An Efficient Hardware Accelerator to Handle Compressed

Filters and Avoid Useless Operations in CNNs

ADRIAN ALCOLEA, JAVIER OLIVITO, JAVIER RESANO
{alcolea, jolivito, jresano}@Qunizar.es

Motivation and objectives

H I
COMPILATION

Grupo de Investigacion
en Arquitectura

de Computadores (gaZ)
Universidad Zaragoza

European MNelwork on
High Performance and
Embedded Architecture
nd Compilation

Institute Universitario de Investigacién

+= enlngenieria de Aragon
di%% Universidad Zaragoza

A significant percentage of the operations carried out in Convolutional Neural Networks (CNNs) contains a zero in at least one of their operands
due to the sparsity generated by the activation functions and the pruning techniques.

The use of compressed filter matrices reduces the data that must be read from the off-chip memory, and maximizes the data that can be stored
on-chip, which is very important since the access to external memories is the main energy consumption factor, and a pertormance bottleneck.

Our goal 1s to manage compression and avoid useless operations to increase CININS
performance and energy efficiency

1 How does convolution work?

Both, filter and activation, are sparse matrices.

Convolution is the
main operation 1n a
CNN. It consists of
many multiplications
between a large data
matrix, the activation,
and several weight
matrices, the filters.

That means they

contain a lot of zeros. We will take advantage of these in two ways:

e Managing compressed filters

— QOur compression scheme (2)

e Avoiding operations with zero — QOwur architecture (3, 4, 5)

2 Our compression scheme

We propose a compression scheme that includes a bit for each filter
value pointing out whether it is zero or not.
compression ratio for most filters than the most common schemes.

If we take a 5 x 4 matrix with 60% sparsity and an 8-bit data size.

We achieve a better

Compression schemes with a list for the number of zeros need 2 x 8 x
8 = 128 bits, while our scheme needs 5 x 4 + 8 x 8 = 84 bits.

Uncompressed matrix Variation of the CSR format Our matrix-index format

Sparse bidimensional
maitrix represented by
values.

0 11
5 2
0 15
0 O
0 O
8=

1
3
0
0
0
4 160 bits]

*

[5*

1 11 3 5 2 15

position

One list stores the values
4 8

Another list stores the
number of zeros, as an
Index.
The actual
calculated from this list.

1S

01 100 3 4 3

[2*8*8 = 128 bits]

3 General architecture

One list stores the values

111 3 5 215 4 8
A matrix stores the position

1 0 1 0O

[5*4+8*8 =84 hitg]

In the proposed architecture, N convolutions are processed in parallel

in N processing units.

Fach of them targets a different filter and stores the compressed filter
information locally, whereas the activation memories are shared.

activation values
multi-banked memory

-~

processing
unit 0

filter indices
memaory

Y

>| pairing unit

reads arbiter

activation indices

activation indices
mono-banked memory

processing
unit N

-

A

Y

activation values

read arbiter

data fetcher

MAC
processor

A

filter values memaory

write arbiter

activation data

This module processes the matrices of indices of the activation map

4 Pairing unit

and the filters, identifying which computations must be carried out
(those that do not have a zero in their operands).

Its main function is to take advantage of the indices structures to
efficiently find non-zero pairs.

Then it uses the filter values count and the convolution loop indices to
generate the actual memory addresses of the values that conform the

current pair.

kK _section

a section

s | -

k index k_lidx k-—add';..
iy S
generator pOS address generator a addr
| — o
mash: L
controller a_idx
: step loop position
eteh Tinder *lcontroller ™ controller 2

5 Activation values read arbiter

Activation values are stored in a shared memory, so access conflicts
between multiple processing units may arise.

One approach to maintain the requested bandwidth consist in dupli-
cating the number of pairs requested per processing unit, so the arbiter

can take some decisions on the fetching order.

processing unit O

processing unit 1

selector unit O

I

v

processing unit 2

selector unit 1

I

el

4

processing unit 3

selector unit 2

el

Y

selector unit 3

H X

—bank 2]

—{bank 0]

—bank_ 1]

banks

(p_Ob_2)

(b_1b_0)

1

(p_2b_1)

{p_gr' X _)

Our compression scheme can be used to efficiently pair the non-zero

data.

It also achieves better compression rate than state of the art.

The proposed hardware pipeline handles compressed filters and dis-
card all the operations where at least one operand is zero.

We present a real implementation on an FPGA. It allows an accurate
evaluation of the performance and energy efficiency of our proposal.

This work was supported in part by grants TIN2016-76635-C2-1-R (AEI/ERDF, EU) and gaZ: T58 17R research group (Aragén Gov. and European ESF).



