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Abstract

The performance of a prefetcher is determined by its coverage and
timeliness. If a correct address is prefetched too late, the potential
to hide latency diminishes. Recent data prefetching techniques
address timeliness by adjusting the stride or delta used to trigger
prefetch requests, or by decoupling the instruction that triggers
the requests (IPyigger) from the one used to predict the pattern
(IPtarget). We observe that state-of-the-art prefetchers that decouple
IPyrigger and IPyarget often fail to achieve timeliness or cover complex
patterns; meanwhile, prefetchers that use the same IPyjgger and
IPtarget struggle with zero-strides and long-reuse patterns.

This work proposes the Entangling Data Prefetcher (EDP), a
novel L1D prefetching technique that combines the strengths of
delta-based prefetchers by decoupling IPygger and IPiarger. In gen-
eral, EDP leverages local deltas to cover complex delta patterns,
and when the trigger and target instructions differ, it can success-
fully cover long-reuse patterns and zero-delta patterns. On average
across the full bandwidth configuration and the 4-core configura-
tion, EDP outperforms a baseline with Berti at L1D and Pythia at
L2 by 7.1% and 1.2%, respectively.

1 Introduction and Motivation

State-of-the-art prefetchers learn memory access patterns and issue
prefetch requests using the same instruction pointer (IP) [1, 3, 6—
8]. In this paper, we focus on two of these prefetchers: Berti and
T-SKID, which attempt to address timeliness in distinct ways.

Berti [6] is an L1D prefetcher that provides high prefetch ac-
curacy and coverage by using a mechanism of prefetching local
(per-IP) deltas. In this context, a local delta is defined as the differ-
ence in cache line addresses between two L1D demand accesses
issued by the same instruction (IP). To convert an L1D miss into an
L1D hit, Berti estimates the fetch latency for data from outer cache
levels and DRAM. Berti selects only the deltas that can bring data
into the L1D in a timely manner. Alongside these timely local deltas,
it computes the local coverage provided by each delta and issues
prefetch requests that use the deltas offering maximum coverage.
Based on this same metric, it also orchestrates whether prefetch
requests fill the L1D or the L2 cache.

T-SKID [4] is built on top of an IP-stride prefetcher and focuses
on delaying early prefetch requests. Its key concept is decoupling
the IP that triggers a prefetch request (IPyigger) from the IP that gen-
erates the access and trains the predictor (IPtarget). This decoupling
allows T-SKID to cover two patterns previously unaddressed: (1)
patterns with long reuse distances that stride or delta prefetchers
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Figure 1: Characterization of patterns for SPEC CPU2017.

can predict and issue, but which are evicted before a demand access
occurs; and (2) zero-stride ! patterns, where two consecutive misses
from the same IP access the same cache line.

When Berti and T-SKID fail to prefetch. Figure 1 shows a
classification of per-IP stride patterns for L1D misses and their
frequency in SPEC CPU2017 benchmarks: a zero stride; a constant
stride, that occurs when the current miss has the same stride as
previous misses; a complex stride, that refers to multiple repeating,
predictable strides; and irregular, that covers all other remaining
misses. Berti is unable to capture long-reuse and zero-delta patterns
(5.7%) because the IPyjgger and the IPiage are the same, while T-
SKID fails to learn complex strides (7.3%) because it is built on top
of an IP-stride prefetcher [5-7].

This limitation is exemplified in trace 607 . cactuBSSN-2421B by
IP 0x8d41a1 (Figure 2). This IP exhibits a predictable but complex
stride pattern (+O, +0, +0, +1, +0, +0, +0, +1, ) Accesses are sepa-
rated by a 2K-cycle interval, and cache lines are evicted between
accesses, resulting in a 100% miss rate (even for the +0 stride) at
L1D. Berti can correctly identify this kind of pattern, but it suffers
from the inability to issue zero-delta requests. In addition, although
Berti can issue prefetch requests using a +1 delta, the lines would
arrive too early and would be evicted before their demand access,
resulting in a 100% miss rate. T-SKID can issue timely prefetch
requests correctly for this access pattern. However, it cannot learn
this complex stride pattern. It may capture the +0 stride or the +1
stride, but not both simultaneously. As a result, T-SKID can only
cover up to 75% of the accesses (when learning +0).

2 The Entangling Data Prefetcher

The Entangling Data Prefetcher (EDP) is a data prefetcher situated
at the L1D. It monitors all CPU-generated data memory requests,
analyzes the IP’s access patterns, identifies the most suitable IPyjgger

'We use the term ‘zero-stride’ for stride-based prefetchers (e.g., [P-stride) and later
‘zero-delta’ for delta-based prefetchers (e.g., Berti).
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Figure 2: Temporal diagram of memory access patterns for IP 0x8d41a1 from trace 607.cactuBSSN-2421B. Recurrent cache
misses are observed on Line A with a delta of +0, triggering eviction events on the adjacent line (Line A+1) at intervals of

approximately 2K cycles.

for issuing prefetch requests, and orchestrates prefetch operations
across the cache hierarchy. EDP makes a strong case for determining
when prefetch requests should be issued. For each IP, EDP selects a
prior IP that can trigger a prefetch request on its behalf. Additionally,
EDP learns timely local deltas to decide what to prefetch.

EDP in a nutshell. EDP combines the pattern detection capa-
bilities of delta prefetching with precise timing control through
instruction entangling, and can fully cover memory access patterns
that were uncovered with state-of-the-art prefetchers like Berti.
EDP is highly inspired by Berti and T-SKID. It is based on the obser-
vation that combining the decoupling of IPyigger and IPirger With the
use of local deltas for learning memory patterns allows EDP to cover
zero-deltas and long-reuse patterns by delaying prefetch requests,
while simultaneously covering complex patterns via delta analy-
sis. EDP introduces a new structure called Proxy Prefetch Queues
(PPQ), which enhanced the original PQ. The PPQ consists of two
independent queues for L1D and L2 prefetch requests and holds the
requests until L1D cache resources—such as MSHRs—become avail-
able. In addition, a Bloom filter is used to drop prefetch requests
for addresses that have been recently accessed or prefetched. This
reduces the potential harmful side effects of added contention. In
particular, EDP builds on the following concepts: (i) for each IP, it
learns the best local delta to prefetch; (ii) it then searches for earlier
IPs that can trigger those deltas; and (iii) it carefully selects when to
issue a prefetch request to minimize contention within the memory
hierarchy.

2.1 Gathering information

The training mechanism aims to identify the when and the what,
that is, the prior IP capable of issuing a timely prefetch request
(denoted IPyigge) for the current cache miss or a hit resulting from
a prefetch request (prefetch hit), and the timely local deltas to
prefetch from the IP that misses the cache (denoted IPyqget). The
training process begins with a cache miss and ends with a demand
cache fill or a prefetch hit, and consists of five steps: (i) learning the
fetch latency, (ii) learning the IPyigger, (iii) learning the local-deltas,
(iv) correlating IPyigger and IPiyrget, and (v) updating the history.

2.1.1 Learning the fetch latency. EDP calculates fetch latency in
a similar manner to Berti [6]. For every demand miss or prefetch
request, it stores the timestamp of the event in the MSHR. When the
data returns to the L1D cache, the controller subtracts the stored

timestamp from the current cycle. The resulting value represents
the fetch latency.

2.1.2  Learning the IPyigger. EDP needs to identify the prior IPs that
can trigger prefetch requests with sufficient time to ensure that
the data fill the cache before being demanded by IPiaget. To this
end, EDP maintains a global history (denoted Instruction history)
that tracks recent IPs that had a cache miss or a prefetch hit, along
with their access timestamps (IPrimestamp)- At fill time, similar to
EIP [9], EDP searches the Instruction history for entries whose
timestamps are older than the current cycle minus the fetch latency
(IPtimestamp < current_cycle — fetch_latency). Only the most recent
IPs that meets the timeliness criteria are selected as IPygger.

2.1.3  Learning the Deltas. Once the IPy;gge; is found, EDP learns
timely and accurate local deltas of the IPyge. EDP maintains a
local history indexed by the IP (denoted Address history) that tracks
the line addresses of previous cache misses and prefetch hits, along
with their timestamps (Addrimestamp)- After the previous step, EDP
searches the Address history for IPiget and selects entries whose
timestamps are less than the current time minus the fetch latency
(Addriimestamp < current_cycle — fetch_latency). The deltas are ob-
tained by computing the difference between the current address
and the stored address in the history (both addresses are accessed
by IPtarget). All computed deltas, including the delta zero when
IPyigger differs from IPyyrget, are saved in a table indexed by the IP
(denoted Delta table). Similarly to Berti, the coverage of deltas is
calculated as the number of times a delta is observed divided by
the total number of times the IP searches for deltas. We establish
three coverage thresholds for deltas: (i) high coverage, when the
delta appears in most observations; (ii) medium coverage, when
the delta appears intermittently; and (iii) low coverage, when the
delta rarely appears.

2.1.4  Correlation between IPyigger and IPyger. When EDP identi-
fies an IPyigger, it records the IPyigger—IPtarger relationship in the
Entangling Table, which consists of two fields: a tag based on the
IPiigger and a set of IPrarger. When a new IPyigge; is identified, the
Entangling table is indexed using a hash of IPgger, and the associ-
ated IPrget is inserted if it was not already present in the set. The
set of IPs enables a many-to-many relationship between IPygger
and IPyyrget, which allows effectiveness even if some entangled pairs
lack correlation, as other pairs will trigger prefetch requests, thus
maintaining high coverage.
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2.1.5 Updating the histories and the prefetch filter. The final step of
the training process involves updating the Instruction History by
recording the current IP and timestamp, as well as the Data History
with the current IP, line address, and timestamp. EDP maintains a
Bloom filter structure called a prefetch filter, which is used to drop
prefetch requests for addresses that have been recently accessed or
prefetched. The prefetch filter is accessed using the line address to
set the corresponding bit in an entry. An entry is cleared only when
the cache line associated with it is evicted from the L1D cache.

2.2 Issuing prefetch requests

EDP functions as a virtual L1D prefetcher capable of issuing prefetch
requests on every cache access. A primary focus of EDP is to re-
main outside the demand request path; to this end, it utilizes Proxy
Prefetch Queues (PPQ) and a prefetch filter to determine when and
whether to issue a request, thereby minimizing contention dur-
ing high-traffic periods. To issue a prefetch request, EDP performs
the following steps: (i) it checks if the IPy;gger has any associated
IPiarget; (ii) it retrieves the deltas and the last address of the IPyrget
to generate the prefetch request addresses; (iii) it inserts the gen-
erated requests into the PPQ; and (iv) when a read port becomes
available in the L1D cache, EDP checks the MSHR occupancy and
the prefetch filter to decide whether issue the request.

2.2.1  Recovering the IPyget and the Deltas. When a cache miss or
a prefetch hit occurs, EDP first checks whether the accessing IP
(EDP does not distinguish between multiple instances of an IP) has
any associated IPirget. If N0 IPgarget is associated, no further action
is taken. Otherwise, for each associated IPyarget, EDP retrieves the
IPiarger’s last seen address (from the Last Address Table) and its
timely deltas (from the delta Table). For each delta, EDP selects the
cache level (L1D or L2) to fill the prefetch request according to the
delta coverage (high/medium). High-coverage deltas are temporally
marked to be prefetched into L1D, while medium-coverage deltas
target L2 fills. Once the prefetch requests are generated, they are
inserted in the to-L1D PPQ or to-L2 PPQ based on their confidence.
When the PPQ is full, the oldest entry is removed to accommodate
the new one. After generating prefetch requests, the IPyjggerTParget
association is discarded to prevent the issue of duplicate prefetch
requests.

2.2.2  Proxy PQ and filtering redundant requests. On every cycle,
EDP monitors the occupancy of the Read Queue (RQ) and the
Prefetch Queue (PQ). If the number of entries in either queue ex-
ceeds the number of available cache read ports, no prefetch requests
are issued. Otherwise, the ‘to-L1D’ PPQ is accessed, and a number
of entries equal to the available read ports are popped and inserted
into the cache PQ if the prefetch address was not recently seen by
the cache (the prefetch filter associated to the prefetch address is
equal to 0). Prefetch requests are tagged to fill the L1D only if the
MSHR occupancy is below a specific threshold at the moment of
insertion. If the ‘to-L1D’ PPQ is empty, this same process is per-
formed for the ‘to-L2’ PPQ. When a prefetch request is generated,
the prefetch filter is accessed and its entry set to one.

2.3 L2 and LLC prefetchers

EDP uses Pythia [2] as the L2 prefetcher and a small prefetch mech-
anism in the LLC to be aware of the general state of the system.
This LLC mechanism monitors the number of accesses per core and
the ratio of demand and prefetch misses compared to the total fills
of the LLC. A low ratio indicates that the core is struggling with
other request types (such as PTW), and the L1D prefetcher has to
be throttled.

3 Championship Constraints

In this section, we show how our prefetcher complies with the
limitations of the 4th Data Prefetching Championship. First, we
explain in detail the different structures and their storage overhead,
and then we describe how we adjust to the championship guidelines.

3.1 Storage overhead

EDP is sited at L1D and has a total storage overhead of 31.98KB.
Table 1 discloses the storage requirements for each component.
EDP is composed of eight structures. Figure 3 illustrates the vari-
ous structures and their corresponding access methods. Next, we
describe all the structures:

Cache, PQ, and MSHR: Similar to Berti, EDP extends the cache,
MSHR, and PQ with a 16-bit timestamp to calculate the fetch latency.
For the DPC configuration, this results in an overhead of 1.55 KB
(across 768 cache entries, 16 MSHR entries, and 8 PQ entries).

Instruction History: The instruction history records the previous
IPs that were missed in the cache. It is a 32-entry fully associative
FIFO queue; each entry stores a 14-bit IP tag and a 16-bit timestamp.

Data History: The data history saves the previous addresses
accessed by an IP in order to learn delta patterns. It is a 1024-entry
table organized into 32 sets. Each set consists of a 32-entry FIFO
queue indexed by the IP. Each entry in the FIFO queue stores a
14-bit IP tag, a 16-bit timestamp, and a 12-bit address.

Delta Table: A 512-entry fully associative structure that saves
the learned deltas for each IP¢yrget. It is indexed by the IP, and every
entry has a 14-bit tag, a 4-bit global confidence, and capacity to
store 16 deltas. For every delta, EDP saves the delta value (7 bits
plus 1 sign bit), a 4-bit confidence, a valid bit, and 2 bits indicating
if the delta will fill L1D or L2, is replaceable, or is a new delta.

Last Addr. Table: A 32-entry fully associative structure that stores
the last address seen by each IP to generate the correct prefetch
address. Every entry has a 14-bit IP tag, 58 bits for the last seen
address, 1 bit to indicate if the IP access delta is positive (ascending)
or negative (descending), and a pointer to the Delta Table entry
associated with the IP tag. We allow aliasing in this pointer, so no
valid bit is necessary.

Entangling Table: A 64-entry fully associative structure to corre-
late the IPyigger and [Parget. It is indexed by the IP, and every entry
contains a 14-bit IP tag and four pointers to the Last Addr. Table (5
bits each); each pointer has a valid bit.

Proxy Prefetch Queue: The virtual prefetch queue consists of two
16-entry FIFO queues. Each entry contains only the address of the
prefetch address line (58 bits); an entry of all zeros represents a
non-valid entry.

Prefetch Filter: The prefetch filter contains 8K single-bit entries.
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Figure 3: Relation between the different structures of EDP
Structure Description KB
Cache, PQ, and MSHR | 16 bits per entry (768 L1D entries, 8 PQ entries, and 16 MSHR entries). 1.55
Instruction History 32 entries plus 5 replacement bits. Each entry: 14-bit IP and 16-bit timestamp. 0.12
Data History 1024 entries (32 sets X 32 ways) plus 160 replacement bits. Each entry: 14-bit IP, 16-bit timestamp, and | 5.27
12-bit address.
Delta Table 512 entries. Each entry: 14-bit IP, 4-bit confidence, 1-bit for replacement, and 16 delta slots (each | 16.19
containing: 8-bit delta, 4-bit confidence, 2-bit level, 1 valid bit)
Last Addr. Table 32 entries. Each entry: 14-bit IP, 1 direction bit, 58-bit last seen address, 1-bit for replacement, and | 0.32
9-bit pointer to Delta Table.
Entangling Table 64 entries. Each entry: 14-bit IP, 1-bit for replacement, plus 4 pointers (each comprising a 5-bit index | 0.30
to Last Addr. Table and 1 valid bit).
Prefetch Filter 8192 8-bit entries. 8.00
Proxy Prefetch Queue | 2X16 entries plus 4-bit replacement bits. Each entry is 58 bits. 0.23
Other Counters A 4-bit counter for the prefetch degree. < 0.01
[ L1D Total [ [ 31.98 |
l L2 [ Pythia, as given in the Champsionship [ 25.5 l
l LLC [ 4 X 4 X 5-bit counters, 2-bit throttle counter, 2-bit multicore, and 256-entry MSHR (58 bits/entry). [ 1.83 ]

Table 1: Storage requirements of EDP

3.1.1 L2 and LLC prefetchers. For the L2 cache, we use the pro-
vided version of Pythia. For the LLC mechanism, we require a
256-entry fully associative table (58 bits per entry) to track demand
and prefetch requests that miss the cache until they are filled. Ad-
ditionally, four 5-bit counters and a 2-bit counter monitor per-core
accesses to identify concurrent LLC usage by all cores and to set
L1D prefetcher aggressiveness. An extra 2-bit counter is used to
determine if the L1D prefetcher should be throttled to a maximum
degree of 16 or 4, or turned off.

3.2 Use of internal cache structures

Our prefetcher uses the provided cache interface to monitor the
occupancy and size of the L1D PQ, RQ, and MSHR. Additionally,
we mimic the L1D cache, PQ, and MSHR as required by Berti to
calculate fetch latency without modifying the ChampSim code. At
no point do we use these mimics to check if a cache line is already
present in the cache; this is achieved through the prefetch filter.

4 Evaluation

We evaluate our prefetcher (EDP) using the three configurations
provided for the Championship: full bandwidth, limited bandwidth,
and 4-core. We use the traces provided by the competition, grouped
in AI/ML, Google traces (Google), Graph, and SPEC17. Fig. 4a shows
the per-group average speedup for the full bandwidth configura-
tion. Fig. 4b shows the average speedup across the three different
configurations and the overall score following the Championship
metrics. For the 4-core simulations, we use 50 randomly created
heterogeneous mixes from all available traces.

Speedup (%)
Speedup (%)

ONPROXONIO
o=NWwWhAUON

AI/ML Google Graph SPEC17
(a) Full bandwidth

Full  Limited 4-Core Score

(b) Overwiew

Figure 4: Speedup with EDP w.r.t DPC-4 baseline

5 Discussion and Future Work

In the submitted version of the prefetcher, we employ mostly fully
associative structures, increasing the size of the structures as much
as possible. However, this is not a feasible implementation.

Our implementation only explores the occupancy of PQ, RQ, and
MSHR to issue prefetch requests within the context of the LLC.
However, virtual prefetchers add pressure to the TLB; adding a
throttling mechanism to take into account the state of the TLB is
left for future work to continue pushing performance.
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