
An Efficient Hardware Accelerator to
Handle Compressed Filters and
Avoid Useless Operations in CNNs
Adrián Alcolea1

Javier Olivito2

Javier Resano3

I3A. Edificio I+D+I, c/Mariano Esquillor s/n, 50018 Zaragoza, Spain

ABSTRACT

Due to sparsity, a significant percentage of the operations carried out in Convolutional Neural
Networks (CNNs) contains a zero in at least one of their operands. Different approaches try to
take advantage of sparsity in two different ways. On the one hand, sparse matrices can be easily
compressed, saving space and memory bandwidth. On the other hand, multiplications with zero
in their operands can be avoided.

We propose the implementation in an FPGA of an architecture for CNNs capable of taking
advantage of both, sparsity and filter compression.

KEYWORDS: Efficiency; FPGA; Sparse CNNs; Compressed filters; Avoid useless operations

1 Introduction

A significant percentage of the operations carried out in CNNs contains a zero in at least one
of their operands. In activation matrices, sparsity is generated by the use of non-linear acti-
vation functions such as ReLU. In addition, pruning techniques also generate zero-elements
in network filters, so zero-products increase significantly [AJH+16, HPTD15].

On another note, the use of compressed filter matrices reduces the data that must be read
from the off-chip memory, and maximizes the data that can be stored on-chip, which is very
important since the access to external memories is usually the main energy consumption
factor, and often a performance bottleneck [HMD15].

Specific hardware accelerators could manage both, compression and zero-operations
avoiding, to increase CNNS performance and energy efficiency.

1Doctoral student. E-mail: alcolea@unizar.es
2Doctoral student. E-mail: jolivito@unizar.es
3Thesis director. E-mail: jresano@unizar.es



2 Objectives

Our goal is to manage compression and avoid useless operations to increase CNNs performance and
energy efficiency, which requires:

• Design hardware support to decompress the filters matrices on the fly and carry out
only non-zero operations.

• Integrate it into a proof of concept CNN architecture implemented on an FPGA.

• Evaluate both the benefits and the overheads generated.

3 Compression scheme

We propose a compression scheme that includes a bit for each filter value pointing out
whether it is zero or not. We achieve a better compression ratio for most filters than the
most common schemes.

As an example, we assume a 5 x 4 matrix with 60% sparsity and an 8-bit data size. Com-
pression schemes with a list for the number of zeros need 2 x 8 x 8 = 128 bits, while our
scheme needs 5 x 4 + 8 x 8 = 84 bits 1.

Figure 1: Comparison of compression schemes

4 Architecture

In the proposed architecture, N convolutions are processed in parallel in N processing units.
Each of them targets a different filter and stores the compressed filter information locally,
whereas the activation memories are shared.

The "pairing unit" takes advantage of the indices structures to efficiently find non-zero
pairs. While the "activation values read arbiter" decides the fetching order to manage access
conflicts 2.



Figure 2: General architecture

5 Pairing unit

This module processes the matrices of indices of the activation map and the filters, iden-
tifying which computations must be carried out (those that do not have a zero in their
operands). Its main function is to take advantage of the indices structures to efficiently find
non-zero pairs.

Then it uses the filter values count and the convolution loop indices to generate the actual
memory addresses of the values that conform the current pair 3.

Figure 3: Pairing unit

6 Activation values read arbiter

Activation values are stored in a shared memory, so access conflicts between multiple pro-
cessing units may arise.

One approach to maintain the requested bandwidth consist in duplicating the number
of pairs requested per processing unit, so the arbiter can take some decisions on the fetching
order 4.



Figure 4: Activation values read arbiter

7 Contributions

• Our compression scheme can be used to efficiently pair the non-zero data.

• It also achieves better compression rate than state of the art.

• The proposed hardware pipeline handles compressed filters and discard all the opera-
tions where at least one operand is zero.

• We present a real implementation on an FPGA. It allows an accurate evaluation of the
performance and energy efficiency of our proposal.

References
[AJH+16] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos. Cnvlutin:

Ineffectual-neuron-free deep neural network computing. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pages 1–13, June 2016.

[HMD15] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. Computing Research
Repository, eprint arXiv:1510.00149, 2015.

[HPTD15] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 1135–1143.
Curran Associates, Inc., 2015.

Acknowledgement
This work was supported in part by grants TIN2016-76635-C2-1-R (AEI/FEDER, UE) and Consolider
NoE TIN2014-52608-REDC (Spanish Gov.), gaZ: T48 research group (Aragón Gov. and European
ESF), and HiPEAC4 (European H2020/687698).


	Introduction
	Objectives
	Compression scheme
	Architecture
	Pairing unit
	Activation values read arbiter
	Contributions

