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Abstract

Data prefetching techniques are commonly employed at several
levels in the cache hierarchy, due to their importance in reducing
the latency of memory operations. Berti is one of the state-of-the-
art prefetching mechanisms, originally proposed for the 3rd Data
Prefetching Championship (DPC-3) for all cache levels. A later
revision uploaded to DPC-3 limited Berti to the first and second
cache levels. An improved version of Berti using virtual addresses
was proposed only at the first level data cache, but orchestrating
prefetchers across the cache hierarchy.

The Berti prefetcher is one of the state-of-the-art prefetching
techniques, and despite doing accurate predictions, it wastes re-
sources in the cache hierarchy and does not leverage context in-
formation. For example, Berti issues a large number of replicated
prefetch requests, many times for lines that are already in cache.
In addition, it only uses the current instruction pointer (IP) as con-
text information, missing patterns that could be recognized if the
context were considered.

This work pushes Berti to its limits with two enhancements: a
Region-based bit-map filter that eliminates both redundant and
useless prefetch requests, and the use of IP-path signatures to cap-
ture context information. This prefetcher is used in the first-level
data cache. We complement our enhanced Berti prefetcher with
a Pythia prefetcher improved with set dueling at the second-level
cache, which dynamically selects among four feature policies plus
a no-prefetch option. Similarly, in the last-level cache, we model a
dynamic next-line prefetching mechanism. For the set of training
traces of the 4th Data Prefetching Championship, we achieve 10.4%
average performance improvements over the given baseline on full
bandwidth, reaching 30.3%, on average, for AI/ML workloads. For
the limit bandwidth configuration, average improvements of 4.5%
are obtained.

1 Introduction and Motivation

Modern data prefetchers have matured significantly, pushed by
recent Data Prefetching Championships, yet even state-of-the-art
designs have room for improvement. The 4th Data Prefetching
Championship (DPC-4) provides a baseline prefetcher where it pairs
a Berti prefetcher published at the 3rd Data Prefetching Champi-
onship (DPC-3) [7] located in the first-level data cache (L1D) with
a Pythia prefetcher [1] located in the second-level cache (L2).

The DPC-3 Berti prefetcher was trained on physical addresses
and required a non-negligible amount of logic and storage to con-
nect physical pages as accessed by the programs. A subsequent
version of Berti [4] simplified the design, operating with virtual ad-
dresses. Furthermore, important performance improvements were
obtained by detecting local timely deltas (per instruction pointer
—IP—, instead of memory regions) and by adding a mechanism to
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select prefetch requests based on their expected accuracy. Our first
step is therefore to port the latest version of Berti [4] to the DPC-4
infrastructure.

Then, we identify two inefficiencies of the Berti prefetcher, that
we address in this work: the redundancy tax and the lack of con-
text. The redundancy tax arises because Berti issues prefetches for
lines already in cache, wasting prefetch queue slots and cache port
bandwidth. The lack of context stems from Berti indexing by IP
alone, missing patterns that depend on how execution reached that
instruction.

We address the redundancy tax with a Region-based prefetch
filter in the first-level data cache (L1D) prefetcher. The filter tracks
recently accessed or prefetched cache lines within each memory
page. For prefetch requests targeting the L1D, the filter eliminates
redundant prefetches, that is, requests for lines already in cache
or in flight. Without filtering, these requests waste prefetch queue
slots and cache port bandwidth. For prefetch requests targeting the
second-level cache (L2), the filter additionally learns to suppress
useless prefetches, that is, requests for lines that are never used. If a
prefetched line is evicted from L2 without being promoted to L1D,
its bit remains set, blocking future prefetches to the same address
until the filter entry is evicted.

To capture execution context, we augment the instruction pointer
with a IP-path signature. By folding the current IP together with
the last four IPs into a single hash, we create an additional lookup
key that distinguishes the same instruction reached via different
execution paths. This enables Berti to learn separate patterns for
each calling context without significantly increasing storage.

The static policies at L2 and LLC also leave performance on the
table. At the L2, we observe that Pythia’s default feature policy
does not suit all workloads. We introduce set dueling, originally
proposed by Qureshi et all [6] but adapted to prefetching, to let the
workload itself select among four feature policies plus a no-prefetch
option during a short tournament phase. At the last-level cache
(LLC), we deploy ANeLin, an adaptive next-line prefetcher that
learns both globally and per-IP whether next-line prefetching is
beneficial.

On the DPC-4 training traces, our complete stack achieves 10.4%
average speedup under full bandwidth and 4.5% under limited band-
width. AI/ML workloads benefit the most, reaching 30.3% speedup
on full bandwidth.

2 The L1D Prefetcher: BertiGO

BertiGO addresses the redundancy tax and context limitations with
two mechanisms, a Region-based prefetch filter that suppresses re-
dundant and useless prefetches, and IP-path signatures that capture
execution context beyond the current IP.



2.1 Region-Based Bit-Map Filter

We introduce a Region-Based Bit-Map Filter, organized as a cache-
like structure with multiple entries. Each entry contains a tag iden-
tifying a 4KB page and a 64-bit bitmap covering the 64 cache lines
within that page. When a line is accessed or prefetched, we set the
corresponding bit in the matching entry. Before issuing a prefetch,
Berti looks up the filter by page tag. If an entry exists and the target
line’s bit is set, the request is suppressed. Entries are managed with
NRU replacement and cleared on L1 evictions. Our filter uses 15.6
KB (1360 entries, each with a 29-bit tag and 64-bit bitmap, tracking
up to 87,040 cache lines). Smaller configurations capture most of the
benefit at a fraction of the storage. The filter serves two purposes.
First, it eliminates redundant prefetches, and second, it learns to
suppress useless ones.

A prefetch is redundant when the target line is already in cache
or in flight. Without filtering, these requests waste prefetch queue
slots and cache port bandwidth. Note that redundant requests are
not necessarily useless, as they serve to hint the replacement policy
that the line will be reused soon [8]. However, in an aggressive
prefetcher like Berti, they compete for resources with prefetches
for lines not yet in cache.

The filter also learns to suppress useless prefetch requests. L2
prefetches have lower confidence, so some bring lines that are never
used. If such a prefetch is never promoted to L1, no L1 eviction
clears its bit, and future prefetch requests to that line are blocked
until the entry is evicted by capacity. In contrast, L1 prefetches
require higher confidence and may simply be early. We clear their
bits on L1 eviction to allow retries.

A desirable property of this structure is that it eliminates alias-
ing at low cost. A region tag of sufficient width ensures no false
positives within the tracked address space. Our filter uses 15.6 KB
(1360 entries, each with a 29-bit tag and 64-bit bitmap, tracking
up to 87,040 cache lines). Alternative designs such as Bloom filters
would require substantially more storage for equivalent coverage if
we desire low aliasing. For instance, using the Bloom filter formula
[3] n = [m/(=k/In(1 — e™P/%))], where n is the number of tracked
items, m is the filter size in bits, k is the number of hash functions,
and p is the false positive probability, a filter tracking 87,040 cache
lines with p = 0.01 and k = 3 requires approximately 131 KB, nearly
8x our 15.6 KB, and still inherently has aliasing. Furthermore, the
structure can be organized with different set/way configurations;
smaller filters capture most of the benefit and remain hardware-
friendly. For instance, a direct-mapped version would allow adding
entries or filtering all entries within a region at once before adding
to the prefetch queue with simple bitwise operations per page.

2.2 IP-path Signatures

The same instruction can exhibit different memory access patterns
depending on how execution reached it. For example, a load instruc-
tion in a shared utility function may access different data structures
depending on its caller. Indexing by IP alone mixes these distinct
patterns, limiting predictability.

To capture this context, we augment the instruction pointer with
a IP-path signature. By folding the current IP together with the last
four IPs using shift-and-XOR, we create a hash that distinguishes
the same instruction reached via different execution paths. This
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enables Berti to learn separate delta patterns for each calling con-
text. At lookup, we query the history and delta tables with both the
IP alone and the IP-path signature. Predictions are merged, priori-
tizing IP matches over IP-path matches, as we have seen IP-path
being most useful when IP alone lacks sufficient context. More
sophisticated merging strategies can be explored in future work.
Storage overhead is 8 bytes (4 IPs x 16 bits each).

We observe that this context is particularly effective for AI/ML
workloads. On Llama inference traces under full bandwidth, IP-
path signatures improve speedup by 20-50% compared to IP-only
indexing.

3 The L2 Prefetcher: Pythia with Set-Dueling

Pythia’s default policy issues a prefetch whenever either IP or
IP_Delta votes yes. We observe that this hurts some workloads. To
address this, we apply set-dueling. Originally, set-dueling has been
proposed for cache replacement policies and samples competing
policies on dedicated sets to selects the best. As far as we know,
this approach has not been applied to prefetcher techniques. The
2048 L2 sets are distributed across five candidates: NoPrefetch, IP-
only, IP_Delta-only, IP or IP_Delta, and IP and IP_Delta. During a
10M-instruction tournament, each set operates under its assigned
policy while we track miss rate (misses divided by accesses) per
candidate. At tournament end, we select the candidate with the
lowest miss rate, provided it improves over NoPrefetch by at least
4%; otherwise we disable Pythia entirely. All sets then adopt the
winning policy for the remainder of execution.

A production implementation could periodically re-run the tour-
nament or trigger it on phase changes; we found DPC-4 traces
sufficiently stable to commit once. Per practical considerations, we
did not explore fine-tuning to exploit other feature combinations
(Page, Delta_Path, etc.). Further combinations can be explored. This
mechanism adds negligible storage (ten 64-bit counters) and elimi-
nates L2 prefetch traffic for workloads where it hurts more than it
helps.

4 The LLC Prefetcher: Adaptive Next-Line

We observed that some traces benefit from next-line prefetching at
the LLC, while it is detrimental for performance for other traces.
Therefore, we propose the use of an Adaptive Next-Line prefetching
mechanism (ANeLin) at the LLC.

ANeLin uses a sampling cache where next-line prefetch requests
are always inserted, similar in spirit to the Sandbox prefetching[5].
The size and associativity of the sampling cache can be smaller than
the real cache, a necessary property given the large size of an LLC.
On each entry, the cache stores the status (prefetched, demanded,
timely, late), the IP that allocated the line in the cache, and the
core that allocated the data in the cache (only used in the multicore
configuration).

The status is set to demand for demanded cache misses, and to
prefetched for next-line prefetch requests that miss in the sampling
cache. On a hit in the sampling cache from a request from L2, if the
status is prefetched, it changes to timely or late depending on the
time since the prefetch request was issued.

On an eviction from the sampling cache, the status is checked,
and a set of three counters are increased. Timely entries increase a
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Structure Description [ KB [
Cache, PQ and MSHR 16 bits per entry. 1.55
History Table 48 sets x 32 ways (1536 entries), plus 5 bits FIFO replacement per set. Each entry: 16 bits IP tag, | 10.52
24 bits address, 16 bits timestamp.
Delta Table 64 entries plus 6 replacement bits. Each entry: 16 bits IP, 4 bits confidence, and 16 delta entries | 2.03
(each: 8 bits delta, 4 bits confidence, 2 bits level, 1 bit valid).
Region-based prefetch filter | 1360 entries (fully associative), plus 1360 bits NRU. Each entry: 29 bits tag, 64 bits bitmap. 15.6
Last 4 IPs <0.01
[ L1D Total \ [ 29.72 |
Pythia 255
Set-Dueling Counters 5 candidates x 2 counters (64 bits each), 3 bits winner, 1 bit phase, 64 bits instruction counter. | 0.09
[ L2 Total [ | 25.30 |
Sampling Cache 4096 sets x 6 ways. Each entry: 32 bits tag, 2 bits status, 32 bits IP. 199
Per-IP Statistics 128 sets x 8 ways. Each entry: 32 bits IP, 39 bits counters, 1 bit enabled. 9
Ongoing Requests 128 entries. Each entry: 1 bit valid, 32 bits tag, 12 bits timestamp, 1 bit demand. 0.7
Active cores counter 4 bits (1 per core). <0.01
LLC Total [ [ 209.7 |

Table 1: Storage requirements of BertiGO

counter of usefulness. Late entries increase the same counter with
probability 50%. Prefetched entries increase a counter of useless
prefetch requests. Any eviction increases a counter of evictions.

These counters are used both globally and per IP in order to
decide if the application has a global favoring pattern or if some
IP are favoring or not next-line prefetching. The global counter is
independent per core in the multicore configuration. IPs are also
differentiated per core and require a cache-like structure to store
the counters for each IP. A special IP is the 0, which indicates that
the LLC request is generated from the L1D or L2 prefetcher.

After a number of evictions, that is, when the eviction counter
saturates, the useless and useful counters are checked. Only if the
useful counter multiplies the useless counter by a large number, the
next-line prefetching is enabled (globally or per IP). After the deci-
sion, the three counters are multiplied by 0.75 in order to continue
learning until the next saturation. We disable ANeLin entirely when
bandwidth utilization is high, as next-line prefetching at the LLC
would further saturate memory. Alternatively, the useful-to-useless
threshold can be raised dynamically under bandwidth pressure,
making the prefetcher more conservative rather than completely
disabled.

5 The Multicore Case

For multicore configurations, we selectively disable some features.
In shared caches, disabling the filter allows prefetch requests to
serve as hints to L1 and L2 that an entry is soon to be reused.
Additionally, without a filter, cores that prefetch aggressively are
naturally penalized when they pollute the shared cache, creating
an implicit feedback mechanism. We use the LLC to signal BertiGO
when multiple cores are active, triggering filter bypass.

Multicore prefetching introduces complex interactions that may
benefit from replacement policies or dynamic adaptation tech-
niques [2]. We defer comprehensive multicore optimization to fu-
ture work and focus on maximizing single-core performance within

the competition scope. Accordingly, we also disable ANeLin and set-
dueling in multicore configurations to avoid potential interference
without thorough validation.

6 Implementation

Table 1 details the storage requirements for each component. The
L1D prefetcher uses 29.75 KB, dominated by the Region-based
prefetch filter (15.6 KB) and History Table (10.52 KB). The L2
prefetcher uses the baseline Pythia with set dueling. The LLC
prefetcher uses 209 KB for its sampling cache and per-IP statis-
tics.

L1D Prefetcher. Following the original Berti design, we measure
fetch latency for both demand misses and prefetch requests. Fetch
latency is measured by keeping a timestamp for any L1D miss
inserted into the MSHR and any prefetch request inserted into the
PQ. On an L1D fill, the latency is computed by subtracting the
stored timestamp from the current cycle. Table 1 details the full
storage breakdown: the Region-based prefetch filter dominates at
15.61 KB, followed by the History Table at 10.53 KB, and the Delta
Table at 2.03 KB. The IP-path history adds 32 bytes. Total overhead
for latency tracking (Cache, MSHR, PQ extensions) is 1.55 KB. Note
that all structures are scaled to fit the 32 KB budget of DPC-4.

Our prefetcher uses the provided cache interface to monitor
the occupancy and size of the L1D PQ, RQ, and MSHR. To emu-
late Berti’s latency measurement mechanism, we maintain shadow
structures that mimic the L1D cache, PQ, and MSHR. These shadow
structures are used solely for latency calculation; at no point do we
use them to check if a cache line is already present in the cache.
This approach is consistent with the original Berti MICRO 2022
artifact [4] and introduces no new behavior.

L2 Prefetcher. We use the original Pythia implementation (25.5
KB). The set-dueling mechanism adds 10 counters (5 candidates x
2 counters each, 64 bits each) plus auxiliary state (winner, phase)
that accounts for 10 bytes. The overhead is 90 bytes.
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Figure 1: Overall speedup over baseline.
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Figure 2: Per-workload speedup breakdown.

LLC. ANeLin uses 209 KB. It includes 199 KB for the sampling
cache (4096 sets x 6 ways), 9 KB for per-IP statistics (128 sets x 8
ways per core), and 0.7 KB for ongoing request tracking for latency
computations. This storage is extended to maximize accuracy track-
ing; comparable performance can be achieved by sampling just a
few sets. We also maintain a negligible 4-bit counter to track active
cores for multicore detection.

7 Evaluation

Figure 1 shows the overall speedup over the DPC-4 baseline for
both full and limited bandwidth configurations.

Our starting point is the MICRO 2022 Berti prefetcher, scaled to
competition size and combined with Pythia, which achieves 4.65%
geomean speedup under full bandwidth and 2.33% under limited
bandwidth. By replacing part of the history table with our Region-
based filter and adding IP-path signatures, BertiGO pushes this to
9.6% under full bandwidth and 3.06% under limited bandwidth. Set-
dueling contributes an additional 0.6 percentage points under full
bandwidth. Notably, set-dueling is even more effective under limited
bandwidth, adding 1.5 percentage points by disabling Pythia on
workloads where it consumes bandwidth without benefit. ANeLin
contributes 0.2 percentage points under full bandwidth. The final
configuration achieves 10.4% under full bandwidth and 4.5% under
limited bandwidth.

Figure 2 breaks down performance by workload category. AI/ML
workloads under full bandwidth benefit the most, reaching 30.3%
speedup. Under limited bandwidth, they achieve 4.0%. SPEC17
benchmarks achieve 11.7% under full bandwidth and 8.7% under
limited bandwidth. Graph workloads achieve 6.7% and 5.7%, and
Google traces 0.2% and 2.0%, respectively.

Figure 3 isolates the L1D contributions under full bandwidth,
without any L2 or LLC prefetcher. In this configuration, Berti Micro
hurts performance by 4.1% compared to the baseline with Berti
DPC-3 and Pythia. The Region-based filter reaches a speedup of
+1.6% over baseline. IP-path signatures add another 0.7 percentage
points for a total of +2.3%.

Figure 4 summarizes the competition score. Our submission
achieves 10.4% on full bandwidth and 4.5% on limited bandwidth.
In a randomized subset of mixed traces for multicore, we achieve
no speedup over baseline. The geometric mean score is 4.9%.
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Figure 3: L1D ablation study showing filter and IP-path con-
tributions with no L2 and LLC prefetcher on Full BW scenario
over baseline.
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Figure 4: Summary: Full BW (10.4%), Limited BW (4.5%), 4-
Core (0%), Score (4.9%).

8 Conclusions

We have presented BertiGO, an enhanced L1D prefetcher that ad-
dresses two key inefficiencies of the original Berti design.

First, the region-based prefetch filter eliminates redundant prefetch
requests by tracking recently accessed lines within each page.
This allows Berti to allocate resources more effectively, and for
L2 prefetches, it additionally learns to suppress requests for lines
that are never used. This configuration alone, without L2 or LLC
prefetching, outperforms the baseline with Berti DPC-3 and Pythia
by 2.3%.

Second, IP-path signatures augment the instruction pointer with
execution context, enabling Berti to distinguish the same instruc-
tion reached via different paths. Combined with the filter, BertiGO
achieves 9.6% speedup when paired with Pythia at L2, nearly dou-
bling the Berti Micro result of 4.7%.

Beyond improving the L1D prefetcher, we show that dynamic
policies can outperform static ones across the cache hierarchy. At L2,
set-dueling lets each workload choose its preferred Pythia feature
policy. This is especially effective under limited bandwidth, where
it adds 1.5 percentage points by disabling Pythia on workloads
where prefetching hurts. At LLC, adaptive next-line prefetching
contributes additional gains, mostly on SPEC workloads.

On the DPC-4 training traces, our submission achieves 10.4%
speedup under full bandwidth and 4.5% under limited bandwidth,
with AI/ML workloads reaching 30.3%.
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