
Sequential Bayesian Non-Rigid Structure from Motion

Antonio Agudo
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain

Abstract

This thesis1 addresses the problem of recovering simul-
taneously camera motion and the 3D reconstruction of de-
formable objects from monocular video. We propose sev-
eral methods to solve this problem in a sequential fash-
ion, frame-by-frame estimation, as the data arrives. De-
formable structures appear constantly in our everyday life,
from human non-rigid motion (e.g., a smiling face or per-
forming different expressions) to general objects such as
flags, clothes, sails, banners, etc. More speculatively, in
the medical field such as a beating heart or a bending ab-
domen, where the problem is particularly challenging. Our
research seeks a physics-based method to perform 3D shape
recovery in a wide variety of objects with different types
of deformation from inextensibility to extensibility, without
having to rely on learning data. In addition, our methods
can perform also under realistic real-world assumptions
allowing large amounts of missing data and measurement
noise, they can run in real time at frame rate and can be
used from sparse to dense shapes even for strong deforma-
tions. This dissertation presents our contributions in the
field of deformable shape and camera motion recovery from
a sequence of monocular images. In more detail, we present
a novel algorithm where both motion and deformation are
ruled by physical dynamic models. An important advan-
tage of this method is that it does not require prior knowl-
edge over material properties since they can be factorized
out. We also present a generic estimation framework, elim-
inating the need of rigid priors, which is normally neces-
sary when physics-based models are used. Finally, we show
how the sequential estimation is possible for dense shapes,
combining low-rank shape models with temporal and spa-
tial smoothness priors. One of the main advantages of our
models is the ability to include physical priors, if they are
available. In contrast, we show how to solve the problem
when this knowledge fails.

1In this document we present an abstract of the PhD titled Sequential
Bayesian Non-Rigid Structure from Motion, which was presented in the
University of Zaragoza (2015).

1. Introduction

The combined inference of 3D scene structure and cam-
era motion from monocular image sequences, or rigid
Structure from Motion (SfM), is one of the most active areas
in computer vision with applications in many domains. In
the last decade, a great variety of methods have been pro-
posed to simultaneously recover the reconstruction of a 3D
object and the camera motion from video sequences. For
this purpose, it is normally necessary a small collection of
images acquired by cameras from different viewpoints, or
by a single moving camera. In this work, we are interested
in this last case, where the sole input is the camera image
sequence gathered by a monocular camera.

In order to solve the SfM problem, the proposed meth-
ods have used the fundamental assumption that the observed
scene is rigid. This rigidity prior has proved to be a power-
ful constraint to solve the problem, allowing practical and
robust solutions. While SfM is now considered to be a ma-
ture field, these methods cannot be applied to structures un-
dergoing non-rigid deformations. For these cases, recover-
ing 3D structure of a deformable object and camera motion
from a monocular image sequence is an ill-posed problem
since many different 3D shapes can have the same image
measurements producing severe ambiguities. This prob-
lem is known as Non-Rigid Structure from Motion (NRSfM).
In addition to the inherent ambiguities, artifacts in the real
measurements such as noise and missing data make the task
even more challenging. Solving this problem is primarily
motivated by the sport and movie industry, augmented real-
ity applications and more speculatively, in medical imaging.

In this thesis, we assume an additional condition and
our research focuses specifically on recovering both cam-
era motion and non-rigid shape from monocular video in a
sequential fashion. While our methods are available to re-
cover the 3D reconstruction of a generic deformable object,
ranging from inextensibility to extensibility deformations,
additionally it can be used to on-line and real-time perfor-
mance applications. Note that the on-line estimation based
only on the measurements up to the current frame remains
a challenging problem, especially when no training data is
available.
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2. Rigid Structure from Motion
In this section, we first present the SfM problem for the

rigid case. SfM can be defined as the problem of recovering
simultaneously the camera motion and 3D geometry of the
scene from a monocular video sequence acquired by a sin-
gle camera that can be calibrated or uncalibrated. For this
purpose, the sole input information are the 2D image mea-
surements of a set of points observed in the image plane.
Since this problem is ill-posed for the projection stage, pro-
posed SfM methods have constrained the problem assum-
ing that the camera observes a rigid scene (see rigid case
in Fig. 1). The rigidity prior is enough to make the prob-
lem well posed. With this assumption, when two or more
views of a scene are available, the 3D geometry can be re-
covered via triangulation [33]. Additionally, this problem
was also extended to uncalibrated cameras, where the cali-
bration must also be inferred [26].

One of the most influential works in rigid SfM was the
rigid factorization proposed in [37, 61]. This method needs
at least three images of a rigid object that has been ob-
served by a moving camera. An additional assumption is
that the input images have been acquired using an ortho-
graphic camera, a model that simplifies greatly the projec-
tion equation becomes linear and without the need of in-
ternal calibration parameters. Note that this camera model
is an approximation of the more realistic perspective cam-
era model, but being valid when the range of depths of the
points in the structure is small compared to their distance to
the camera. Later, the factorization method was extended to
multiple independently moving objects [22] and also to the
projective camera case [57].

In a similar way, the Simultaneous Localization And
Mapping (SLAM) problem has emerged in mobile robotics
using several sensors such as lasers or vision cameras. In
this problem, given a mobile sensor moving along an un-
known trajectory in an unknown environment, SLAM is
able to simultaneously estimate both the 3D geometry of
the environment –denoted as the map– and the sensor lo-
cation. Only recently, vision cameras have been massively
used by the robotic community as the main SLAM sensor.
In this case, the monocular SLAM problem is particularly
challenging since the sole input information are the 2D im-
age projections of a 3D structure at frame rate. While the
motivation of SfM and SLAM has historically been very dif-
ferent, both problems are roughly the same, although in the
classical SLAM problem the estimation of the moving robot
is normally in real-time since it is continuously observes
and maps its unknown environment. Two methodologies
have been proposed to solve the SLAM problem, using fil-
tering techniques such as the Extended Kalman Filter (EKF)
[20, 23, 24] and optimization techniques such as Bundle
Adjustment (BA). In the first one, the information from the
current frame is integrated into a multidimensional proba-

bility distribution that summarizes the information gathered
for all previous frames along the sequence. In the second
one, batch optimization over selected frames, using a slid-
ing window [46] or spatially distributed keyframes [36, 56],
from the live stream is performed. Again, this problem was
also extended to uncalibrated cameras, where the calibra-
tion must be also inferred [19].

In recent years, real-time solutions based on SfM and
SLAM have made significant progress solving the problem
for a sparse set of salient points [36, 41] and even provid-
ing per-pixel dense reconstructions from video sequences
acquired with a hand-held camera [43, 45] or with a micro
aerial vehicle [65]. With the advent of new cheap RGB-D
sensors that provides simultaneously depth and image inten-
sity data, SfM and SLAM techniques have been also adapted
to use such data [44]. Other successful examples are large
scale reconstruction, where a large database of images avail-
able on Internet is used to recover very large reconstructions
such as the Coliseum in Rome or the Notre Dame cathedral
in Paris [2].

While rigid reconstruction from monocular video is now
a well understood problem with many applications in a wide
variety of areas such as robotics and movie industry, these
methods cannot be applied to structures undergoing non-
rigid deformations. For these cases, recovering 3D structure
of a deformable object from a monocular image sequence is
an ill-posed problem since many different 3D shapes can
have the same image measurements producing severe am-
biguities.

3. Non-Rigid Structure from Motion
For the non-rigid case, the shape of an object changes

over time and the gathered images by the camera are differ-
ent every time, as a result of a rigid motion of the camera
and a non-rigid motion of the object (see non-rigid case in
Fig. 1). This makes the problem equivalent to recover the
3D reconstruction from a single image, which is an ill-posed
problem, since only one view per 3D configuration is avail-
able. As the object is non-rigid, many different shapes can
have very similar image measurements (see Fig. 2) produc-
ing severe ambiguities.

The key insight to solve the problem is the assumption
that objects do not arbitrarily deform their shape, since the
deformations are produced by the effect of acting forces and
according to their material properties. This observation has
been exploited for many works in computer vision to con-
strain the possible range of solutions by adding prior in-
formation in order to make the problem well posed. This
a priori knowledge includes constraints on both shape and
camera motion.

The seminal work was proposed by [17], where the time-
varying shape configuration is coded by means of a linear
subspace of a set of deformation modes. This low-rank
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Figure 1. Rigid and Non-Rigid Structure from Motion. Left: A moving single camera observes a rigid object. When the object is rigid,
the rigidity prior is enough to make the problem well posed. Right: A moving single camera observes a time-varying shape. In this case,
the problem is ill-posed since it is equivalent to find a 3D geometry from single image.

shape model has proven successful in the 3D reconstruction
of many real-world deformable objects, where both shape
basis and the coefficients are unknown. A factorization-
based algorithm was proposed to express the measurement
matrix as a product of two factors, the motion matrix that in-
cludes the camera motion and the time-varying coefficients,
and the shape matrix to encode the deformation modes.
However, this problem has to enforce non-linear constraints
on camera motion that make the estimation problem dif-
ficult. In order to exactly enforce the constraints, different
optimization schemes have been proposed adding additional
priors such as rigid component [25], temporal [1, 16, 62]
and spatial smoothness [62], allowing them to be robust to
missing data and noise.

While the low-rank shape prior has been widely used
in NRSfM, this model can only code small linear deforma-
tions, since small values of rank on the space basis could
be insufficient to represent the variation of real-world ob-
jects. Stronger deformations and non-linear patterns could
require a relatively large number of rank on the shape basis,
where the extra degrees of freedom will be unconstrained
by the data and end up fitting noise. To solve these prob-
lems, other approaches have been proposed to target more
complex non-rigid deformations [15, 28, 51, 52].

[14] proposed that the low-rank constraint can be applied
in the temporal evolution of each 3D point in the space,
instead of in the spatial configuration as shape basis. To
do this, they independently code each 3D point position at
each instant by means of a linear combination of trajectory
basis. In fact, this model is just a dual representation of
the low-rank shape basis model, with the same compaction
power. However, its great advantage is that the trajectory
basis can be pre-defined in advance, using basis represen-
tations for temporal signals such as the Discrete Cosine

Figure 2. Ambiguity for reconstructing deformable surfaces
from monocular video. We display the fact that there are many
different 3D shape configurations that correspond to similar image
observations.

Transform (DCT), reducing the number of parameters to
estimate. Moreover, since each point is modeled indepen-
dently, these methods can handle a wide range of motions,
from non-rigid to articulated motions. A shared limitation
with low-rank shape models is that they also need to specify
the number of trajectories in the basis, being the reconstruc-
tions very sensitive to the choice of rank. The ambiguities of
this model were analyzed by [48], observing that when the
camera motion does not lie in the same subspace of the de-
formation motion, the ambiguities are reduced. This means
that the deformable object has to be observed by a camera
with strong motions, a need that reduces its applicability in
real scenarios. More recently, [31] used the trajectory repre-
sentation to impose temporal smoothness on each 3D point
trajectory.

Alternative models, such as piecewise models, have been
proposed to encode more accurately strong local deforma-
tions. These methods split the points into regions denoted
as patches, that are modeled independently. The main dif-



ference between piecewise models, it is the model chosen
for each path, which can be planar [18, 64], locally rigid
[60] or quadratic [27]. A very important drawback of these
methods [27, 64] is that they need a manual division of
the surface into patches. This requirement was avoided in
[52] where a formulation to automate the best division of
the surface into local patches was proposed. Despite this
progress, these methods rely on common features between
reconstructed patches to enforce global consistency or [60]
needs too many points to enforce the rigid local constraint
that is difficult to hold in practice. Moreover, these methods
require a post-precessing step in order to stitch all the lo-
cal reconstructions into a single smooth surface, increasing
their complexity.

More recently, following dense approaches to multi-view
stereo [29] and variational techniques to perform real-time
dense reconstructions of rigid scenes [45], NRSfM methods
have been extended to the dense case. [30] propose the first
variational approach to NRSfM to produce per-pixel dense
vivid reconstructions, combining a low-rank shape model
with local smoothness priors. [53] propose to estimate both
segmentation and reconstruction for all feature points in ev-
ery frame using piecewise models.

On the other hand, mechanical priors have also been pro-
posed to constrain the deformations of non-rigid objects.
Early approaches used deformable superquadrics [40], bal-
loons [21] or spring meshes [35], although these approaches
were only valid to code relatively small deformations.
In [38, 39] were proposed more closely a Finite Element
Method (FEM), modeling the surface as a thin-plate with
acting forces, using as input data volume images, such as to-
mography. In a similar way, FEM models were proposed to
accurately represent specific materials [63, 66] with known
material properties. To tackle the high dimensionality of
these physics-based models, a low-rank representation was
proposed by applying modal analysis over a known struc-
ture discretized in 3D finite elements [42, 49]. This method
was then applied to image segmentation [50], medical imag-
ing [42] and deformable 2D motion tracking [55, 58], re-
quiring again the material properties. Later, more accu-
rate representations were achieved using non-linear FEM
for large deformations of beam [34] and for 3D solid struc-
tures [32, 63]. However, their applicability was limited to
very specific geometries for which the material properties
were also known. While physic-based models have proved
effective in computer vision, they were discarded for their
high computational cost, the requirement of exact material
properties and their high dimensionality of unknowns.

In spite of all this tremendous progress, NRSfM meth-
ods remain behind their rigid counterparts when it comes to
real-time performance. The reason behind this is that they
are typically limited to batch operation where all frames in
the sequence are processed at once, after their acquisition,

preventing them from on-line and real-time performance.
Only recently, NRSfM has been extended to sequential pro-
cessing [47, 59]. However, they remain slow or do not scale
to the use of a large number of points. Furthermore, these
methods do not compute the tracking and data association
on-the-fly, that it is assumed known.

It is our aim contribution to propose several sequen-
tial algorithms to recover the camera motion and the time-
varying shape from monocular video as the data arrives,
which breaks free from the standard requirement of most
of state-of-the-art methods of processing all frames at once.
For all methods, we assume not to know any learning prior,
and our formulations can be used for a wide range of defor-
mations from inextensibility to extensibility. We use piece-
wise physic-based models (elastic problem resolved by fi-
nite element) with unknown material properties, that are
able to handle strong deformations at low computational
cost. In addition, we show how the non-rigid shape estima-
tion is possible in real time, and propose a novel formulation
suitable for the dense case.

4. Applications

Recovering simultaneously non-rigid 3D shape and cam-
era motion have too many applications in many different do-
mains ranging from several industries to medical imaging.
Next, we discuss a few of them.

4.1. Movie industry: augmented reality

The movie industry has recently shown great interest in
methods that allow recovering the 3D shape and motion of
deformable objects, mainly for augmented reality applica-
tions. In these cases, a virtual object is inserted on the scene
following the recovered camera motion (see Fig. 3). The
camera location is especially crucial for the virtual object,
since it has to follow a realistic trajectory in the final film.
In a similar way, different motions, such as facial expres-
sions, can be recovered reducing considerably the work of
graphic artists to animate the virtual object. In both cases,
the algorithms propose in this work could be used.

4.2. Sport industry: sailing

In this case, sailors are normally interested in measur-
ing shape changes in their own sails, or even studying the
sails of their opponents. Note that these measurements can
be used to control their sail boats in real time, adjusting
the shape of the sail to get more speed and even helping
to improve the design. While these measurements are nor-
mally made using classical sensors, such as strain gages,
they require a fine calibration and are necessary too many
sensors to measure all deformation shape. In this context,
vision sensors overcome other contact sensors that normally
change the behavior of the sail shape. In Fig. 4 we show as



Figure 3. Motion capture system applied to films. Left: Several
selected frames used to recover facial expressions by means of ar-
tificial markers. Right: A multi-camera system is used to track the
motion of the face or object. The recovered motion is augmented
with virtual objects performing a realistic trajectory. Images copy-
right Weta Digital.

Figure 4. Non-Rigid shape recovery in sailing. Another appli-
cation of our methods is to simultaneously reconstruct a sail and
recover the camera pose from monocular video. Image from [54].

similar methods to ours have been proposed to recover the
shape of a sail.

4.3. Experimental industry

Another potential application is the on-line characteriza-
tion of materials using image-based measurements. Again,
it is necessary to measure the shape changes, i.e., the 3D
displacements, to finally recover the material properties of
the object using inverse analysis (see Fig. 5). This problem
is particularly challenging when the characterization has to
be performed in-vivo, being necessary an estimation in real
time and using natural landmarks.

In addition, these measurements can be also used to an-
alyze the behavior of several components, such as a plane
wing, that deforms during a flight. In this case, it is nec-
essary to compare the predicted values in the design stage
with the observed values, helping to improve the simulation
software.

4.4. Marketing industry

Similar to movie industry, entertainment and marketing
industry is normally interested in reproducing cloth defor-
mations, such as jeans or dresses. These methods could be
used to recover the 3D deformations of real clothes in real
time and to use the reconstructed shapes in video games,
animation movies or publicity.

In a similar way, our methods could be used in intelli-
gence gathering, that normally requires an automated read-

Figure 5. Non-Rigid shape recovery in biomechanical experi-
mentation. In this application, the deformable shape has to be
recovered to use the experimental displacement field into inverse
analysis. To do this, a 3D model of the object with unknown ma-
terial properties is fitted comparing the predicted response with
the observed values. Left: Animal surface with artificial markers.
Right: 3D model.

ing of banners or t-shirts, being necessary unwarping the
surfaces. This is especially relevant where an estimation in
real time is mandatory, for instance, to rebroadcast news at
street level.

4.5. Medical Imaging

Finally, these methods can be applied in the medical
field, where the current trend is to make surgery more
automatic and less invasive. There are several medical
scenarios where only a monocular camera is available to
analyze the deformable tissues such as laparoscopy, gas-
troscopy, colonoscopy and bronchoscopy (see some exam-
ples in Fig. 6). In this context, the task for simultane-
ously recovering 3D shape and camera motion is particu-
larly challenging since the resulting images are normally of
poor quality and the observed deformations are very large.
In addition, for real interventions the estimation has to be
provided on-line and in real time. The proposed methods in
this work can be used to have a full 3D configuration of the
observed tissue from the images or even getting augmented
views, making the surgeons’ work much easier. Addition-
ally, the camera trajectory recovery allows us the automa-
tion of tasks, such as the control of tools.

5. Contributions
In this work, we push monocular NRSfM and non-rigid

SLAM forward towards real-time operation by proposing
several new on-line algorithms to recover the 3D non-rigid
shape of strongly deforming surfaces and camera motion
under realistic real-word conditions. For this purpose, we
exploit physics-based models for both the camera motion
and the time-varying shape without the need for a pre-
trained model, allowing us to apply our methods even on
real videos where this data is not available. While physics-
based models have been discarded for their high compu-
tational complexity, the requirement of exact physical ma-
terial properties and high dimensionality of unknowns. In
this work, we show as these methods can be used when the
material properties are unknown, as they can be applied in



Figure 6. Medical imaging application. Our algorithms can be
applied to assist surgeons by providing them reconstructions in
real time at frame rate to measure and obtain augmented views dur-
ing the surgery. Left: Laparoscopy image. Right: Gastroscopy
image.

on-line and real-time applications and finally, as they can be
used to recover dense objects in a sequential manner.

In detail, the main contributions of this work are:

- We contribute an algorithm that extends the classical
rigid SLAM to the non-rigid domain. For this pur-
pose, we represent the object’s surface mechanics by
means of Navier’s equations, which are solved using
the finite element method. In addition, most of mate-
rial properties can be factorized out and do not have
to be known in advance, avoiding the needed for a
strong knowledge of the mechanic model. Our method
can combine both rigid and non-rigid points under a
unique formalism. With this approach, we simulta-
neously recover the full camera trajectory and the de-
formable shape over time just from the sole input of the
image sequence gathered by the camera. While most
of state-of-the-art methods use the 2D tracking data as
input, our method automatically establishes correspon-
dences between consecutive frames, solving the data
association on-the-fly. One of the main advantages of
this approach is the ability to handle from isometric to
extensible deformations just by tunning, without addi-
tional constraints. These results have been published
in [4, 13].

- We present a novel rank analysis of the FEM system to
avoid imposing the boundary conditions of the FEM
system. To achieve this, we propose to approximate
the compliance matrix by means of a generalization of
the inverse stiffness matrix, enforcing a six rank defi-
ciency that corresponds to the six rigid body motions
of an object in the 3D space. In addition, we present a
3D FEM formulation that provides better conditioned
matrices and reduces the computational cost since the
resulting linear system has a lower dimension. With
these ingredients, to the best of our knowledge we
present the first approach to simultaneously estimate
both camera pose and the 3D reconstruction of de-
formable objects from monocular images in real time

at frame rate without requiring any rigid prior, as we
have experimentally demonstrated. These results have
been published in [5, 6, 12].

- We propose to reduce the high dimensionality of un-
knowns in physics-based models by means of a lin-
ear subspace of mode shapes that encodes the modes
of deformation. To do this, the force balance equa-
tion is solved using modal analysis via a simple eigen-
value problem. We incorporate a new classification
of mode shapes obtaining three practical mode fam-
ilies: rigid, bending and stretching deformations, in-
stead of the two proposed by state-of-the-art methods.
With this new classification differentiating the type
of the deformation, we can efficiently obtain mode
shapes with bending deformations even for very dense
shapes. However, when stretching deformations are
needed, the standard solution for the eigenvalue prob-
lem can become prohibitive in terms of computational
and memory requirements. For these cases, we pro-
pose two methods for efficiently obtaining the mode
basis, especially for stretching modes; the first one is
a frequency-based method, and the second one is a
coarse-to-fine approach. Both methods drastically re-
duce the computational cost remaining a good quality
of the solution. These results have been published in
[3, 7, 8].

- We propose two sequential algorithms for very differ-
ent scenarios ranging from sparse to dense objects. To
do this, we employ both temporal and spatial smooth-
ness priors using sequential bundle adjustment and ex-
pectation maximization algorithms over a sliding win-
dow of image frames to optimize the model parame-
ters. The non-rigid shape is modeled as a linear com-
bination of mode shapes obtained by modal analysis,
with time-varying weights that define the shape at each
frame and are estimated on-the-fly. Our systems ex-
hibit a good trade-off between accuracy and computa-
tional budget, and they can work under realistic real-
world assumptions such as dealing with structured oc-
clusions and handling non-isometric deformations. As
both methods estimate a small number of parameters
per frame, they could potentially achieve real-time per-
formance at frame rate. These results have been pub-
lished in [3, 7, 8].

6. Conclusion
Taken together, the proposed methods in this work push

monocular NRSfM and non-rigid SLAM forward towards
real-time operation. We believe that our methods represent
a significant step towards the challenge of real-time estima-
tion of non-rigid objects from monocular video, when the
measurements are a sparse set of points or even per pixel.



In the remainder of this section, we discuss their limitations
and propose research directions to improve them.

There are various ways in which our methods could be
improved. We briefly cite the most interesting extensions.

One way of extending our non-rigid monocular SLAM
system in [4, 13] is to explore the use of new feature de-
scriptors to establish correspondences between frames. At
the moment, we use cross correlation, that has proven to
be sufficient for many deformations in different objects, in-
cluding the challenging laparoscopic sequence. However,
when the elasticity of the object is very high, the current
patch of a deformed feature can be very different with re-
spect to the original template. Since a potential application
of this work is to process medical images, such as bron-
choscopy, we believe that the use the new feature descrip-
tors is key to establish correspondences and avoid that many
deformed points are annotated as outliers.

Regarding [5, 6, 12], while we have experimentally
demonstrated our performance in real time at frame rate
for small maps, around forty points, this method could be
extended to handle bigger maps. To do this, we propose
to re-think the compliance matrix computation. Since the
deformation is smooth, we could obtain it every several
frames instead of re-computing every frame. Another op-
tion is directly updated the compliance matrix, using the
previous matrix and the current stiffness matrix. In addi-
tion, since some points disappear out of view and are anno-
tated as missing data, other new points appear and should
be tracked. Hence, successfully incorporating the new fea-
tures into an existing model is another potential direction of
this research.

Finally, the modal space based method that we have pre-
sented in [3, 7, 8] can be extended to the articulated case
and to multiple objects. To this end, new mechanical matri-
ces are necessary to code the articulated motion, mainly for
human body estimation. In this case, a combination of dif-
ferent deformable, articulated and rigid parts could be con-
sidered. In addition to this, our shape basis could be updated
on-the-fly according as new measurements are available.

Some of these problems have been explored in [9, 10,
11].
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