

# FINITE ELEMENT BASED SEQUENTIAL BAYESIAN **NON-RIGID STRUCTURE FROM MOTION** ANTONIO AGUDO, BEGOÑA CALVO AND J. M. M. MONTIEL {aagudo, bcalvo, josemari}@unizar.es

#### CONTRIBUTIONS

Non-Rigid Structure from Motion embedding Navier's equations coded as FEM (Finite Element Method) within Bayesian sequential estimator coded as EKF (Extended Kalman Filter):

- DA (Data Association) is computed. Classically, DA assumed as prior (2D tracking)
- Potential 30 Hz real-time performance

## EKF+FEM NON-RIGID STRUCTURE SEQUENTIAL ESTIMATION



- Thin-plate FEM model. Tuning: Young's modulus *E* and Poisson's ratio  $\nu$
- FEM linear system:

$$K a = f$$

• No prior boundary points:  $K^+$  matrix Moore-Penrose (MP) pseudoinverse





### REFERENCES

- [1] Antonio Agudo, Begoña Calvo and J. M. M. Montiel. FEM models to code non-rigid EKF monocular SLAM. In International Workshop 4DMOD (ICCV) 2011
- [2] J. A. Castellanos, J. Neira and J. D. Tardós. Limits to the consistency of EKF-based SLAM. In *IFAC Symposium on* Intelligent Autonomous Vehicles 2004

- Full-perspective camera, no orthographic simplified camera
- Dealing with isometric and non-isometric scenes just by tuning
- Can cope with partial occlusions
- No boundary points have to be identified
- Able to perform even with small size maps

• Non-rigid FEM-based scene prediction:

$$\mathbf{y}_{k+1}^{C_k} = \mathbf{y}_k^{C_k} + \mathbf{K}_k^+ \Delta \mathbf{S}^C$$

• Normalized forces:

$$\Delta \mathbf{S}_{i}^{C} = \frac{1}{Eh} \left( \Delta f_{xi}^{C}, \Delta f_{yi}^{C}, \Delta f_{zi}^{C} \right)^{\top}$$

•  $O(n^3)$  computational complexity:

• EKF 
$$O(n^3)$$

- MP pseudoinverse  $O(12n^3)$
- DA EKF prediction elliptical  $3\sigma$  search region

### CONCLUSIONS

- EKF+FEM can solve NRSfM
- Low cost linear FEM is accurate enough
- Rigid boundary points removed
- Complexity depends on map size but not on number of frames

### EXPERIMENTAL RESULTS

The proposed method is validated with real image sequences  $320 \times 240$ . The first sequence frames are used to estimate structure at rest by means of rigid EKF-SLAM





| · |
|---|
|   |
|   |
|   |





- Non-Isometric deformation
- Accurate and consistent wrt ground truth
- Waving hand-held camera

Material Parameter Tuning

| Parameter                        | Silicone            | Paper               |
|----------------------------------|---------------------|---------------------|
| h (m)                            | $1.5 \cdot 10^{-3}$ | $1.0 \cdot 10^{-4}$ |
| u                                | 0.499               | 0.499               |
| $\frac{\Delta f}{Eh}$ (m) (std.) | $1.5 \cdot 10^{-5}$ | $2.0 \cdot 10^{-9}$ |
|                                  |                     |                     |





 $\approx 1 \frac{\text{sec}}{\text{frame}} \approx 100 \text{ map points}$  Matlab

### FUTURE WORK

- 30 Hz Real-time performance
- Comparison with respect to state-of-theart NRSfM methods
- Determining extreme deformations limits
- Processing medical endoscope sequences



tance

### Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

#### Paper Sequences

• Isometric deformation

• Natural landmarks

• Irregular triangles

• Static or waving camera

**Computation Time** 

### ACKNOWLEDGMENTS

This work was supported by the Spanish MICINN DIP2009-07130 and DPI2011-27939-C02-01 grants. Thanks to J. Civera and Óscar G. Grasa for fruitful discussion and software assis-