usefulness of the keyframes. The benefits of our
approach are particularly relevant for multi-robot systems
or robots connected to a remote station since the proposed
strategy allows the robots to be more efficient about what is
shared with the team. The keyframes are selected considering
multiple goals instead of purely based on the VSLAM
criteria, which is what is commonly done in multi-robot map-
ping systems. Our experimentation with challenging drone
imagery has shown that the proposed keyframe selection is
more useful the ORB-SLAM2 selection strategy. Evaluating
the shared keyframes in the GPU-enabled server, we get
better performance on additional tasks, text recognition in
our experiments, while we do not lose the capacity of
recognizing revisited places using those keyframes, essential
for VSLAM systems.

A key ingredient in our approach is the efficient CNN
proposed for image segmentation, which analyzes the frames
online at the robot onboard CPU. This efficiency is essential
to incorporate our selection algorithm without penalizing the
other tasks run on the robot. Our experiments cover an in-
depth analysis of the proposed CNN architecture, MiniNet.
The good results with the presented MiniNet open oppor-
tunities for additional applications based on quick video
processing on low-resource nodes. Our future steps include
training models for additional use cases with different se-
mantic filters, as well as full integration of the presented
selection with multi-robot semantic mapping systems.

VI. ACKNOWLEDGEMENTS

The authors would like to thank NVIDIA Corporation
for the donation of a Titan Xp GPU used in this work.
This research has been partially funded by the Spanish Gov-
ernment projects DPI2015-69376-R and DPI2016-76676-R-
AEI/FEDER-UE, and Aragón regional government (DGA
T45 17R/FSE).

REFERENCES

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 39(12):2481–
2495, 2017.

[2] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for semantic image
segmentation. arXiv preprint:1802.02611, 2018.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proc. of IEEE conf. on
CVPR, pages 3213–3223, 2016.

[5] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In
Advances in neural information processing systems, 2015.

[6] D. Gálvez-López and J. D. Tardós. Bags of binary words for fast place
recognition in image sequences. IEEE Trans. on Robotics, 28(5):1188–
1197, October 2012.

[7] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for text
localisation in natural images. In IEEE conf. on CVPR, 2016.

[8] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149, 2015.

[9] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Quantized neural networks: Training neural networks with low preci-
sion weights and activations. arXiv preprint arXiv:1609.07061, 2016.

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In int. conf.
on Machine Learning, 2015.

[13] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio.
The one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation. In CVPR Workshops. IEEE, 2017.

[14] L. Kaiser, A. N. Gomez, and F. Chollet. Depthwise separable convolu-
tions for neural machine translation. arXiv preprint arXiv:1706.03059,
2017.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-
normalizing neural networks. In Advances in Neural Information
Processing Systems, pages 972–981, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, 2012.

[18] G. Lu, Y. Zhou, X. Li, and P. Yan. Unsupervised, efficient and scal-
able key-frame selection for automatic summarization of surveillance
videos. Multimedia Tools and Applications, 76(5):6309–6331, 2017.

[19] F. Maffra, Z. Chen, and M. Chli. Viewpoint-tolerant place recognition
combining 2d and 3d information for uav navigation. In ICRA, 2018.

[20] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning
convolutional neural networks for resource efficient transfer learning.
arXiv preprint arXiv:1611.06440, 2016.

[21] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Trans. on Robotics,
33(5):1255–1262, Oct 2017.

[22] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proc. of Int. Conf. on Machine Learning,
2010.

[23] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep
neural network architecture for real-time semantic segmentation. arXiv
preprint arXiv:1606.02147, 2016.

[24] S. Pertuz, D. Puig, and M. A. Garcia. Analysis of focus measure
operators for shape-from-focus. Pattern Recognition, 46(5):1415–
1432, 2013.

[25] S. Ravi. Projectionnet: Learning efficient on-device deep networks
using neural projections. arXiv preprint arXiv:1708.00630, 2017.

[26] L. Riazuelo, J. Civera, and J. M. M. Montiel. C2tam: A cloud
framework for cooperative tracking and mapping. Robotics and
Autonomous Systems, 62(4):401 – 413, 2014.

[27] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation.
IEEE Trans. on Intelligent Transportation Systems, 2018.

[28] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[29] P. Schmuck and M. Chli. Multi-uav collaborative monocular slam. In
2017 IEEE int. conf. on Robotics and Automation (ICRA), 2017.

[30] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, and M. Jagersand.
Rtseg: Real-time semantic segmentation comparative study. arXiv
preprint arXiv:1803.02758, 2018.

[31] A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie. Coco-text:
Dataset and benchmark for text detection and recognition in natural
images. arXiv preprint arXiv:1601.07140, 2016.

[32] T. Yao, T. Mei, and Y. Rui. Highlight detection with pairwise deep
ranking for first-person video summarization. In Proc. of IEEE conf.
on CVPR, pages 982–990, 2016.

[33] F. Yu and V. Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

[34] Y. Yuan, T. Mei, P. Cui, and W. Zhu. Video summarization by learning
deep side semantic embedding. IEEE Trans. on Circuits and Systems
for Video Technology, 2017.

[35] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman. Video summarization
with long short-term memory. In ECCV. Springer, 2016.

