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Abstract— Nowadays we frequently find big amounts of data
to work with, what facilitates many robotic tasks and helps to
solve perception problems. At the same time, this fact origins
an interesting ongoing research problem: how to organize and
arrange big sets of information to be useful in later uses.
Topological mapping is a very useful tool to arrange and
deal with big amounts of reference images for robotic tasks.
There are many previous works on topological mapping and
many others use this kind of maps for topological localization,
planning and navigation. This work is focused on the problem
of carefully design topological map building processes that
facilitate the posterior robot tasks that use them and make them
safer. We propose a new hierarchy of topological maps focused
on this aspect. The experiments included in this paper were run
outdoors using omnidirectional images and GPS information,
and show the good topological maps obtained and how they
allow robust and safer localization and navigation tasks.

I. INTRODUCTION

Current autonomous systems are able to acquire large
and detailed datasets of their environment, which allows
them to obtain better interpretations and models of this
environment. These issues also provide the robots with larger
autonomy and capability of performing higher level tasks.
Unfortunately, big amounts of data have also disadvantages:
harder and more expensive computations are required to sort
and make use of them. This problem is particularly important
working with big image datasets, since they need powerful
and intelligent designs to process them in a useful way.

In most robotic tasks, a basic step is to obtain a represen-
tation of the environment, by interpreting the sensory data
acquired online or in exploration phases. Focusing on vision
sensors, this task consists of arranging the acquired images
into a visual memory or reference map. We need to organize
the acquired data efficiently but more importantly, in a way as
useful as possible to be used later. Big and accurate metric
maps are often not necessary, so higher abstraction levels,
e.g. topological or object-based maps are a good solution,
at least on the top of a hierarchy of maps. This idea has
been considered in hierarchical localization methods with a
topological level on top of a metric one [1], [2].

Our work is focused on how to improve a hierarchy of
topological maps: how do we build a topological map we
can use later in the most efficient, robust and safe way
possible? This paper presents our proposal to improve typical
topological mapping techniques with a series of steps focused
on the later usage of that map.

Some previous works try to integrate the topological map
building with its posterior use, such as the works in [3] or [4],
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where they demonstrate how to navigate using the maps they
build. In [4], their authors also pointed that the performance
of tasks such as localization and navigation, depends tightly
on the way the reference maps are built. Then, we should
pay special attention to this building process: e.g, if the
topological map is composed by very distant reference nodes
(images), localization on this map would be very hard, even
impossible, without a very powerful wide baseline matching
technique.

Typically we find two types of topological mapping ap-
proaches, offline or online, with clear advantages and disad-
vantages for each type, commented in more detailed in next
section. Our proposal runs offline, since we need to have data
from the whole environment to indicate what we consider
safe areas to drive. However, we try to include interesting
properties typical from online approaches, taking into ac-
count the temporal consistency of the images, since they were
acquired sequentially. Another idea proposed is to augment
the typical map levels used in hierarchical approaches, metric
and topological, by sub-dividing the topological level into
two different ones: a coarser one for topological localization
and a more detailed one for safer navigation.

Fig. 1. Robot and sensors used, omnidirectional camera and GPS receiver.

The experiments demonstrating our approach use a robot
equipped with an omnidirectional camera and a self-
positioning system (see Fig. 1), in this case GPS, but others
such as an improved odometry indoors would work as well.
Although we use GPS information to build the map, it can
be used as reference by other robots without GPS receiver.

Section II presents a brief comparison of previous topo-
logical mapping works, section III describes our proposal
and section IV shows the results obtained with it. Finally
section V concludes the work.

II. TOPOLOGICAL MAP BUILDING

Topological map building is an old subject of interest
in the robotics field. Many interesting results have been



presented for a long time, not only based on vision sensors
[5], but also using for instance range sensors [6]. Initially,
topological maps were a particularly useful tool to facilitate
planning and navigation. However, in recent contributions re-
garding topological mapping, we find additional motivations.

On one hand, the need of tools to deal with big datasets, in
particular image sets, and efficiently process and use them.
Indeed, grouping reference images into topological nodes or
clusters and keeping only the corresponding centroids allow a
more efficient use of the reference information: e.g., in visual
based localization, there is no need to compare a certain
query view with all the reference set but only with the cluster
centroids. In this regard, recent hierarchical approaches for
topological map building have shown nice results [7] [8].
Numerous recent works in the field of computer vision have
also presented interesting results on how to classify, arrange
and represent big sets of images [9], [10]. They aim the same
goal, to facilitate the use of reference data in posterior tasks,
such as visual localization or location recognition.

On the other hand, we tend to provide autonomous devices
with higher abstraction concepts of their environment.
Topological and cognitive maps are a good approach
towards it [11] [12], providing easier interaction with
humans and augmenting the kind of concepts and decisions
the robots can deal with.

There are two big groups of topological mapping
approaches: offline and online approaches. First one tries
to optimize the image clustering once the whole data set
has been acquired [7]. This presents the advantage of being
able to get an overall optimum, but it has the disadvantage
of being offline and usually computationally expensive.
Online approaches instantiate a new cluster set each time
the algorithm detects a significant change in the image
acquired. Many different criteria has been studied to define
what a significant change is: sometimes the partition is just
of small subsets along the image sequence, while other
times there is a complex decision process. These are usually
less accurate but more efficient and they allow the map to
be obtained as the robot moves as proposed in [13], [14].

In the approach proposed in this paper, we try to make use
of the advantages of both types of methods. First we apply
an offline approach to get a good estimation of the overall
clustering once the data set is acquired, based only on the
appearance of the images. Afterwards, we apply a filter that
takes into account that the images where taken sequentially,
and therefore consecutive images have higher probability of
belonging to the same cluster. This is an issue that most
online methods take into account implicitly. More details on
our proposal are given in the following section.

III. ENHANCING TOPOLOGICAL MAPS FOR SAFER
NAVIGATION

As mentioned previously, our proposal aims improving
the way of building topological maps, in order to facilitate
mobile robots to use them later. Typically the topological

map is integrated as one level of a hierarchical localization
systems, divided into metric and topological steps. Here we
propose to sub-divide this level into two other levels of
accuracy, obtained as detailed in the following points.

A. First level of the topological map: clustering.

This first step aims an image clustering based on image
similarity, with some interesting characteristics in the pro-
cess, such as automatic selection of number of clusters and
an online filter to take into account the temporal continuity
of the reference images since they came from a sequence.

Once the reference images have been acquired in a guided
exploration tour, they are organized following the next steps.

1) Local features and correspondences: SURF [16] fea-
tures are extracted for all images. Then, correspondences
between each pair of images are established using a standard
approximate nearest neighbour technique together with a
fast robustness filter to check consistent rotation between all
feature correspondences.

2) Image similarity evaluation: similarity between pairs
of images is obtained using the following expression.
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DIS is a dissimilarity measure, where m is the number of
matches, fi the number of features in the image i, d is
the average Euclidean distance between the descriptors of
the matched features, len the length of the descriptor vector
and P0 a penalization weight to the amount of non-matched
features. P0 has been experimentally set to a value of 1.6.
To transform DIS into a similarity measure normalized in
[0, 1], we define the following:

SIM = e
−DIS

(max(DIS)) . (2)

3) Initial clustering: we use the graph cuts based cluster-
ing technique from [7] with the self-tuning approach from
[15], that allows automatic detection of the best number
of clusters for the dataset. This methods require to turn
into binary the similarity measure values. Then, a threshold,
typically from 0.3 to 0.4, is established for our similarity
measure (2).

4) Online-filter: clustering results are refined with the
proposed online filter, what prunes possible clustering mis-
classifications in a simple way. It follows the temporal order
the images have been acquired, they all come from the same
sequence, and if an image is clustered in a different node than
previous and next images, it is considered a likely mistake
and therefore changed to same cluster as the neighbours.

5) Representative image selection: finally, a few images
to represent each cluster are selected, these are the topo-
logical map nodes. We select for each cluster its centroid
image and the furthest image from this centroid. Keeping
two images per cluster allows more robust visual topological
localization afterwards. This choice also facilitates a final
metric localization step using some structure from motion
technique between multiple views, such as the metric local-
ization run in the hierarchical localization from [2], where



robust correspondences between current view and reference
images are needed.

A few examples of the grouping obtained after these
clustering steps are shown in Fig. 2.

Fig. 2. Two of the clusters obtained for the datasets used in the experiments.

B. Second level of the topological map: the navigation map.

Second issue dealt with this approach is to determine
the connectivity among cluster representative images, cluster
centroids for short, and therefore the possibility of navigation
between them. The goal is to establish possible trajectory
paths for the robot between the different reference locations
explored (the different clusters). We need to decide where
and how many way-points are necessary, besides cluster
centroids, to have a safe navigation graph. To obtain this
navigation map, we take into account not only the visual
information but also the positioning information from the
GPS tags associated to the images.

1) Clusters similarity evaluation: first, a similarity evalua-
tion between clusters is performed, according to the number
of local feature correspondences between the images that
compose each of them, with a bonus if their GPS locations
are close to each other. More formally written, if Ca and Cb

are the set of images from clusters a and b respectively, the
visual similarity among those clusters V (a, b) is defined as

V (a, b) =

P
i∈Ca

P
j∈Cb

Sij

|Ca||Cb|
, (3)

with |Ca| and |Cb| the number of elements in Ca and Cb and
Sij the elements of the similarity matrix built previously to
perform the initial clustering, see eq. (2).

We first obtain the appearance similarity between clusters
and then add a bonus B to it depending on the Euclidean
distance, D(a, b), between centroid GPS locations of clusters
a and b:

if D(a, b) < kDimg(|Ca| + |Cb|) then V (a, b) = V (a, b) + B,

with k a value between 0 and 1 depending on how strong we
want this filter to be, and Dimg the average distance between
every two consecutive images in our sequence.

2) Establishing connections: every couple of centroids
that have a similarity V (a, b) over the established threshold
are considered connected, and this path is added as a new
arc in the navigation graph.

To improve these initially established connections, two
simple additional filters are defined based on the GPS

Fig. 3. Small example of the Split&Merge filter, to improve how a certain
line segment fits to a trajectory.

measurements. The first one analyzes the distance between
the two most similar images we can find taking one from
each cluster of a certain connection. If this distance is too
big, we break the connection between these clusters.

The second filter checks that the following condition is
true for every pair of connected clusters:

D(a, b) < Dimg · (|Ca|+ |Cb|). (4)

In simple words, it checks that the distance between two
cluster centroids is below the maximum possible theoretical
distance: according to the average separation between two
consecutive images in the original sequence Dimg multiplied
by the total number of images in both clusters |Ca|+ |Cb|.

3) Establishing safe way-points through a Split&Merge
algorithm: finally a process is run to adjust the navigation
graph arcs, allowed trajectories, to previously visited paths.
Here the arcs are fitted as close as possible to the trajectories
followed in supervised exploration since we know those are
safe terrain. This way we can avoid our robot to navigate
into dangerous surfaces, not easy to detect with typical
reactive navigation systems, such as water, dense grass or
small stones areas. To achieve this, we apply the well know
Split&Merge algorithm for line fitting [17] to the set of points
composed by the GPS locations of the reference images used
to build the map. Fig. 3 shows a brief example on how
this algorithm improves an initial line set to fit better to a
particular point set, establishing as many extra segments as
necessary. More details on results obtained with this filter
can be seen in the experimental section.

IV. EXPERIMENTAL RESULTS

This section presents several experiments to test our pro-
posal in a real campus outdoor environment. All experiments
were performed around the same area to facilitate the local-
ization and navigation tests with our robots on the same areas
the topological maps were built. Three different datasets
were acquired in this environment. All of them consist
of a sequence of omnidirectional images, acquired with a
conventional camera pointing to an hyperbolic mirror (see
Fig. 1), and the GPS tag associated to each image, acquired
with a differential GPS sensor. Note the GPS signal is not
always very accurate when navigating close to buildings but
most of the time it helps a lot for building an improved map.
The datasets used are:

CPS1: 130 images acquired during a 200 m. loop.
CPS2: 135 images from an open trajectory of around

240 m. Only every 5th image is used to build the map.
CPS3: 306 images acquired during a more complex tra-

jectory of around 500 m, with several loops included.



1-Topological map after only im-
age clustering step.

2-Topological map after online-
filter is applied.

3-Topological and Navigation map
based only on cluster centroids.

4-Topological and Navigation map
after Split&Merge-filter is applied.

Fig. 4. Test CPS1: topological and navigation maps obtained at different
steps of the method. Different colors represent each of the clusters that
to compose the topological map. White connections between reference
positions are the navigation map graph arcs. Blue crosses with numbers
by their side are initial cluster centroids, while crosses without numbers are
new way-points established for safety. On the left images, red circles point
misclassifications or dangerous paths that are automatically fixed along the
process. (Best viewed in color)

A. Map Building

These experiments show the improvements in the topo-
logical map built following our proposal with regard to
the results obtained with the image clustering techniques
used as basis. The following results are a summary of
the topological map building tests run with the datasets
mentioned before. All experiments were run with the same
topological mapping process explained previously, using as
local features SURF [16] with 64-length descriptor.

1) Test CPS1: Fig. 4 shows the evolution of the topologi-
cal and navigation maps obtained at the different steps of the
proposal. We can observe how the online filter helps pruning
misclassifications from the offline image clustering step (top
images in the figure), and how the Split&Merge based step
improves the coverage, robustness and safety of the lower
level navigation map (bottom images in the same figure).

2) Test CPS2: Fig. 5 shows the final results of the
topological map obtained in this second test. We can observe
a clean final clustering for the top level graph (topological
map) and a clean navigation map that covers all the explored
area without dangerous transitions, similarly to the previous
test but in a slightly bigger environment.

3) Test CPS3: this final and more complex test demon-
strates how the approach still works fine with complex
trajectories. Fig. 6 presents the topological and navigation

Fig. 5. Test CPS2: final topological map (each cluster represented by a
color) and navigation map (white connections between reference locations)
obtained after applying all steps of the proposal. (Best viewed in color)

maps obtained at the beginning and at the end of the
process. We can observe that many misclassified areas are
corrected and many dangerous connections established in the
initial navigation map are avoided at the end of the process.
Besides, we should note that the process successfully detects
some revisited areas, see for example the areas marked with
a green circle on the middle of Fig. 6.

This last test is also useful to show examples of two
problems that can occur using this approach and that point
future work directions.

First, there are particular trajectory configurations, T-
junctions, where line fitting with the Split&Merge approach
does not work properly. Two examples of T-junctions in our
trajectories are shown on the right details of Fig.6. At those
corners obtained arcs in the navigation graph are not as good
as for the rest.

Secondly, we can observe an example of how bad GPS
measurements can spoil the image clustering, because GPS
distance is used as a weight to try to join neighboring images.
Then, if at some point that signal is bad the offline filter does
not work as well as in the rest of the areas. Left of Fig. 7
shows the quality of the GPS signal used in this experiment.
Note the right bottom corner area, not only the strength
of signal is not good, but big jumps can be observed in
the measurements, while actually the robot was just driving
straight. On the middle of the same figure, we see a not very
clean clustering in this area, and several wrong navigation
connections. Right of Fig. 7 shows how the same area, but
with data from a different acquisition where the GPS did not
fail, can be properly represented with a correct topological
and navigation map.

B. Map Usage

This second set of experiments intends to show how
the topological map building proposal actually helps in
posterior tasks of localization and navigation, improving their
robustness and safety. The top level of our map hierarchy,
the topological map, is essential for an efficient localization.
The lower level navigation map is essential for a safe and
autonomous navigation, either using vision or range sensors.



Maps obtained without any filtering Maps with online-filter + Split&Merge-filter

Fig. 6. CPS3-dataset: Topological and Navigation maps obtained at different stages of the method for the more complex dataset. On the right, details of
T-junctions where the navigation map construction fails to leave 100% safe navigation way-points.

Fig. 7. Left: quality of signal at the GPS receiver. The quality increases
from red (bad) - yellow - blue - green (best). Middle-Right: clustering results
obtained in an area with bad GPS signal, and results obtained in the same
area using other acquisition where GPS coverage was better.

The following experiments have been run with dataset CPS3,
since it is the more complex one.

1) Localization: GPS receiver is used in the exploration
stage to build a better and more useful map. However,
not all our robot team members, that are going to localize
themselves in this map, can always be equipped with good
GPS sensors. For the localization tests, a set of test images,
different from those used to build the map, are compared to
the cluster centroids of the topological map. This similarity
evaluation has been done following the approach previously
presented in [2], based on global and local image features.

Since we have GPS tags with common reference frame,
we can plot a nice summary of all the localization results
as shown in Fig. 8, where we can get an overall idea of the
obtained localization results. Red * represent the location of
the evaluated test images, and blue < represent the location
of the centroids of the topological map clusters. Blue lines
join every test with its selected cluster centroid, most of them
are correct (98% correct localization results). There are only
two mistakes (marked with a red line), and a strange case

that corresponds to a correct localization (green line): the
approach evaluates properly the similarity but the query had
a very noisy GPS tag, so it seems to be very distant in the
plot. We must say that the images were taken under similar
weather conditions, what helps in the feature correspondence
search. The localization ratio would probably decrease if test
images were taken under very different conditions than the
ones used to build the topological map.

Fig. 8. Localization results. Location of query images in Red *. A line
connects each query with the cluster centroid (blue >) where the localization
estimates that it is located. (Best viewed in color)

2) Navigation: the planning to go from one place to the
goal location is done with the Dijkstra algorithm, to find the
fastest path according to the approximate distance between
the nodes that compose the navigation graph. For navigation,
it is very important to predict in advance dangerous situations
for the robot, such as driving it into dense grass or stone
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Fig. 9. Example of robust correspondences between one navigation node
(left) and two other nodes connected to it in the navigation graph. Blue lines:
all tentative matches. Green lines: robust matches obtained after estimating
the epipolar geometry between the two views (best viewed in color).

areas, or even worse such as water. Besides checking this
safety issues, we have evaluated how useful this map would
be for two types of navigation.

Navigation based on range sensor. We have successfully
used the navigation map with a reactive navigation approach,
ND-navigation [18], based on a range sensor. It allows the
robot to move from current location to the goal location, one
of the navigation map way-points. We just need to provide
the GPS tags of the nodes from the navigation graph that
we need to traverse until the goal location. The only issue
here is to make sure that all way-points can be reached safely,
since the ND-algorithm automatically takes care of static and
dynamic obstacles.

Vision based navigation. The essential issue to perform
vision based navigation is to obtain enough robust feature
correspondences between every two way-point images we
need to go through. We have made some successful tests
to extract enough robust correspondences between the nav-
igation map way-points connected in the navigation graph.
Fig. 9 shows an example of robust SURF correspondences
between omnidirectional image pairs that correspond to
connected nodes of the navigation map. They are obtained
through the estimation of the epipolar geometry between
both images. If we are able to obtain relatively big sets of
robust correspondences between two connected nodes, it is
feasible to navigate between them using a standard visual
servoing approach, based on local feature correspondences
and epipolar geometry constraints. To carefully test this part
we intend to integrate the process with an omnidirectional
image based servoing technique such as the one used in [4].

V. CONCLUSIONS

We have presented a new approach to improve the way of
building topological maps, so that the posterior localization,
planning and navigation tasks can be performed as efficiently
and safely as possible for the robot. One of the ideas in the
proposal is to decompose the topological map on two levels.
The first one composed of image clusters, based mainly
on appearance similarities, which is very important for a
correct posterior localization on this map. The second level,

a navigation map or graph, that analyzes the exploration
path followed by the robot to establish safe transitions and
additional way-points if necessary to cover all the locations
included in the topological map. As future work, we aim
to integrate all the described steps with a visual servoing
system to test if the visual based navigation can be as safe
as we already checked with range sensors based navigation.
We also intend to study deeply the ideas of a hierarchy of
topological maps at different semantic levels, each of them
built paying attention on some specific issue.
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